Chapter 8: Fundamental Sampling Distributions and Data Descriptions:

8.1 Random Sampling:

Definition 8.1:

A population consists of the totality of the observations with which we are concerned. (Population=Probability Distribution)
Definition 8.2:
A sample is a subset of a population.
Note:

- Each observation in a population is a value of a random variable X having some probability distribution $\mathrm{f}(\mathrm{x})$.
- To eliminate bias in the sampling procedure, we select a random sample in the sense that the observations are made independently and at random.
- The random sample of size n is:

$$
\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}
$$

It consists of n observations selected independently and randomly from the population.

8.2 Some Important Statistics:

Definition 8.4:
Any function of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ is called a statistic.

Central Tendency in the Sample:

Definition 8.5:

If $X_{1}, X_{2}, \ldots, X_{n}$ represents a random sample of size n, then the sample mean is defined to be the statistic:

$$
\begin{equation*}
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{\sum_{i=1}^{n} X_{i}}{n} \tag{unit}
\end{equation*}
$$

Note:

- \bar{X} is a statistic because it is a function of the random sample $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$.
- \bar{X} has same unit of $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$.
- \bar{X} measures the central tendency in the sample (location).

Variability in the Sample:

Definition 8.9:
If $X_{1}, X_{2}, \ldots, X_{n}$ represents a random sample of size n, then the sample variance is defined to be the statistic:

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}(\text { unit })^{2}
$$

Theorem 8.1: (Computational Formulas for S^{2})

$$
S^{2}=\frac{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}}{n-1}=\frac{n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}
$$

Note:

- S^{2} is a statistic because it is a function of the random sample $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$.
- S^{2} measures the variability in the sample.

Definition 8.10:
The sample standard deviation is defined to be the statistic:

$$
S=\sqrt{S^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}} \text { (unit) }
$$

Example 8.1: Reading Assignment
Example 8.8: Reading Assignment
Example 8.9: Reading Assignment

8.4 Sampling distribution:

Definition 8.13:

The probability distribution of a statistic is called a sampling distribution.

- Example: If $X_{1}, X_{2}, \ldots, X_{n}$ represents a random sample of size n, then the probability distribution of \bar{X} is called the sampling distribution of the sample mean \bar{X}.

8.5 Sampling Distributions of Means:

Result:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n taken from a normal distribution with mean μ and variance σ^{2}, i.e. $N(\mu, \sigma)$,
then the sample mean \bar{X} has a normal distribution with mean

$$
E(\bar{X})=\mu_{\bar{X}}=\mu
$$

and variance

$$
\operatorname{Var}(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}
$$

- If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from $\mathrm{N}(\mu, \sigma)$, then $\bar{X} \sim \mathrm{~N}\left(\mu_{\bar{X}}, \sigma_{\bar{X}}\right)$ or $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.
- $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \Leftrightarrow Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$

Theorem 8.2: (Central Limit Theorem)
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from any distribution (population) with mean μ and finite variance σ^{2}, then, if the sample size n is large, the random variable

$$
Z=\frac{\overline{\bar{x}}-\mu}{\sigma / \sqrt{n}}
$$

is approximately standard normal random variable, i.e., $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$ approximately.

- $\mathrm{Z}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1) \Leftrightarrow \bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- We consider n large when $n \geq 30$.
- For large sample size n, \bar{X} has approximately a normal distribution with mean μ and variance $\frac{\sigma^{2}}{n}$, i.e., $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ approximately.
- The sampling distribution of \bar{X} is used for inferences about the population mean μ.

Example 8.13:

An electric firm manufactures light bulbs that have a length of life that is approximately normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 16 bulbs will have an average life of less than 775 hours.

