Chapter 3: Random Variables and Probability Distributions:

3.1 Concept of a Random Variable:

- In a statistical experiment, it is often very important to allocate numerical values to the outcomes.

Example:

- Experiment: testing two components.
($\mathrm{D}=$ defective, $\mathrm{N}=$ non-defective)
- Sample space: $S=\{D D, D N, N D, N N\}$
- Let $\mathrm{X}=$ number of defective components when two components are tested.
- Assigned numerical values to the outcomes are:

Sample point (Outcome)	Assigned Numerical Value (x)
DD	2
DN	1
ND	1
NN	0

- Notice that, the set of all possible values of the random variable X is $\{0,1,2\}$.

Definition 3.1:

A random variable X is a function that associates each element in the sample space with a real number (i.e., X : S \rightarrow R.)

Notation: " X " denotes the random variable .
" x " denotes a value of the random variable X.

Types of Random Variables:

- A random variable X is called a discrete random variable if its set of possible values is countable, i.e., . $\mathrm{x} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ or $\mathrm{x} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\}$
- A random variable X is called a continuous random variable if it can take values on a continuous scale, i.e., . $\mathrm{x} \in\{\mathrm{x}: \mathrm{a}<\mathrm{x}<\mathrm{b} ; \mathrm{a}, \mathrm{b} \in \mathrm{R}\}$
- In most practical problems:
o A discrete random variable represents count data, such as the number of defectives in a sample of k items.
o A continuous random variable represents measured data, such as height.

3.2 Discrete Probability Distributions

- A discrete random variable X assumes each of its values with a certain probability.

Example:

- Experiment: tossing a non-balance coin 2 times independently.
- $\mathrm{H}=$ head, $\mathrm{T}=$ tail
- Sample space: $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Suppose $P(H)=1 / 2 P(T) \Leftrightarrow P(H)=1 / 3$ and $P(T)=2 / 3$
- Let $\mathrm{X}=$ number of heads

Sample point (Outcome)	Probability	Value of X (x)
HH	$\mathrm{P}(\mathrm{HH})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{H})=1 / 3 \times 1 / 3=1 / 9$	2
HT	$\mathrm{P}(\mathrm{HT})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})=1 / 3 \times 2 / 3=2 / 9$	1
TH	$\mathrm{P}(\mathrm{TH})=\mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{H})=2 / 3 \times 1 / 3=2 / 9$	1
TT	$\mathrm{P}(\mathrm{TT})=\mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{T})=2 / 3 \times 2 / 3=4 / 9$	0

- The possible values of X are: 0,1 , and 2 .
- X is a discrete random variable.
- Define the following events:

Event $(\mathrm{X}=\mathrm{x})$	Probability $=\mathrm{P}(\mathrm{X}=\mathrm{x})$
$(\mathrm{X}=0)=\{\mathrm{TT}\}$	$\mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\mathrm{TT})=4 / 9$
$(\mathrm{X}=1)=\{\mathrm{HT}, \mathrm{TH}\}$	$\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})=2 / 9+2 / 9=4 / 9$
$(\mathrm{X}=2)=\{\mathrm{HH}\}$	$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{HH})=1 / 9$

- The possible values of X with their probabilities are:

x	0	1	2	Total
$P(X=x)=f(x)$	$4 / 9$	$4 / 9$	$1 / 9$	1.00

The function $\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$ is called the probability function (probability distribution) of the discrete random variable X .

