Chapter 2: Probability:

- An Experiment: is some procedure (or process) that we do and it results in an outcome.

2.1 The Sample Space:

Definition 2.1:

- The set of all possible outcomes of a statistical experiment is called the sample space and is denoted by S.
- Each outcome (element or member) of the sample space S is called a sample point.

2.2 Events:

Definition 2.2:

An event A is a subset of the sample space S. That is $A \subseteq S$.

- We say that an event A occurs if the outcome (the result) of the experiment is an element of A.
- $\phi \subseteq S$ is an event (ϕ is called the impossible event)
- $S \subseteq S$ is an event (S is called the sure event)

Example:

Experiment: Selecting a ball from a box containing 6 balls numbered $1,2,3,4,5$ and 6 . (or tossing a die)

- This experiment has 6 possible outcomes

The sample space is $S=\{1,2,3,4,5,6\}$.

- Consider the following events:
$E_{1}=$ getting an even number $=\{2,4,6\} \subseteq S$
$E_{2}=$ getting a number less than $4=\{1,2,3\} \subseteq S$
$E_{3}=$ getting 1 or $3=\{1,3\} \subseteq S$
$E_{4}=$ getting an odd number $=\{1,3,5\} \subseteq S$
$E_{5}=$ getting a negative number $=\{ \}=\phi \subseteq S$
$E_{6}=$ getting a number less than $10=\{1,2,3,4,5,6\}=S \subseteq S$

Notation:

$n(S)=$ no. of outcomes (elements) in S.
$n(E)=$ no. of outcomes (elements) in the event E.

Example:

Experiment: Selecting 3 items from manufacturing process; each item is inspected and classified as defective (D) or nondefective (N).

- This experiment has 8 possible outcomes $S=\{D D D, D D N, D N D, D N N, N D D, N D N, N N D, N N N\}$

	$\begin{aligned} & \hline \text { DDD } \\ & \text { DDN } \\ & \text { DND } \\ & \text { DNN } \\ & \text { NDD } \\ & \text { NDN } \\ & \text { NND } \\ & \text { NNN } \end{aligned}$

- Consider the following events:
$A=\{$ at least 2 defectives $\}=\{$ DDD,DDN,DND,NDD $\} \subseteq S$
$B=\{$ at most one defective $\}=\{D N N, N D N, N N D, N N N\} \subseteq S$
$\mathrm{C}=\{3$ defectives $\}=\{\mathrm{DDD}\} \subseteq S$

Some Operations on Events:

Let A and B be two events defined on the sample space S.

Definition 2.3: Complement of The Event A :

- A^{c} or A^{\prime} or \bar{A}
- $A^{\mathrm{c}}=\{\mathrm{x} \in S: \mathrm{x} \notin A\}$
- A^{C} consists of all points of S that are not in A.
- A^{c} occurs if A does not.

Definition 2.4: Intersection:

- $A \cap B=A B=\{\mathrm{x} \in S: \mathrm{x} \in A$ and $\mathrm{x} \in B\}$
- $A \cap B$ Consists of all points in both A and B.
- $A \cap B$ Occurs if both A and B occur together.

Definition 2.5: Mutually Exclusive (Disjoint) Events:

Two events A and B are mutually exclusive (or disjoint) if and only if $A \cap B=\phi$; that is, A and B have no common elements (they do not occur together).

$A \cap B \neq \phi$
A and B are not
mutually exclusive

$A \cap B=\phi$ A and B are mutually exclusive (disjoint)

Definition 2.6: Union:

- $A \cup B=\{\mathrm{x} \in S: \mathrm{x} \in A$ or $\mathrm{x} \in B\}$
- $A \cup B$ Consists of all outcomes in A or in B or in both A and B.
- $A \cup B$ Occurs if A occurs, or B occurs, or both A and B occur. That is $A \cup B$ Occurs if at least one of A and B occurs.

2.3 Counting Sample Points:

- There are many counting techniques which can be used to count the number points in the sample space (or in some events) without listing each element.
- In many cases, we can compute the probability of an event by using the counting techniques.

Combinations:

In many problems, we are interested in the number of ways of selecting r objects from n objects without regard to order. These selections are called combinations.