Solution:

$\mathrm{X}=$ the length of life
$\mu=800$, $\sigma=40$
$\mathrm{X} \sim N(800,40)$
$n=16$
$\mu_{\bar{X}}=\mu=800$
$\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{40}{\sqrt{16}}=10$
$\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)=\mathrm{N}(800,10)$
$\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)=\mathrm{N}(800,10)$
$\Leftrightarrow Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=Z=\frac{\bar{X}-800}{10} \sim N(0,1)$
$P(\bar{X}<775)=P\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<\frac{775-\mu}{\sigma / \sqrt{n}}\right)$
$=P\left(\frac{\bar{X}-800}{10}<\frac{775-800}{10}\right)$
$=P\left(Z<\frac{775-800}{10}\right)$
$=P(Z<-2.50)$
$=0.0062$

Sampling Distribution of the Difference between Two Means:

Suppose that we have two populations:

- 1-st population with mean μ_{1} and variance $\sigma_{1}{ }^{2}$
- 2-nd population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$
- We are interested in comparing μ_{1} and μ_{2}, or equivalently, making inferences about $\mu_{1}-\mu_{2}$.
- We independently select a random sample of size n_{1} from the 1 -st population and another random sample of size n_{2} from the 2-nd population:
- Let \bar{X}_{1} be the sample mean of the 1 -st sample.
- Let \bar{X}_{2} be the sample mean of the 2-nd sample.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is used to make inferences about $\mu_{1}-\mu_{2}$.

Theorem 8.3:

If n_{1} and n_{2} are large, then the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is approximately normal with mean

$$
E\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}
$$

and variance

$$
\operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

that is:

$$
\begin{gathered}
\bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right) \\
\mathrm{Z}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)
\end{gathered}
$$

Note:
$\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \neq \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\sqrt{\frac{\sigma_{2}^{2}}{n_{2}}}=\frac{\sigma_{1}}{\sqrt{n_{1}}}+\frac{\sigma_{2}}{\sqrt{n_{2}}}$
Example 8.15: Reading Assignment

Example 8.16:

The television picture tubes of manufacturer A have a mean lifetime of 6.5 years and standard deviation of 0.9 year, while those of manufacturer B have a mean lifetime of 6 years and standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a random sample of 49 tubes from manufacturer B ?

Solution:

$$
\begin{array}{ll}
\text { Population A } & \text { Population B } \\
\mu_{1}=6.5 & \mu_{2}=6.0 \\
\sigma_{1}=0.9 & \sigma_{2}=0.8 \\
n_{1}=36\left(n_{1}>30\right) & n_{2}=49\left(n_{2}>30\right)
\end{array}
$$

- We need to find the probability that the mean lifetime of manufacturer A is at least 1 year more than the mean lifetime of manufacturer B which is $\mathrm{P}\left(\bar{X}_{1} \geq \bar{X}_{2}+1\right)$.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is

$$
\bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)
$$

- $E\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}=6.5-6.0=0.5$
- $\operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}=\frac{(0.9)^{2}}{36}+\frac{(0.8)^{2}}{49}=0.03556$

$$
\begin{aligned}
\bullet \sigma_{\bar{X}_{1}-\bar{X}_{2}} & =\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}=\sqrt{0.03556}=0.189 \\
\bullet \bar{X}_{1}-\bar{X}_{2} & \sim \mathrm{~N}(0.5,0.189) \\
\text { - Recall } Z & =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1) \\
\mathrm{P}\left(\bar{X}_{1} \geq \bar{X}_{2}+1\right) & =\mathrm{P}\left(\bar{X}_{1}-\bar{X}_{2} \geq 1\right) \\
& =P\left(\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\left.\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \geq \frac{1-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right)}\right. \\
& =P\left(Z \geq \frac{1-0.5}{0.189}\right) \\
& =\mathrm{P}(\mathrm{Z} \geq 2.65) \\
& =1-\mathrm{P}(\mathrm{Z}<2.65) \\
& =1-0.9960 \\
& =0.0040
\end{aligned}
$$

8.7 t-Distribution:

- Recall that, if $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from a normal distribution with mean μ and variance σ^{2}, i.e. $N(\mu, \sigma)$, then

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

- We can apply this result only when σ^{2} is known!
- If σ^{2} is unknown, we replace the population variance σ^{2} with the sample variance $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$ to have the following statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

Result:

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from a normal
distribution with mean μ and variance σ^{2}, i.e. $\mathrm{N}(\mu, \sigma)$, then the statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has a t-distribution with $v=n$-1degrees of freedom (df), and we write $\mathrm{T} \sim \mathrm{t}(\mathrm{v})$ or $\mathrm{T} \sim \mathrm{t}(n-1)$.

