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Chapter 2: Probability: 
 

• An Experiment: is some procedure (or process) that we 
do and it results in an outcome. 

2.1 The Sample Space: 
Definition 2.1: 

• The set of all possible outcomes of a statistical 
experiment is called the sample space and is denoted by 
S. 

• Each outcome (element or member) of the sample space 
S is called a sample point.   

2.2 Events:  
Definition 2.2: 
An event A is a subset of the sample space S. That is A⊆S. 

• We say that an event A occurs if the outcome (the 
result) of the experiment is an element of A. 

• φ⊆S  is an event     (φ is called the impossible event) 
• S⊆S  is an event     (S is called the sure event) 

Example: 
Experiment: Selecting a ball from a box containing 6 balls 
numbered 1,2,3,4,5 and 6. (or tossing a die) 

• This experiment has 6 possible outcomes 
The sample space is  S={1,2,3,4,5,6}. 

• Consider the following events: 
E1=getting an even number ={2,4,6}⊆S   

 E2 =getting a number less than 4={1,2,3}⊆S   
 E3 =getting 1 or 3={1,3}⊆S   

 E4 =getting an odd number={1,3,5}⊆S 
 E5 =getting a negative number={ }=φ ⊆S   
 E6 =getting a number less than 10 = {1,2,3,4,5,6}=S⊆S 

Notation: 
n(S)= no. of outcomes (elements) in S. 
n(E)= no. of outcomes (elements) in the event E. 

Example: 
Experiment: Selecting 3 items from manufacturing process; 
each item is inspected and classified as defective (D) or non-
defective (N). 
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• This experiment has 8 possible outcomes 
S={DDD,DDN,DND,DNN,NDD,NDN,NND,NNN} 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
• Consider the following events: 
A={at least 2 defectives}= {DDD,DDN,DND,NDD}⊆S 
B={at most one defective}={DNN,NDN,NND,NNN}⊆S 

 C={3 defectives}={DDD}⊆S 
Some Operations on Events: 
Let A and B be two events defined on the sample space S. 
Definition 2.3: Complement of The Event A: 

• Ac or A' or A  S 
• Ac = {x ∈S:  x∉A } 
• Ac consists of all points of S 
     that are not in A. 
• Ac occurs if  A does not. 

 
Definition 2.4: Intersection: 

S •  A∩B =AB={x ∈S: x∈A and x∈B} 
• A∩B  Consists of all points in  
     both A and B. 
• A∩B Occurs if both A and B occur 
     together. 
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Definition 2.5: Mutually Exclusive (Disjoint) Events: 
Two events A and B are mutually exclusive (or disjoint) if and 
only if A∩B=φ; that is, A and B have no common elements (they 
do not occur together).  

 

  

 
A∩B = φ 

A and B are mutually 
exclusive (disjoint) 

  A∩B ≠ φ 
A and B are not 

mutually exclusive 
 
Definition 2.6: Union:  

S 

 

• A∪B = {x ∈S: x∈A or  x∈B } 
• A∪B Consists of all outcomes in 
    A or in B or in both A and B. 
• A∪B Occurs if A occurs, 
     or B occurs, or both A and B occur. 
     That is A∪B Occurs if at least one of 
      A and B occurs. 

 
2.3 Counting Sample Points:  

• There are many counting techniques which can be used to 
count the number points in the sample space (or in some 
events) without listing each element. 

• In many cases, we can compute the probability of an 
event by using the counting techniques. 

Combinations: 
In many problems, we are interested in the number of ways of 
selecting r objects from n objects without regard to order. These 
selections are called combinations. 

• Notation: 
   n  factorial is denoted by  and is defined by: !n

   ( ) ( ) ( ) ( )
1!0

,2,11221!
=

=×××−×−×= LL nfornnnn  
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  Example: 12012345!5 =××××=  
Theorem 2.8:  
The number of combinations of n distinct objects taken r at a 

time is denoted by  and is given by: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

 

 ( ) nr
rnr

n
r
n

,,2,1,0;
!!

!
K=

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
Notes: 

•  is read as  “ n “ choose  “ r ”. ⎟⎟
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•  = The number of different ways of selecting r objects ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

               from n distinct objects. 

•  = The number of different ways of dividing n distinct ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

               objects into two subsets; one subset contains r  
               objects and the other contains the rest (n−r) bjects. 