- Notation:
n factorial is denoted by n ! and is defined by:

$$
\begin{aligned}
& n!=n \times(n-1) \times(n-2) \times \cdots \times(2) \times(1) \quad \text { for } \quad n=1,2, \cdots \\
& 0!=1
\end{aligned}
$$

Example: 5! $=5 \times 4 \times 3 \times 2 \times 1=120$

Theorem 2.8:

The number of combinations of n distinct objects taken r at a time is denoted by $\binom{n}{r}$ and is given by:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} ; \quad r=0,1,2, \ldots, n
$$

Notes:

- $\binom{n}{r}$ is read as " n " choose " r ".
- $\binom{n}{n}=1,\binom{n}{0}=1,\binom{n}{1}=n,\binom{n}{r}=\binom{n}{n-r}$
- $\binom{n}{r}=$ The number of different ways of selecting r objects from n distinct objects.
- $\binom{n}{r}=$ The number of different ways of dividing n distinct objects into two subsets; one subset contains r objects and the other contains the rest ($n-r$) bjects.

Example:

If we have 10 equal-priority operations and only 4 operating rooms are available, in how many ways can we choose the 4 patients to be operated on first?

Solution:

$n=10 \quad r=4$
The number of different ways for selecting 4 patients from 10 patients is

$$
\begin{aligned}
&\binom{10}{4}= \frac{10!}{4!(10-4)!}=\frac{10!}{4!\times 6!}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1) \times(6 \times 5 \times 4 \times 3 \times 2 \times 1)} \\
&=210 \quad(\text { different ways })
\end{aligned}
$$

2.4. Probability of an Event:

- To every point (outcome) in the sample space of an experiment S, we assign a weight (or probability), ranging
from 0 to 1 , such that the sum of all weights (probabilities) equals 1.
- The weight (or probability) of an outcome measures its likelihood (chance) of occurrence.
- To find the probability of an event A, we sum all probabilities of the sample points in A. This sum is called the probability of the event A and is denoted by $\mathrm{P}(A)$.

Definition 2.8:

The probability of an event A is the sum of the weights (probabilities) of all sample points in A. Therefore,

1. $0 \leq P(A) \leq 1$
2. $P(S)=1$
3. $P(\phi)=0$

Example 2.22:

A balanced coin is tossed twice. What is the probability that at least one head occurs?

Solution:

$S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$A=\{$ at least one head occurs $\}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$
Since the coin is balanced, the outcomes are equally likely; i.e., all outcomes have the same weight or probability.

Outcome	Weight (Probability)
HH	$\mathrm{P}(\mathrm{HH})=\mathrm{w}$
HT	$\mathrm{P}(\mathrm{HT})=\mathrm{w}$
TH	$\mathrm{P}(\mathrm{w}=1 \Leftrightarrow \mathrm{w}=1 / 4=0.25$
TT	$\mathrm{P}(\mathrm{TT})=\mathrm{w})=\mathrm{w}$
Pum	$\mathrm{P}(\mathrm{HH})=\mathrm{P}(\mathrm{HT})=\mathrm{P}(\mathrm{TH})=\mathrm{P}(\mathrm{TT})=0.25$
	$4 \mathrm{w}=1$

The probability that at least one head occurs is:

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(\{\text { at least one head occurs }\})=\mathrm{P}(\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}) \\
& =\mathrm{P}(\mathrm{HH})+\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH}) \\
& =0.25+0.25+0.25 \\
& =0.75
\end{aligned}
$$

Theorem 2.9:

If an experiment has $n(S)=N$ equally likely different outcomes, then the probability of the event A is:

$$
P(A)=\frac{n(A)}{n(S)}=\frac{n(A)}{N}=\frac{n o . \text { of outcomes in } A}{n o . \text { of outcomes in } S}
$$

Example 2.25:

A mixture of candies consists of 6 mints, 4 toffees, and 3 chocolates. If a person makes a random selection of one of these candies, find the probability of getting:
(a) a mint
(b) a toffee or chocolate.