Note:

- t-distribution is a continuous distribution.
- The shape of t-distribution is similar to the shape of the standard normal distribution.

Notation:

$$
\mathbf{P}\left(\mathbf{T}>\mathrm{t}_{\alpha}\right)=\alpha
$$

- $\mathrm{t}_{\alpha}=$ The t -value above which we find an area equal to α, that is $\mathrm{P}\left(\mathrm{T}>\mathrm{t}_{\alpha}\right)=\alpha$
- Since the curve of the pdf of $\mathrm{T} \sim \mathrm{t}(\mathrm{v})$ is symmetric about 0 , we have

$$
\mathrm{t}_{1-\alpha}=-\mathrm{t}_{\alpha}
$$

- Values of t_{α} are tabulated in Table A-4 (p.683).

Example:

Find the t-value with $v=14$ (df) that leaves an area of:
(a) 0.95 to the left.
(b) 0.95 to the right.

Solution:

$$
v=14 \text { (df); T~t(14) }
$$

(a) The t-value that leaves an area of 0.95 to the left is

$$
\mathrm{t}_{0.05}=1.761
$$

Table of t - Distribution

(b) The t-value that leaves an area of 0.95 to the right is

$$
\mathrm{t}_{0.95}=-\mathrm{t}_{1-0.95}=-\mathrm{t}_{0.05}=-1.761
$$

Table of t - Distribution

= -1.761

Example:

For $v=10$ degrees of freedom (df), find $\mathrm{t}_{0.10}$ and $\mathrm{t}_{0.85}$.

Solution:

$$
t_{0.10}=1.372
$$

$$
\mathrm{t}_{0.85}=-\mathrm{t}_{1-0.85}=-\mathrm{t}_{0.15}=-1.093 \quad\left(\mathrm{t}_{0.15}=1.093\right)
$$

Table of t - Distribution

Sampling Distribution of the Sample Proportion:

Suppose that the size of a population is N. Each element of the population can be classified as type A or non-type A. Let p be the proportion of elements of type A in the population. A random sample of size n is drawn from this population. Let \hat{p} be the proportion of elements of type A in the sample.

$$
\text { Population }=\mathbf{N}
$$

Random Sample

Let $\mathrm{X}=$ no. of elements of type A in the sample $p=$ Population Proportion
$=\frac{\text { no. of elements of type } A \text { in the population }}{N}$
$\hat{p}=$ Sample Proportion
$=\frac{\text { no. of elements of type A in the sample }}{n}=\frac{X}{n}$

Result:

(1) $\mathrm{X} \sim \operatorname{Binomial}(n, p)$
$\{\mathrm{E}(\mathrm{X})=n p, \operatorname{Var}(\mathrm{X})=n p q\}$
(2) $\mathrm{E}(\hat{p})=\mathrm{E}\left(\frac{X}{n}\right)=\mathrm{p}$
(3) $\operatorname{Var}(\hat{p})=\operatorname{Var}\left(\frac{X}{n}\right)=\frac{p q}{n} ; q=1-p$
(4) For large n, we have

$$
\begin{gathered}
\hat{p} \sim \mathrm{~N}\left(\mathrm{p}, \sqrt{\frac{p q}{n}}\right) \quad \text { (Approximately) } \\
Z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \sim \mathrm{~N}(0,1) \quad \text { (Approximately) }
\end{gathered}
$$

Sampling Distribution of the Difference between Two

Proportions:

1-st Random Sample

К independent
K

2-nd Population
Type A

2-nd Random Sample

Suppose that we have two populations:

- $p_{1}=$ proportion of the 1-st population.
- $p_{2}=$ proportion of the 2-nd population.
- We are interested in comparing p_{1} and p_{2}, or equivalently, making inferences about $p_{1}-p_{2}$.
- We independently select a random sample of size n_{1} from the 1-st population and another random sample of size n_{2} from the 2-nd population:
- Let $X_{1}=$ no. of elements of type A in the 1 -st sample.
- Let $X_{2}=$ no. of elements of type A in the 2-nd sample.
- $\hat{p}_{1}=\frac{X_{1}}{n_{1}}=$ proportion of the 1 -st sample
- $\hat{p}_{2}=\frac{X_{2}}{n_{2}}=$ proportion of the 2-nd sample
- The sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is used to make inferences about $p_{1}-p_{2}$.

