Chapter 3: Random Variables and Probability Distributions:

3.1 Concept of a Random Variable:

• In a statistical experiment, it is often very important to allocate numerical values to the outcomes.

Example:

• Experiment: testing two components.

(D=defective, N=non-defective)

- Sample space: *S*={DD,DN,ND,NN}
- Let X = number of defective components when two components are tested.
- Assigned numerical values to the outcomes are:

Sample point (Outcome)	Assigned Numerical
()	Value (x)
DD	2
DN	1
ND	1
NN	0

• Notice that, the set of all possible values of the random variable X is {0, 1, 2}.

Definition 3.1:

A random variable X is a function that associates each element in the sample space with a real number (i.e., $X : S \rightarrow \mathbf{R}$.)

Notation: " X " denotes the random variable .

" x " denotes a value of the random variable X.

Types of Random Variables:

• A random variable X is called a **discrete** random variable if its set of possible values is countable, i.e.,

 $x \in \{x_1, x_2, ..., x_n\} \text{ or } x \in \{x_1, x_2, ...\}$

A random variable X is called a continuous random variable if it can take values on a continuous scale, i.e.,
 .x ∈ {x: a < x < b; a, b ∈ R}

- In most practical problems:
 - A discrete random variable represents count data, such as the number of defectives in a sample of k items.
 - A continuous random variable represents measured data, such as height.

STAT - 324	Summer Semester 1426/1427	Dr. Abdullah Al-Shiha

<u>3.2 Discrete Probability Distributions</u>

• A discrete random variable X assumes each of its values with a certain probability.

Example:

- Experiment: tossing a non-balance coin 2 times independently.
- H= head, T=tail
- Sample space: *S*={HH, HT, TH, TT}
- Suppose $P(H)=\frac{1}{2}P(T) \Leftrightarrow P(H)=\frac{1}{3}$ and $P(T)=\frac{2}{3}$
- Let X= number of heads

Sample point	Probability	Value of X
(Outcome)		(x)
HH	$P(HH)=P(H) P(H)=1/3 \times 1/3 = 1/9$	2
HT	$P(HT)=P(H) P(T)=1/3 \times 2/3 = 2/9$	1
TH	$P(TH)=P(T) P(H)=2/3 \times 1/3 = 2/9$	1
TT	$P(TT)=P(T) P(T)=2/3 \times 2/3 = 4/9$	0

- The possible values of X are: 0, 1, and 2.
- X is a discrete random variable.
- Define the following events:

Event (X=x)	Probability = $P(X=x)$
(X=0)={TT}	P(X=0) = P(TT)=4/9
$(X=1)=\{HT,TH\}$	P(X=1) = P(HT) + P(TH) = 2/9 + 2/9 = 4/9
$(X=2)=\{HH\}$	P(X=2) = P(HH) = 1/9

• The possible values of X with their probabilities are:

Х	0	1	2	Total
P(X=x)=f(x)	4/9	4/9	1/9	1.00

The function f(x)=P(X=x) is called the probability function (probability distribution) of the discrete random variable X.

Definition 3.4:

The function f(x) is a probability function of a discrete random variable X if, for each possible values x, we have:

- 1. $f(x) \ge 0$
- 2. $\sum_{all x} f(x) = 1$
- 3. f(x) = P(X=x)

Note:

•
$$P(X \in A) = \sum_{all \ x \in A} f(x) = \sum_{all \ x \in A} P(X = x)$$

Example:

For the previous example, we have:

X	0	1	2	Total
f(x)=P(X=x)	4/9	4/9	1/9	$\sum_{x=0}^{2} f(x) = 1$

$$\begin{split} P(X < 1) &= P(X = 0) = 4/9 \\ P(X \le 1) &= P(X = 0) + P(X = 1) = 4/9 + 4/9 = 8/9 \\ P(X \ge 0.5) &= P(X = 1) + P(X = 2) = 4/9 + 1/9 = 5/9 \\ P(X > 8) &= P(\phi) = 0 \\ P(X < 10) &= P(X = 0) + P(X = 1) + P(X = 2) = P(S) = 1 \end{split}$$

Example 3.3:

A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2

of these computers, find the probability distribution of the number of defectives.

Solution:

We need to find the probability distribution of the random variable: X = the number of defective computers purchased. Experiment: selecting 2 computers at random out of 8

$$n(S) = \binom{8}{2}$$
 equally likely outcomes

The possible values of X are: x=0, 1, 2. Consider the events:

$$(X=0)=\{0D \text{ and } 2N\} \Rightarrow n(X=0)= \begin{pmatrix} 3\\0 \end{pmatrix} \times \begin{pmatrix} 5\\2 \end{pmatrix}$$
$$(X=1)=\{1D \text{ and } 1N\} \Rightarrow n(X=1)= \begin{pmatrix} 3\\1 \end{pmatrix} \times \begin{pmatrix} 5\\1 \end{pmatrix}$$
$$(X=2)=\{2D \text{ and } 0N\} \Rightarrow n(X=2)= \begin{pmatrix} 3\\2 \end{pmatrix} \times \begin{pmatrix} 5\\0 \end{pmatrix}$$
$$\begin{array}{c} D & N\\3 & 5\\8 \text{ computers} \end{array}$$

The probability distribution of X can be given in the following table:

Х	0	1	2	Total
f(x) = P(X=x)	10	15	3	1.00
	28	28	28	

The probability distribution of X can be written as a formula as follows:

$$f(x) = P(X = x) = \begin{cases} \binom{3}{x} \times \binom{5}{2-x} \\ \binom{8}{2} \end{cases}; x = 0, 1, 2 \\ 0; otherwise \end{cases}$$
 Hypergeometric Distribution