Solution:

Define the following events:

$$
\begin{aligned}
& M=\{\text { getting a mint }\} \\
& T=\{\text { getting a toffee }\} \\
& C=\{\text { getting a chocolate }\}
\end{aligned}
$$

Experiment: selecting a candy at random from 13 candies $n(S)=$ no. of outcomes of the experiment of selecting a candy.
$=$ no. of different ways of selecting a candy from 13 candies.

$$
=\binom{13}{1}=13
$$

The outcomes of the experiment are equally likely because the selection is made at random.
(a) $M=$ \{getting a mint $\}$
$n(M)=$ no. of different ways of selecting a mint candy from 6 mint candies

$$
=\binom{6}{1}=6
$$

$\mathrm{P}(M)=\mathrm{P}(\{$ getting a mint $\})=\frac{n(M)}{n(S)}=\frac{6}{13}$
(b) $T \cup C=$ \{getting a toffee or chocolate $\}$
$n(T \cup C)=$ no. of different ways of selecting a toffee or a chocolate candy
$=$ no. of different ways of selecting a toffee candy + no. of different ways of selecting a chocolate candy
$=\binom{4}{1}+\binom{3}{1}=4+3=7$
$=$ no. of different ways of selecting a candy
from 7 candies

$$
=\binom{7}{1}=7
$$

$$
\mathrm{P}(T \cup C)=\mathrm{P}(\{\text { getting a toffee or chocolate }\})=\frac{n(T \cup C)}{n(S)}=\frac{7}{13}
$$

Example 2.26:

In a poker hand consisting of 5 cards, find the probability of holding 2 aces and 3 jacks.

Solution:

Experiment: selecting 5 cards from 52 cards.
$n(S)=$ no. of outcomes of the experiment of selecting 5 cards from 52 cards.

$$
=\binom{52}{5}=\frac{52!}{5!\times 47!}=2598960
$$

The outcomes of the experiment are equally likely because the selection is made at random.
Define the event $A=$ \{holding 2 aces and 3 jacks $\}$

$$
\begin{aligned}
n(A)= & \text { no. of ways of selecting } 2 \text { aces and } 3 \text { jacks } \\
= & (\text { no. of ways of selecting } 2 \text { aces }) \times(\text { no. of } \\
& \text { ways of selecting } 3 \text { jacks }) \\
= & (\text { no. of ways of selecting } 2 \text { aces from } 4 \text { aces }) \times(\text { no. } \\
& \text { of ways of selecting } 3 \text { jacks from } 4 \text { jacks }) \\
= & \binom{4}{2} \times\binom{ 4}{3} \\
= & \frac{4!}{2!\times 2!} \times \frac{4!}{3!\times 1!}=6 \times 4=24 \\
\mathrm{P}(A)= & \mathrm{P}(\{\text { holding } 2 \text { aces and } 3 \text { jacks }\}) \\
= & \frac{n(A)}{n(S)}=\frac{24}{2598960}=0.000009
\end{aligned}
$$

2.5 Additive Rules:

Theorem 2.10:

If A and B are any two events, then:

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

Corollary 1:

If A and B are mutually exclusive (disjoint) events, then:

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

Corollary 2:

If $A_{1}, A_{2}, \ldots, A_{n}$ are n mutually exclusive (disjoint) events, then:

$$
\begin{gathered}
\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots+\mathrm{P}\left(A_{n}\right) \\
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
\end{gathered}
$$

Note: Two event Problems:

* In Venn diagrams, consider the probability of an event A as the area of the region corresponding to the event A.
* Total area= P(S)=1
* Examples:
$\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\mathrm{C}}\right)$
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}\left(A^{\mathrm{C}} \cap B\right)$
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}\left(A \cap B^{\mathrm{C}}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$

Total area $=P(S)=1$
$\mathrm{P}\left(A^{\mathrm{C}} \cap B^{\mathrm{C}}\right)=1-\mathrm{P}(A \cup B)$
etc.,

Example 2.27:

The probability that Paula passes Mathematics is $2 / 3$, and the probability that she passes English is 4/9. If the probability that she passes both courses is $1 / 4$, what is the probability that she will:
(a) pass at least one course?
(b) pass Mathematics and fail English?
(c) fail both courses?

Solution:

Define the events: $\quad M=$ \{Paula passes Mathematics $\}$

$$
E=\{\text { Paula passes English }\}
$$

We know that $\mathrm{P}(M)=2 / 3, \mathrm{P}(E)=4 / 9$, and $\mathrm{P}(M \cap E)=1 / 4$.
(a) Probability of passing at least one course is:

$$
\begin{aligned}
\mathrm{P}(M \cup E) & =\mathrm{P}(M)+\mathrm{P}(E)-\mathrm{P}(M \cap E) \\
& =\frac{2}{3}+\frac{4}{9}-\frac{1}{4}=\frac{31}{36}
\end{aligned}
$$