Result:

(1) $E\left(\hat{p}_{1}-\hat{p}_{2}\right)=p_{1}-p_{2}$
(2) $\operatorname{Var}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}} \quad ; q_{1}=1-p_{1}, q_{2}=1-p_{2}$
(3) For large n_{1} and n_{2}, we have

$$
\begin{aligned}
& \hat{p}_{1}-\hat{p}_{2} \sim N\left(p_{1}-p_{2}, \sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}\right) \quad \text { (Approximately) } \\
& Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}} \sim N(0,1) \quad \text { (Approximately) }
\end{aligned}
$$

Critical Values of the \boldsymbol{t}-distribution (\boldsymbol{t}_{α})

	$\boldsymbol{\alpha}$							
	$\mathbf{0 . 4 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$	
$\mathbf{1}$	0.325	0.727	1.376	1.963	3.078	6.314	12.706	
$\mathbf{2}$	0.289	0.617	1.061	1.386	1.886	2.920	4.303	
$\mathbf{3}$	0.277	0.584	0.978	1.250	1.638	2.353	3.182	
$\mathbf{4}$	0.271	0.569	0.941	1.190	1.533	2.132	2.776	
$\mathbf{5}$	0.267	0.559	0.920	1.156	1.476	2.015	2.571	
$\mathbf{6}$	0.265	0.553	0.906	1.134	1.440	1.943	2.447	
$\mathbf{7}$	0.263	0.549	0.896	1.119	1.415	1.895	2.365	
$\mathbf{8}$	0.262	0.546	0.889	1.108	1.397	1.860	2.306	
$\mathbf{9}$	0.261	0.543	0.883	1.100	1.383	1.833	2.262	
$\mathbf{1 0}$	0.260	0.542	0.879	1.093	1.372	1.812	2.228	
$\mathbf{1 1}$	0.260	0.540	0.876	1.088	1.363	1.796	2.201	
$\mathbf{1 2}$	0.259	0.539	0.873	1.083	1.356	1.782	2.179	
$\mathbf{1 3}$	0.259	0.537	0.870	1.079	1.350	1.771	2.160	
$\mathbf{1 4}$	0.258	0.537	0.868	1.076	1.345	1.761	2.145	
$\mathbf{1 5}$	0.258	0.536	0.866	1.074	1.341	1.753	2.131	
$\mathbf{1 6}$	0.258	0.535	0.865	1.071	1.337	1.746	2.120	
$\mathbf{1 7}$	0.257	0.534	0.863	1.069	1.333	1.740	2.110	
$\mathbf{1 8}$	0.257	0.534	0.862	1.067	1.330	1.734	2.101	
$\mathbf{1 9}$	0.257	0.533	0.861	1.066	1.328	1.729	2.093	
$\mathbf{2 0}$	0.257	0.533	0.860	1.064	1.325	1.725	2.086	
$\mathbf{2 1}$	0.257	0.532	0.859	1.063	1.323	1.721	2.080	
$\mathbf{2 2}$	0.256	0.532	0.858	1.061	1.321	1.717	2.074	
$\mathbf{2 3}$	0.256	0.532	0.858	1.060	1.319	1.714	2.069	
$\mathbf{2 4}$	0.256	0.531	0.857	1.059	1.318	1.711	2.064	
$\mathbf{2 5}$	0.256	0.531	0.856	1.058	1.316	1.708	2.060	
$\mathbf{2 6}$	0.256	0.531	0.856	1.058	1.315	1.706	2.056	
$\mathbf{2 7}$	0.256	0.531	0.855	1.057	1.314	1.703	2.052	
$\mathbf{2 8}$	0.256	0.530	0.855	1.056	1.313	1.701	2.048	
$\mathbf{2 9}$	0.256	0.530	0.854	1.055	1.311	1.699	2.045	
$\mathbf{3 0}$	0.256	0.530	0.854	1.055	1.310	1.697	2.042	
$\mathbf{4 0}$	0.255	0.529	0.851	1.050	1.303	1.684	2.021	
$\mathbf{6 0}$	0.254	0.527	0.848	1.045	1.296	1.671	2.000	
$\mathbf{1 2 0}$	0.254	0.526	0.845	1.041	1.289	1.658	1.980	
$\mathbf{\infty}$	0.253	0.524	0.842	1.036	1.282	1.645	1.960	