Example:  
If we have 10 equal–priority operations and only 4 operating 
rooms are available, in how many ways can we choose the 4 
patients to be operated on first? 
Solution: 
n = 10 r = 4 
The number of different ways for selecting 4 patients from 10 
patients is  

    ( ) ( ) ( )
)(210

1234561234
12345678910

!6!4
!10

!410!4
!10

4
10

waysdifferent=

×××××××××
×××××××××

=
×

=
−

=⎟⎟
⎠

⎞
⎜⎜
⎝  
⎛

 
2.4. Probability of an Event:  

• To every point (outcome) in the sample space of an 
experiment S, we assign a weight (or probability), ranging 
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from 0 to 1, such that the sum of all weights 
(probabilities) equals 1. 

• The weight (or probability) of an outcome measures its 
likelihood (chance) of occurrence. 

• To find the probability of an event A, we sum all 
probabilities of the sample points in A. This sum is called 
the probability of the event A and is denoted by P(A). 

Definition 2.8:  
The probability of an event A is the sum of the weights 
(probabilities) of all sample points in A. Therefore, 

1.  ( ) 10 ≤≤ AP
2.  ( ) 1=SP
3. ( ) 0=φP  

Example 2.22: 
A balanced coin is tossed twice. What is the probability that at 
least one head occurs? 
Solution: 
S = {HH, HT, TH, TT} 
A = {at least one head occurs}= {HH, HT, TH} 
Since the coin is balanced, the outcomes are equally likely; i.e., 
all outcomes have the same weight or probability. 
Outcome Weight 

(Probability) 
HH 
HT 
TH 
TT 

P(HH) = w 
P(HT) = w 
P(TH) = w 
P(TT) = w 

sum 4w=1 

 
 
 
4w =1 ⇔ w =1/4 = 0.25 
P(HH)=P(HT)=P(TH)=P(TT)=0.25 

The probability that at least one head occurs is: 
P(A) = P({at least one head occurs})=P({HH, HT, TH}) 
         =  P(HH) + P(HT) + P(TH) 
         = 0.25+0.25+0.25 
         = 0.75 
Theorem 2.9:  
If an experiment has n(S)=N equally likely different outcomes, 
then the probability of the event A is: 
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AnAP

.

.)(
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)()( ===  

Example 2.25: 
A mixture of candies consists of 6 mints, 4 toffees, and 3 
chocolates. If a person makes a random selection of one of these 
candies, find the probability of getting: 
(a) a mint 
(b) a toffee or chocolate. 
Solution: 
Define the following events: 
 M = {getting a mint} 
 T = {getting a toffee} 
 C = {getting a chocolate} 
Experiment: selecting a candy at random from 13 candies 
n(S) = no. of outcomes of the experiment of selecting a candy. 
     = no. of different ways of selecting a candy from 13 candies. 

     =  = 13 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1

13

The outcomes of the experiment are equally likely because the 
selection is made at random. 
(a) M = {getting a mint} 

 n(M) = no. of different ways of selecting a mint candy 
              from 6 mint candies 

                    =   = 6 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
6

      P(M )= P({getting a mint})= ( )
( ) 13

6
=

Sn
Mn  

(b)   T∪C = {getting a toffee or chocolate} 
 n(T∪C) = no. of different ways of selecting a toffee 
                  or a chocolate candy 
                = no. of different ways of selecting a toffee 
                   candy + no. of different ways of selecting a 
                   chocolate candy 

                 = + = 4 +3 =7 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
3

                 = no. of different ways of selecting a candy 
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                    from 7 candies 

                         =   = 7 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
7

      P(T∪C )= P({getting a toffee or chocolate})= ( )
( ) 13

7
=

∪
Sn

CTn  

Example 2.26: 
In a poker hand consisting of 5 cards, find the probability of 
holding 2 aces and 3 jacks. 
Solution: 
Experiment: selecting 5 cards from 52 cards. 
n(S) = no. of outcomes of the experiment of selecting 5 cards 
           from 52 cards. 