(b) Probability of passing Mathematics and failing English is:

$$
\mathrm{P}\left(M \cap E^{\mathrm{C}}\right)=\mathrm{P}(M)-\mathrm{P}(M \cap E)
$$

$$
=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}
$$

(c) Probability of failing both courses is:

$$
\begin{gathered}
\mathrm{P}\left(M^{\mathrm{C}} \cap E^{\mathrm{C}}\right)=1-\mathrm{P}(M \cup E) \\
=1-\frac{31}{36}=\frac{5}{36}
\end{gathered}
$$

Theorem 2.12:

If A and A^{C} are complementary events, then:

$$
\mathrm{P}(A)+\mathrm{P}\left(A^{\mathrm{C}}\right)=1 \Leftrightarrow \mathrm{P}\left(A^{\mathrm{C}}\right)=1-\mathrm{P}(A)
$$

2.6 Conditional Probability:

The probability of occurring an event A when it is known that some event B has occurred is called the conditional probability of A given B and is denoted $\mathrm{P}(A \mid B)$.

Definition 2.9:

The conditional probability of the event A given the event B is defined by $P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad ; P(B)>0$
Notes:

1. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=$

$$
=\frac{n(A \cap B) / n(S)}{n(B) / n(S)}=\frac{n(A \cap B)}{n(B)} ; \text { for equally likely outcomes case }
$$

2. $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
3. $\begin{aligned} P(A \cap B) & =P(A) P(B \mid A) \\ & =P(B) P(A \mid B)\end{aligned}$ (Multiplicative Rule=Theorem 2.13)

Example:

339 physicians are classified as given in the table below. A physician is to be selected at random.
(1) Find the probability that:
(a) the selected physician is aged $40-49$
(b) the selected physician smokes occasionally
(c) the selected physician is aged $40-49$ and smokes occasionally
(2) Find the probability that the selected physician is aged 40 - 49 given that the physician smokes occasionally.

		Smoking Habit			
		Daily $\left(B_{1}\right)$	Occasionally $\left(B_{2}\right)$	Not at all $\left(B_{3}\right)$	Total
$\stackrel{\Perp}{\infty}$	20-29 (A_{1})	31	9	7	47
	30-39 (A_{2})	110	30	49	189
	40-49 ($\left.A_{3}\right)$	29	21	29	79
	50+ $\left(A_{4}\right)$	6	0	18	24
	Total	176	60	103	339

Solution:

$. n(S)=339$ equally likely outcomes.
Define the following events:
$A_{3}=$ the selected physician is aged $40-49$
$B_{2}=$ the selected physician smokes occasionally
$A_{3} \cap B_{2}=$ the selected physician is aged $40-49$ and smokes occasionally
(1) (a) $A_{3}=$ the selected physician is aged $40-49$

$$
P\left(A_{3}\right)=\frac{n\left(A_{3}\right)}{n(S)}=\frac{79}{339}=0.2330
$$

(b) $B_{2}=$ the selected physician smokes occasionally

$$
P\left(B_{2}\right)=\frac{n\left(B_{2}\right)}{n(S)}=\frac{60}{339}=0.1770
$$

(c) $A_{3} \cap B_{2}=$ the selected physician is aged $40-49$ and smokes occasionally.

$$
P\left(A_{3} \cap B_{2}\right)=\frac{n\left(A_{3} \cap B_{2}\right)}{n(S)}=\frac{21}{339}=0.06195
$$

(2) $A_{3} \mid B_{2}=$ the selected physician is aged $40-49$ given that the physician smokes occasionally
(i) $P\left(A_{3} \mid B_{2}\right)=\frac{P\left(A_{3} \cap B_{2}\right)}{P\left(B_{2}\right)}=\frac{0.06195}{0.1770}=0.35$
(ii) $P\left(A_{3} \mid B_{2}\right)=\frac{n\left(A_{3} \cap B_{2}\right)}{n\left(B_{2}\right)}=\frac{21}{60}=0.35$
(iii) We can use the restricted table directly: $P\left(A_{3} \mid B_{2}\right)=\frac{21}{60}=0.35$

Notice that $\mathrm{P}\left(A_{3} \mid B_{2}\right)=0.35>\mathrm{P}\left(A_{3}\right)=0.233$.
The conditional probability does not equal unconditional probability; i.e., $\mathrm{P}\left(A_{3} \mid B_{2}\right) \neq \mathrm{P}\left(A_{3}\right)$! What does this mean?
Note:

- $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ means that knowing B has no effect on the probability of occurrence of A. In this case A is independent of B.
- $\mathrm{P}(A \mid B)>\mathrm{P}(A)$ means that knowing B increases the probability of occurrence of A.
- $\mathrm{P}(A \mid B)<\mathrm{P}(A)$ means that knowing B decreases the probability of occurrence of A.