Critical Values of the \boldsymbol{t}-distribution (t_{α})

	$\boldsymbol{\alpha}$							
	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 7 5}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 2 5}$	$\mathbf{0 . 0 0 0 5}$	
$\mathbf{1}$	15.895	21.205	31.821	42.434	63.657	127.322	636.590	
$\mathbf{2}$	4.849	5.643	6.965	8.073	9.925	14.089	31.598	
$\mathbf{3}$	3.482	3.896	4.541	5.047	5.841	7.453	12.924	
$\mathbf{4}$	2.999	3.298	3.747	4.088	4.604	5.598	8.610	
$\mathbf{5}$	2.757	3.003	3.365	3.634	4.032	4.773	6.869	
$\mathbf{6}$	2.612	2.829	3.143	3.372	3.707	4.317	5.959	
$\mathbf{7}$	2.517	2.715	2.998	3.203	3.499	4.029	5.408	
$\mathbf{8}$	2.449	2.634	2.896	3.085	3.355	3.833	5.041	
$\mathbf{9}$	2.398	2.574	2.821	2.998	3.250	3.690	4.781	
$\mathbf{1 0}$	2.359	2.527	2.764	2.932	3.169	3.581	4.587	
$\mathbf{1 1}$	2.328	2.491	2.718	2.879	3.106	3.497	4.437	
$\mathbf{1 2}$	2.303	2.461	2.681	2.836	3.055	3.428	4.318	
$\mathbf{1 3}$	2.282	2.436	2.650	2.801	3.012	3.372	4.221	
$\mathbf{1 4}$	2.264	2.415	2.624	2.771	2.977	3.326	4.140	
$\mathbf{1 5}$	2.249	2.397	2.602	2.746	2.947	3.286	4.073	
$\mathbf{1 6}$	2.235	2.382	2.583	2.724	2.921	3.252	4.015	
$\mathbf{1 7}$	2.224	2.368	2.567	2.706	2.898	3.222	3.965	
$\mathbf{1 8}$	2.214	2.356	2.552	2.689	2.878	3.197	3.922	
$\mathbf{1 9}$	2.205	2.346	2.539	2.674	2.861	3.174	3.883	
$\mathbf{2 0}$	2.197	2.336	2.528	2.661	2.845	3.153	3.850	
$\mathbf{2 1}$	2.189	2.328	2.518	2.649	2.831	3.135	3.819	
$\mathbf{2 2}$	2.183	2.320	2.508	2.639	2.819	3.119	3.792	
$\mathbf{2 3}$	2.177	2.313	2.500	2.629	2.807	3.104	3.768	
$\mathbf{2 4}$	2.172	2.307	2.492	2.620	2.797	3.091	3.745	
$\mathbf{2 5}$	2.167	2.301	2.485	2.612	2.787	3.078	3.725	
$\mathbf{2 6}$	2.162	2.296	2.479	2.605	2.779	3.067	3.707	
$\mathbf{2 7}$	2.158	2.291	2.473	2.598	2.771	3.057	3.690	
$\mathbf{2 8}$	2.154	2.286	2.467	2.592	2.763	3.047	3.674	
$\mathbf{2 9}$	2.150	2.282	2.462	2.586	2.756	3.038	3.659	
$\mathbf{3 0}$	2.147	2.278	2.457	2.581	2.750	3.030	3.646	
$\mathbf{4 0}$	2.125	2.250	2.423	2.542	2.704	2.971	3.551	
$\mathbf{6 0}$	2.099	2.223	2.390	2.504	2.660	2.915	3.460	
$\mathbf{1 2 0}$	2.076	2.196	2.358	2.468	2.617	2.860	3.373	
$\mathbf{\infty}$	2.054	2.170	2.326	2.432	2.576	2.807	3.291	