         = 
!47!5

!52
5

52
×

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  = 2598960 

The outcomes of the experiment are equally likely because the 
selection is made at random. 
Define the event A = {holding 2 aces and 3 jacks} 

n(A) = no. of ways of selecting 2 aces and 3 jacks 
        = (no. of ways of selecting 2 aces) × (no. of  
            ways of selecting 3 jacks) 
        = (no. of ways of selecting 2 aces from 4 aces) × (no. 
            of ways of selecting 3 jacks from 4 jacks) 

        =  ×  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
4

        = 
!2!2

!4
×

  × 
!1!3

!4
×

 = 6 × 4 = 24 

      P(A )= P({holding 2 aces and 3 jacks }) 
                 = ( )

( ) 2598960
24

=
Sn
An  = 0.000009 

  
2.5 Additive Rules: 
Theorem 2.10: 
If A and B are any two events, then: 

P(A∪B)= P(A) + P(B) − P(A∩B) 
Corollary 1: 
If A and B are mutually exclusive (disjoint) events, then: 
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P(A∪B)= P(A) + P(B) 
Corollary 2: 
If A1, A2, …, An  are n mutually exclusive (disjoint) events, then: 

P(A1∪ A2 ∪… ∪A n)= P(A1) + P(A2) +… + P(An) 

∑=⎟
⎠
⎞

⎜
⎝
⎛

==

n

i
i

n

i
i APAP

11
)(U  

Note: Two event Problems: 
* In Venn diagrams, consider 

  
Total area= P(S)=1

the probability of an event A as 
the area of the region  
corresponding to the event A. 
* Total area= P(S)=1 
* Examples: 
P(A)= P(A∩B)+ P(A∩BC) 
P(A∪B)= P(A) + P(AC∩B) 
P(A∪B)= P(A) + P(B) − P(A∩B) 
P(A∩BC)= P(A) − P(A∩B) 
P(AC∩BC)= 1 − P(A∪B) 
etc., 
Example 2.27: 
The probability that Paula passes Mathematics is 2/3, and the 
probability that she passes English is 4/9. If the probability that 
she passes both courses is 1/4, what is the probability that she 
will: 
(a) pass at least one course? 
(b) pass Mathematics and fail English? 
(c) fail both courses? 
Solution: 
Define the events: M={Paula passes Mathematics} 
    E={Paula passes English} 
We know that P(M)=2/3, P(E)=4/9, and P(M∩E)=1/4. 
(a) Probability of passing at least one course is: 
     P(M∪E)= P(M) + P(E) − P(M∩E) 
                   = 

36
31

4
1

9
4

3
2

=−+  

(b) Probability of passing Mathematics and failing English is: 
     P(M∩EC)= P(M) − P(M∩E) 
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                   = 
12
5

4
1

3
2

=−  

(c) Probability of failing both courses is: 
     P(MC∩EC)= 1 − P(M∪E) 
                   = 

36
5

36
311 =−  

Theorem 2.12: 
If A and AC are complementary events, then: 

P(A) + P(AC) = 1  ⇔  P(AC) = 1 − P(A) 
 
2.6 Conditional Probability: 
The probability of occurring an event A when it is known that 
some event B has occurred is called the conditional probability 
of A given B and is denoted P(A|B). 
 
Definition 2.9: 
The conditional probability of the 
event A given the event B is defined by: 
( ) ( )

( ) ( ) 0;| >
∩

= BP
BP

BAPBAP  

Notes: 
( ) ( )

( )
( ) ( )
( ) ( )

( )
( ) caseoutcomeslikelyequallyfor
Bn

BAn
SnBn

SnBAn
BP

BAPBAP

;
/

/

|.1

∩
=

∩
=

=
∩

=
 

 
 P(S)=Total area=1 

( ) ( )
( )AP

BAPABP ∩
=|.2  

( ) ( ) (
( ) ( )BAPBP

ABPAPBAP
|
|.3

=
=∩ )  (Multiplicative Rule=Theorem 2.13) 

Example: 
339 physicians are classified as given in the table below. A 
physician is to be selected at random. 
(1) Find the probability that: 

(a) the selected physician is aged 40 – 49 
(b) the selected physician smokes occasionally 
(c) the selected physician is aged 40 – 49 and smokes 
     occasionally 
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(2) Find the probability that the selected physician is aged 
      40 – 49 given that the physician smokes occasionally. 
  
  Smoking Habit 
  Daily 

(BB1)  
Occasionally

(BB2) 
Not at all 

(BB3) 
 

Total 
20 - 29  (A1) 31 9 7 47 
30 - 39  (A2) 110 30 49 189 
40 - 49  (A3) 29 21 29 79 A

ge
 

50+       (A4) 6 0 18 24 
 Total 176 60 103 339 

Solution: 
.n(S) = 339   equally likely outcomes.  
Define the following events: 
A3 = the selected physician is aged 40 – 49 
BB2 = the selected physician smokes occasionally 
A3 ∩ B2 = the selected physician is aged 40 – 49 and smokes 
                 occasionally 
(1) (a) A3 = the selected physician is aged 40 – 49 

( ) ( )
( ) 2330.0

339
793

3 ===
Sn
AnAP  

(b) BB2 = the selected physician smokes occasionally 
( ) ( )

( ) 1770.0
339
602

2 ===
Sn
BnBP       

(c) A3 ∩ B2 = the selected physician is aged 40 – 49 and 
                      smokes occasionally. 