Independent Events:

Definition 2.10:

Two events A and B are independent if and only if $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ and $\mathrm{P}(B \mid A)=\mathrm{P}(B)$. Otherwise A and B are dependent.

Example:

In the previous example, we found that $P\left(A_{3} \mid B_{2}\right) \neq P\left(A_{3}\right)$. Therefore, the events A_{3} and B_{2} are dependent, i.e., they are not independent. Also, we can verify that $\mathrm{P}\left(B_{2} \mid A_{3}\right) \neq \mathrm{P}\left(B_{2}\right)$.

2.7 Multiplicative Rule:

Theorem 2.13:

If $\mathrm{P}(A) \neq 0$ and $\mathrm{P}(B) \neq 0$, then:

$$
\begin{aligned}
\mathrm{P}(A \cap B) & =\mathrm{P}(A) \mathrm{P}(B \mid A) \\
& =\mathrm{P}(B) \mathrm{P}(A \mid B)
\end{aligned}
$$

Example 2.32:

Suppose we have a fuse box containing 20 fuses of which 5 are defective (D) and 15 are non-defective (N). If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?

Solution:

Define the following events:
$A=\{$ the first fuse is defective $\}$
$B=\{$ the second fuse is defective $\}$
$A \cap B=\{$ the first fuse is defective and the second fuse is

$$
\text { defective }\}=\{\text { both fuses are defective }\}
$$

We need to calculate $\mathrm{P}(A \cap B)$.

$$
\begin{aligned}
& \mathrm{P}(A)=\frac{5}{20} \\
& \mathrm{P}(B \mid A)=\frac{4}{19} \\
& \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A) \\
& \quad=\frac{5}{20} \times \frac{4}{19}=0.052632
\end{aligned}
$$

I \mathbf{D} \mathbf{N} $\mathbf{5}$ $\mathbf{1 5}$	II $\mathbf{4}$ \mathbf{N} First Selection
Second Selection: given that the first is defective (D)	

Theorem 2.14:

Two events A and B are independent if and only if

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)
$$

*(Multiplicative Rule for independent events)

Note:

Two events A and B are independent if one of the following conditions is satisfied:

$$
\begin{array}{lll}
& \text { (i) } & \mathrm{P}(A \mid B)=\mathrm{P}(A) \\
\Leftrightarrow & \text { (ii) } & \mathrm{P}(B \mid A)=\mathrm{P}(B) \\
\Leftrightarrow & \text { (iii) } & \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)
\end{array}
$$

Theorem 2.15: $(k=3)$

- If A_{1}, A_{2}, A_{3} are 3 events, then:

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)
$$

- If A_{1}, A_{2}, A_{3} are 3 independent events, then:

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)
$$

Example 2.36:

Three cards are drawn in succession, without replacement, from an ordinary deck of playing cards. Fined $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)$, where the events A_{1}, A_{2}, and A_{3} are defined as follows:
$A_{1}=\{$ the 1 -st card is a red ace $\}$
$A_{2}=\{$ the 2-nd card is a 10 or a jack $\}$
$A_{3}=\{$ the 3-rd card is a number greater than 3 but less than 7$\}$

Solution:

$\mathrm{P}\left(A_{1}\right)=2 / 52$
$\mathrm{P}\left(A_{2} \mid A_{1}\right)=8 / 51$
$\mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)=12 / 50$
$\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)$
$=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)$
$=\frac{2}{52} \times \frac{8}{51} \times \frac{12}{50}$
$=\frac{192}{132600}$
$=0.0014479$

2.8 Bayes' Rule:

Definition:

The events A_{1}, A_{2}, \ldots, and A_{n} constitute a partition of the sample space S if:

- $\stackrel{n}{\cup}^{\cup} \mathrm{A}_{\mathrm{i}}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S$
${ }_{i=1}$
- $A_{\mathrm{i}} \cap A_{\mathrm{j}}=\phi, \quad \forall \mathrm{i} \neq \mathrm{j}$