Definition 3.4:

The function $f(x)$ is a probability function of a discrete random variable X if, for each possible values x, we have:

1. $\mathrm{f}(\mathrm{x}) \geq 0$
2. $\sum_{\text {all }} f(x)=1$
3. $f(x)=P(X=x)$

Note:

- $\mathrm{P}(\mathrm{X} \in \mathrm{A})=\sum_{\text {all }} \mathrm{x}_{\mathrm{x} \in \mathrm{A}} f(x)=\sum_{\text {all } x \in A} P(X=x)$

Example:

For the previous example, we have:

x	0	1	2	Total
$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$	$4 / 9$	$4 / 9$	$1 / 9$	$\sum_{x=0}^{2} f(x)=1$

$\mathrm{P}(\mathrm{X}<1)=\mathrm{P}(\mathrm{X}=0)=4 / 9$
$\mathrm{P}(\mathrm{X} \leq 1)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)=4 / 9+4 / 9=8 / 9$
$\mathrm{P}(\mathrm{X} \geq 0.5)=\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=4 / 9+1 / 9=5 / 9$
$\mathrm{P}(\mathrm{X}>8)=\mathrm{P}(\phi)=0$
$\mathrm{P}(\mathrm{X}<10)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(S)=1$

Example 3.3:

A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective.
If a school makes a random purchase of 2 of these computers, find the probability distribution of the number of defectives.

Solution:

We need to find the probability distribution of the random variable: $\mathrm{X}=$ the number of defective computers purchased.
Experiment: selecting 2 computers at random out of 8

$$
n(S)=\binom{8}{2} \text { equally likely outcomes }
$$

The possible values of X are: $\mathrm{x}=0,1,2$.
Consider the events:
$(X=0)=\{0 \mathrm{D}$ and 2 N$\} \Rightarrow \mathrm{n}(\mathrm{X}=0)=\binom{3}{0} \times\binom{ 5}{2}$
$(X=1)=\{1 D$ and $1 N\} \Rightarrow n(X=1)=\binom{3}{1} \times\binom{ 5}{1}$
$(X=2)=\{2 D$ and $0 N\} \Rightarrow n(X=2)=\binom{3}{2} \times\binom{ 5}{0}$

$\mathrm{f}(0)=\mathrm{P}(\mathrm{X}=0)=\frac{n(X=0)}{n(S)}=\frac{\binom{3}{0} \times\binom{ 5}{2}}{\binom{8}{2}}=\frac{10}{28}$
$\mathrm{f}(1)=\mathrm{P}(\mathrm{X}=1)=\frac{n(X=1)}{n(S)}=\frac{\binom{3}{1} \times\binom{ 5}{1}}{\binom{8}{2}}=\frac{15}{28}$
$f(2)=P(X=2)=\frac{n(X=2)}{n(S)}=\frac{\binom{3}{2} \times\binom{ 5}{0}}{\binom{8}{2}}=\frac{3}{28}$
In general, for $x=0,1,2$, we have:
$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{n(X=x)}{n(S)}=\frac{\binom{3}{x} \times\binom{ 5}{2-x}}{\binom{8}{2}}$

The probability distribution of X can be given in the following table:

x	0	1	2	Total
$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$	1.00

The probability distribution of X can be written as a formula as follows:

$$
f(x)=P(X=x)=\left\{\begin{array}{l}
\binom{3}{x} \times\binom{ 5}{2-x} \\
\binom{8}{2}
\end{array} x=0,1,2 \quad \begin{array}{c}
\text { Hypergeometric } \\
\text { Distribution }
\end{array}\right.
$$

Definition 3.5:

The cumulative distribution function (CDF), $\mathrm{F}(\mathrm{x}$), of a discrete random variable X with the probability function $f(x)$ is given by:

$$
\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\sum_{t \leq x} f(t)=\sum_{t \leq x} P(X=t) ; \text { for }-\infty<\mathrm{x}<\infty
$$

Example:

Find the CDF of the random variable X with the probability function:

x	0	1	2
$\mathrm{f}(\mathrm{x})$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

Solution:

$\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$ for $-\infty<\mathrm{x}<\infty$
For $x<0: \quad F(x)=0$
For $0 \leq \mathrm{x}<1$: $\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X}=0)=\frac{10}{28}$