Definition 3.5:

The cumulative distribution function (CDF), F(x), of a discrete random variable X with the probability function f(x) is given by:

$$F(\mathbf{x}) = P(\mathbf{X} \le \mathbf{x}) = \sum_{t \le x} f(t) = \sum_{t \le x} P(X = t) ; \text{ for } -\infty < \mathbf{x} < \infty$$

Example:

Find the CDF of the random variable X with the probability function: -10/28 15/28 3/28

Х	0	1	2
f(x)	10	15	3
	28	28	28

10/28	15/28	3/28
X 0	1	2
10/28	15/28	3/28
0 x	1	2
10/28	15/28 —	3/28
0	1 7	x 2
10/28	15/28	3/28
0	1	2 X

Solution:

$$F(x)=P(X \le x)$$
 for $-\infty < x < \infty$

For x<0: F(x)=0For $0 \le x < 1$: $F(x)=P(X=0)=\frac{10}{28}$

For
$$1 \le x < 2$$
: $F(x) = P(X=0) + P(X=1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$
For $x \ge 2$: $F(x) = P(X=0) + P(X=1) + P(X=2) = \frac{10}{28} + \frac{15}{28} + \frac{3}{28} = 1$

The CDF of the random variable X is:

Note: $F(-0.5) = P(X \le -0.5) = 0$ $F(1.5) = P(X \le 1.5) = F(1) = \frac{25}{28}$

 $F(3.8) = P(X \le 3.8)F(2) = 1$

Department of Statistics and O.R. – 26 – King Saud University

STAT - 324

Another way to find F(x):

Х	< 0	0	1	2	>2
f(x)		10	15	3	
		28	28	28	
F(x)	0	10	25	28	1
		28	28	28	

$$F(x) = \begin{cases} 0 \ ; \ x < 0 \\ \frac{10}{28} \ ; \ 0 \le x < 1 \\ \frac{25}{28} \ ; \ 1 \le x < 2 \\ 1 \ ; \ x \ge 2 \end{cases}$$

Result:

$$\begin{split} P(a < X \le b) &= P(X \le b) - P(X \le a) = F(b) - F(a) \\ P(a \le X \le b) &= P(a < X \le b) + P(X=a) = F(b) - F(a) + f(a) \\ P(a < X < b) &= P(a < X \le b) - P(X=b) = F(b) - F(a) - f(b) \end{split}$$

Result:

Suppose that the probability function of X is:

Х	X ₁	X ₂	X3	•••	X _n
f(x)	$f(x_1)$	$f(x_2)$	$f(x_3)$	•	$f(x_n)$

Where $x_1 < x_2 < ... < x_n$. Then: $F(x_i) = f(x_1) + f(x_2) + ... + f(x_i)$; i=1, 2, ..., n $F(x_i) = F(x_{i-1}) + f(x_i)$; i=2, ..., n $f(x_i) = F(x_i) - F(x_{i-1})$

Example:

In the previous example,

 $P(0.5 < X \le 1.5) = F(1.5) - F(0.5) = \frac{25}{28} - \frac{10}{28} = \frac{15}{28}$ $P(1 < X \le 2) = F(2) - F(1) = 1 - \frac{25}{28} = \frac{3}{28}$

STAT - 324

3.3. Continuous Probability Distributions

For any continuous random variable, X, there exists a nonnegative function f(x), called the probability density function (p.d.f) through which we can find probabilities of events expressed in term of X.

Definition 3.6:

The function f(x) is a probability density function (pdf) for a continuous random variable X, defined on the set of real numbers, if:

1.
$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

2. $\int_{-\infty}^{\infty} f(x) dx = 1$
3. $P(a \le X \le b) = \int_{a}^{b} f(x) dx \quad \forall a, b \in \mathbb{R}; a \le b$

Note:

For a continuous random variable X, we have:

4.
$$P(X \in A) = \int_{A} f(x) dx$$

Example 3.6:

Suppose that the error in the reaction temperature, in ^oC, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

Solution:

X = the error in the reaction temperature in $^{\circ}C$.

X is continuous r. v.

Department of Statistics and O.R. – 29 – King Saud University

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

1. (a) $f(x) \ge 0$ because f(x) is a quadratic function.

(b)
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{2} \frac{1}{3} x^2 dx + \int_{2}^{\infty} 0 dx$$

= $\int_{-1}^{2} \frac{1}{3} x^2 dx = \left[\frac{1}{9} x^3 \mid x = 2 \\ x = -1\right]$
= $\frac{1}{9} (8 - (-1)) = 1$

Definition 3.7:

The cumulative distribution function (CDF), F(x), of a continuous random variable X with probability density function f(x) is given by:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt ; \text{ for } -\infty < x < \infty$$

Result:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

Example:

in Example 3.6,

1. Find the CDF

2. Using the CDF, find $P(0 < X \le 1)$.

Solution:

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

Department of Statistics and O.R. - 30 -

For $x \ge 2$:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{2} \frac{1}{3}t^{2} dt + \int_{2}^{x} 0 dt = \int_{-1}^{2} \frac{1}{3}t^{2} dt = 1.$$

Therefore, the CDF is:

$$F(x) = P(X \le x) = \begin{cases} 0 \ ; x < -1 \\ \frac{1}{9}(x^3 + 1) \ ; -1 \le x < 2 \\ 1 \ ; x \ge 2 \end{cases}$$

2. Using the CDF,

 $P(0 < X \le 1) = F(1) - F(0) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$