( ) ( )
( ) 06195.0

339
2123

23 ==
∩

=∩
Sn

BAnBAP  

(2)  A3|BB2 = the selected physician is aged 40 – 49 given that the 
                   physician smokes occasionally 
(i) ( ) ( )

( ) 35.0
1770.0
06195.0|

2

23
23 ==

∩
=

BP
BAPBAP  

(ii) ( ) ( )
( ) 35.0

60
21|

2

23
23 ==

∩
=

Bn
BAnBAP  

(iii) We can use the restricted table directly: ( ) 35.0
60
21| 23 ==BAP  
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Notice that P(A3|BB2)=0.35 > P(A3)=0.233. 
The conditional probability does not equal unconditional 
probability; i.e., P(A3|BB2) ≠ P(A3) ! What does this mean? 
Note: 

• P(A|B)=P(A) means that knowing B has no effect on the 
probability of occurrence of A. In this case A is 
independent of B. 

• P(A|B)>P(A) means that knowing B increases the 
probability of occurrence of A. 

• P(A|B)<P(A) means that knowing B decreases the 
probability of occurrence of A. 

 
Independent Events:  
Definition 2.10: 
Two events A and B are independent if and only if P(A|B)=P(A)    
and  P(B|A)=P(B). Otherwise A and B are dependent. 
Example: 
In the previous example, we found that P(A3|BB2) ≠ P(A3). 
Therefore, the events A3 and B2B  are dependent, i.e., they are not 
independent. Also, we can verify that P(BB2| A3) ≠ P(B2B ). 
 
2.7 Multiplicative Rule: 
Theorem 2.13: 
If P(A) ≠ 0 and P(B) ≠ 0, then: 

P(A∩B) = P(A) P(B|A) 
               =  P(B) P(A|B)  

Example 2.32: 
Suppose we have a fuse box containing 20 fuses of which 5 are 
defective (D) and 15 are non-defective (N). If 2 fuses are 
selected at random and removed from the box in succession 
without replacing the first, what is the probability that both fuses 
are defective? 
Solution: 
Define the following events:  
A = {the first fuse is defective} 
B = {the second fuse is defective} 
A∩B={the first fuse is defective and the second fuse is 
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            defective} = {both fuses are defective} 
We need to calculate P(A∩B). 
P(A) = 

20
5   

P(B|A) = 
19
4      

P(A∩B) = P(A) P(B|A) 
               = 

20
5  × 

19
4  = 0.052632 

 
 
 
 
 
 
 
 
 

 
              First Selection    Second Selection: given that 

             the first is defective (D) 

Theorem 2.14: 
Two events A and B are independent if and only if  

P(A∩B)= P(A) P(B) 
*(Multiplicative Rule for independent events) 
 
Note: 
Two events A and B are independent if one of the following 
conditions is satisfied: 

(i)   P(A|B)=P(A) 
⇔ (ii)  P(B|A)=P(B) 
⇔ (iii)  P(A∩B)= P(A) P(B) 
 
Theorem 2.15: (k=3) 

• If A1, A2, A3  are 3 events, then: 
P(A1∩ A2 ∩A3)= P(A1) P(A2| A1) P(A3| A1∩ A2) 

• If A1, A2, A3  are 3 independent events, then: 
P(A1∩ A2 ∩A3)= P(A1) P(A2) P(A3) 
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Example 2.36: 
Three cards are drawn in succession, without replacement, from 
an ordinary deck of playing cards. Fined P(A1∩ A2 ∩A3), where 
the events A1,  A2 , and A3  are defined as follows: 
A1  = {the 1-st card is a red ace} 
A2 = {the 2-nd card is a 10 or a jack} 
A3 = {the 3-rd card is a number greater than 3 but less than 7} 
Solution: 
P(A1) = 2/52 
P(A2 |A1) = 8/51 
P(A3| A1 ∩A2) = 12/50 
P(A1∩ A2 ∩A3) 

= P(A1) P(A2| A1) P(A3| A1∩ A2) 
 = 

50
12

51
8

52
2

××  

 = 
132600

192  

= 0.0014479 
 
 
 