For $1 \leq \mathrm{x}<2$: $\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)=\frac{10}{28}+\frac{15}{28}=\frac{25}{28}$
For $\mathrm{x} \geq 2$: $\quad \mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=\frac{10}{28}+\frac{15}{28}+\frac{3}{28}=1$
The CDF of the random variable X is:
$F(x)=P(X \leq x)= \begin{cases}0 ; & x<0 \\ \frac{10}{28} ; & 0 \leq x<1 \\ \frac{25}{28} ; & 1 \leq x<2 \\ 1 ; & x \geq 2\end{cases}$

Note:

$F(-0.5)=P(X \leq-0.5)=0$
$\mathrm{F}(1.5)=\mathrm{P}(\mathrm{X} \leq 1.5)=\mathrm{F}(1)=\frac{25}{28}$
$\mathrm{F}(3.8)=\mathrm{P}(\mathrm{X} \leq 3.8) \mathrm{F}(2)=1$

Another way to find $\mathrm{F}(\mathrm{x})$:

x	<0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	>2
$\mathrm{f}(\mathrm{x})$		$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$	
$\mathrm{~F}(\mathrm{x})$	0	$\frac{10}{28}$	$\frac{25}{28}$	$\frac{28}{28}$	1

$$
F(x)= \begin{cases}0 ; & x<0 \\ \frac{10}{28} ; & 0 \leq x<1 \\ \frac{25}{28} ; & 1 \leq x<2 \\ 1 ; & x \geq 2\end{cases}
$$

Result:

$\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{X} \leq \mathrm{b})-\mathrm{P}(\mathrm{X} \leq \mathrm{a})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
$\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})+\mathrm{P}(\mathrm{X}=\mathrm{a})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})+\mathrm{f}(\mathrm{a})$
$\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})-\mathrm{P}(\mathrm{X}=\mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})-\mathrm{f}(\mathrm{b})$

Result:

Suppose that the probability function of X is:

x	x_{1}	x_{2}	x_{3}	\ldots	x_{n}
$f(x)$	$f\left(x_{1}\right)$	$f\left(x_{2}\right)$	$f\left(x_{3}\right)$	\ldots	$f\left(x_{n}\right)$

Where $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}$. Then:
$\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)+\ldots+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) ; \mathrm{i}=1,2, \ldots, \mathrm{n}$
$\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}\left(\mathrm{x}_{\mathrm{i}-1}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) ; \mathrm{i}=2, \ldots, \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{F}\left(\mathrm{x}_{\mathrm{i}-1}\right)$

Example:

In the previous example,
$\mathrm{P}(0.5<\mathrm{X} \leq 1.5)=\mathrm{F}(1.5)-\mathrm{F}(0.5)=\frac{25}{28}-\frac{10}{28}=\frac{15}{28}$
$\mathrm{P}(1<\mathrm{X} \leq 2)=\mathrm{F}(2)-\mathrm{F}(1)=1-\frac{25}{28}=\frac{3}{28}$

3.3. Continuous Probability Distributions

For any continuous random variable, X , there exists a nonnegative function $f(x)$, called the probability density function (p.d.f) through which we can find probabilities of events expressed in term of X .

Definition 3.6:

The function $\mathrm{f}(\mathrm{x})$ is a probability density function (pdf) for a continuous random variable X , defined on the set of real numbers, if:

1. $\mathrm{f}(\mathrm{x}) \geq 0 \quad \forall \mathrm{x} \in \mathrm{R}$
2. $\int_{-\infty}^{\infty} f(x) d x=1$
3. $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{R} ; \mathrm{a} \leq \mathrm{b}$

Note:
For a continuous random variable X, we have:

1. $\mathrm{f}(\mathrm{x}) \neq \mathrm{P}(\mathrm{X}=\mathrm{x})$ (in general)
2. $P(X=a)=0$ for any $a \in R$
3. $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a} \leq \mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$
4. $P(X \in A)=\int_{A} f(x) d x$

Example 3.6:

Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} x^{2} ;-1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

1. Verify that:
(a) $f(x) \geq 0$
(b) $\int_{-\infty}^{\infty} f(x) d x=1$

2. Find $\mathrm{P}(0<\mathrm{X} \leq 1)$

Solution:
$\mathrm{X}=$ the error in the reaction temperature in ${ }^{\circ} \mathrm{C}$.
X is continuous r. v.
$f(x)=\left\{\begin{array}{l}\frac{1}{3} x^{2} ;-1<x<2 \\ 0 ; \text { elsewhere }\end{array}\right.$

1. (a) $f(x) \geq 0$ because $f(x)$ is a quadratic function.
(b) $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{-1} 0 d x+\int_{-1}^{2} \frac{1}{3} x^{2} d x+\int_{2}^{\infty} 0 d x$

$$
=\int_{-1}^{2} \frac{1}{3} x^{2} \mathrm{dx}=\left[\begin{array}{l|l}
\frac{1}{9} x^{3} & \begin{array}{l}
x=2 \\
x=-1
\end{array}
\end{array}\right]
$$

$$
=\frac{1}{9}(8-(-1))=1
$$

2. $\mathrm{P}(0<\mathrm{X} \leq 1)=\int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{0}^{1} \frac{1}{3} x^{2} \mathrm{dx}$

$$
\begin{aligned}
& =\left[\begin{array}{l|l}
\frac{1}{9} x^{3} & x=1 \\
x=0
\end{array}\right] \\
& =\frac{1}{9}(1-(0)) \\
& =\frac{1}{9}
\end{aligned}
$$

Definition 3.7:
The cumulative distribution function (CDF), $F(x)$, of a continuous random variable X with probability density function $f(x)$ is given by:

$$
\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt} ; \text { for }-\infty<\mathrm{x}<\infty
$$

Result:

$\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{X} \leq \mathrm{b})-\mathrm{P}(\mathrm{X} \leq \mathrm{a})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$

Example:

in Example 3.6,

1. Find the CDF
2. Using the CDF, find $P(0<X \leq 1)$.

Solution:

$f(x)=\left\{\begin{array}{l}\frac{1}{3} x^{2} ;-1<x<2 \\ 0 ; \text { elsewhere }\end{array}\right.$
(1) Finding $F(x)$:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t ; \text { for }-\infty<x<\infty
$$

For $\mathrm{x}<-1$:

$$
\mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{x} 0 \mathrm{dt}=0
$$

For $-1 \leq x<2$:

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{-1} 0 \mathrm{dt}+\int_{-1}^{x} \frac{1}{3} \mathrm{t}^{2} \mathrm{dt} \\
& =\int_{-1}^{x} \frac{1}{3} t^{2} d t \\
& =\left[\frac{1}{9} t^{3} \left\lvert\, \begin{array}{l}
t=x \\
t=-1
\end{array}\right.\right]=\frac{1}{9}\left(x^{3}-(-1)\right)=\frac{1}{9}\left(x^{3}+1\right)
\end{aligned}
$$

For $x \geq 2$:

$$
\mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{-1} 0 \mathrm{dt}+\int_{-1}^{2} \frac{1}{3} t^{2} \mathrm{dt}+\int_{2}^{x} 0 \mathrm{dt}=\int_{-1}^{2} \frac{1}{3} t^{2} \mathrm{dt}=1 .
$$

Therefore, the CDF is:
$F(x)=P(X \leq x)=\left\{\begin{array}{l}0 ; x<-1 \\ \frac{1}{9}\left(x^{3}+1\right) ;-1 \leq x<2 \\ 1 ; x \geq 2\end{array}\right.$

2. Using the CDF,

$$
\mathrm{P}(0<\mathrm{X} \leq 1)=\mathrm{F}(1)-\mathrm{F}(0)=\frac{2}{9}-\frac{1}{9}=\frac{1}{9}
$$