Theorem 2.16: (Total Probability)
If the events A_{1}, A_{2}, \ldots, and A_{n} constitute a partition of the sample space S such that $\mathrm{P}\left(A_{k}\right) \neq 0$ for $k=1,2, \ldots, n$, then for any event B :

$$
\begin{aligned}
\mathrm{P}(B) & =\sum_{k=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}} \cap \mathrm{~B}\right) \\
& =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{k}}\right)
\end{aligned}
$$

Tree Diagram		

Example 2.38:

Three machines A_{1}, A_{2}, and A_{3} make $20 \%, 30 \%$, and 50%, respectively, of the products. It is known that $1 \%, 4 \%$, and 7% of the products made by each machine, respectively, are defective. If a finished product is randomly selected, what is the probability that it is defective?

Solution:

Define the following events:
$B=$ \{the selected product is defective $\}$
$A_{1}=\left\{\right.$ the selected product is made by machine $\left.A_{1}\right\}$
$A_{2}=\left\{\right.$ the selected product is made by machine $\left.A_{2}\right\}$
$A_{3}=\left\{\right.$ the selected product is made by machine $\left.A_{3}\right\}$
$\mathrm{P}\left(A_{1}\right)=\frac{20}{100}=0.2 ; \quad \mathrm{P}\left(B \mid A_{1}\right)=\frac{1}{100}=0.01$
$\mathrm{P}\left(A_{2}\right)=\frac{30}{100}=0.3 ; \quad \mathrm{P}\left(B \mid A_{2}\right)=\frac{4}{100}=0.04$
$\mathrm{P}\left(A_{3}\right)=\frac{50}{100}=0.5 ; \quad \mathrm{P}\left(B \mid A_{3}\right)=\frac{7}{100}=0.07$
$P(B)=\sum_{k=1}^{3} P\left(A_{k}\right) P\left(B \mid A_{k}\right)$
$=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right)+\mathrm{P}\left(A_{3}\right) \mathrm{P}\left(B \mid A_{3}\right)$
$=0.2 \times 0.01+0.3 \times 0.04+0.5 \times 0.07$
$=0.002+0.012+0.035$
$=0.049$

Question:

If it is known that the selected product is defective, what is the probability that it is made by machine A_{1} ?
Answer:
$\mathrm{P}\left(\mathrm{A}_{1} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{1}\right)}{\mathrm{P}(\mathrm{B})}=\frac{0.2 \times 0.01}{0.049}=\frac{0.002}{0.049}=0.0408$
This rule is called Bayes' rule.
Theorem 2.17: (Bayes' rule)
If the events A_{1}, A_{2}, \ldots, and A_{n} constitute a partition of the sample space S such that $\mathrm{P}\left(A_{\mathrm{k}}\right) \neq 0$ for $k=1,2, \ldots, n$, then for any event B such that $\mathrm{P}(B) \neq 0$:
$\mathrm{P}\left(A_{\mathrm{i}} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{i}}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{i}}\right)}{\mathrm{P}(\mathrm{B})}$
for $\mathrm{i}=1,2, \ldots, n$.

Example 2.39:

In Example 2.38, if it is known that the selected product is defective, what is the probability that it is made by:
(a) machine A_{2} ?
(b) machine A_{3} ?

Solution:

(a) $\mathrm{P}\left(\mathrm{A}_{2} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{2}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{2}\right)}{\mathrm{P}(\mathrm{B})}$

$$
=\frac{0.3 \times 0.04}{0.049}=\frac{0.012}{0.049}=0.2449
$$

(b) $\mathrm{P}\left(A_{3} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{3}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{3}\right)}{\mathrm{P}(\mathrm{B})}$

$$
=\frac{0.5 \times 0.07}{0.049}=\frac{0.035}{0.049}=0.7142
$$

Note:

$$
\mathrm{P}\left(A_{1} \mid B\right)=0.0408, \mathrm{P}\left(A_{2} \mid B\right)=0.2449, \mathrm{P}\left(A_{3} \mid B\right)=0.7142
$$

- $\sum_{\mathrm{k}=1}^{3} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}} \mid \mathrm{B}\right)=1$
- If the selected product was found defective, we should check machine A_{3} first, if it is ok, we should check machine A_{2}, if it is ok, we should check machine A_{1}.