2.8  Bayes' Rule: 
Definition: 
The events A1, A2,…, and An constitute a partition of the sample 
space S if: 

•  = Ai
n

1i
A∪

=
1 ∪ A2 ∪  …  ∪ An = S 

• Ai ∩Aj = φ,   ∀ i ≠j 
Theorem 2.16: (Total Probability) 
If the events A1, A2,…, and An constitute 
a partition of the sample space S  
such that P(Ak)≠0 for k=1, 2, …, n, 
then for any event B: 
P(B) =  ∑ ∩

=

n

1
k B)P(A

k

        =  ∑
=

n

1k
kk )A|P(B)P(A

Department of Statistics and O.R. −  17  − King Saud University
 



STAT – 324                 Summer Semester 1426/1427       Dr. Abdullah Al-Shiha
 

 

 
Tree Diagram 

 
Example 2.38: 
Three machines A1, A2, and A3 make 20%, 30%, and 50%, 
respectively, of the products. It is known that 1%, 4%, and 7% 
of the products made by each machine, respectively, are 
defective. If a finished product is randomly selected, what is the 
probability that it is defective? 
Solution: 
Define the following events: 
B  = {the selected product is defective} 
A1 = {the selected product is made by machine A1} 
A2 = {the selected product is made by machine A2} 
A3 = {the selected product is made by machine A3} 
P(A1) = 2.0

100
20

= ;    P(B|A1)= 01.0
100

1
=  

P(A2) = 3.0
100
30

= ;    P(B|A2)= 04.0
100

4
=  

P(A3) = 5.0
100
50

= ;    P(B|A3)= 07.0
100

7
=  

P(B) = 
∑
=

3

1k
kk )A|P(B)P(A

 
        = P(A1) P(B|A1) +  P(A2) P(B|A2) + P(A3) P(B|A3) 
      = 0.2×0.01 + 0.3×0.04  + 0.5×0.07 
      = 0.002      + 0.012       + 0.035 
      = 0.049 
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Question: 
If it is known that the selected product is defective, what is the 
probability that it is made by machine A1? 
Answer: 
P(A1|B) = 

P(B)
B)P(A1 ∩  = 

P(B)
)A|)P(BP(A 11  = 

049.0
0.002

0.049
0.010.2

=
×  = 0.0408 

This rule is called Bayes' rule. 
 
Theorem 2.17: (Bayes' rule) 
If the events A1,A2,…, and An constitute a partition of the sample 
space S such that P(Ak)≠0 for k=1, 2, …, n, then for any event B 
such that P(B)≠0: 
P(Ai | B) = 

P(B)
)A|P(B)P(A

)A|P(B)P(A

)A|P(B)P(A
P(B)

B)P(A ii
n

1k
kk

iii =
∑

=
∩

=

 

for  i = 1, 2, …, n. 
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Example 2.39: 
In Example 2.38, if it is known that the selected product is 
defective, what is the probability that it is made by: 
(a) machine A2? 
(b) machine A3? 
Solution: 
(a) P(A2|B)=

P(B)
)A|P(B)P(A

)A|P(B)P(A

)A|P(B)P(A 22
n

1k
kk

22 =

∑
=

 

                  =
049.0

0.012
0.049

0.040.3
=

× =0.2449 

 
 
(b) P(A3|B)=

P(B)
)A|P(B)P(A

)A|P(B)P(A

)A|P(B)P(A 33
n

1k
kk

33 =
∑
=

 

                  =
049.0

0.035
0.049

0.070.5
=

× =0.7142 

 
Note: 
P(A1|B) = 0.0408,  P(A2|B) = 0.2449,  P(A3|B) = 0.7142 

•  ∑ =
=

3

1k
k 1B)|P(A

• If the selected product was found defective, we should 
check machine A3 first, if it is ok, we should check 
machine A2, if it is ok, we should check machine A1. 
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	Chapter 2: Probability: 
	339 physicians are classified as given in the table below. A physician is to be selected at random. 
	  
	Smoking Habit

	Notice that P(A3|B2)=0.35 > P(A3)=0.233. 
	The conditional probability does not equal unconditional probability; i.e., P(A3|B2) ( P(A3) ! What does this mean? 
	Two events A and B are independent if and only if P(A|B)=P(A)    and  P(B|A)=P(B). Otherwise A and B are dependent. 
	Example: 
	In the previous example, we found that P(A3|B2) ( P(A3). Therefore, the events A3 and B2 are dependent, i.e., they are not independent. Also, we can verify that P(B2| A3) ( P(B2). 
	 
	2.7 Multiplicative Rule: 
	 
	Note: 
	 


