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20  INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS; FIRST-ORDER EQUATIONS
EXAMPLE 1-11 (2% — 2yz — y*)p + (xy + x2)g = xy — xz
The subsidiary equations are

dx _dy  dz
22— 2yz —y*  xy+xz xy—xz

Since Q/(y + z) = R/(y — z), it follows that dy/(y + z) = dz/(y — z). Hence ydy —
zdz = zdy + ydz. Integration yields the first integral

u(x,y,z) =z — y* 4+ 2zy = ¢;

Also, xP + yQ + zR = 0,s0 xdx + ydy + zdz = 0. A second independent integral is
v(x,y,2) = x4+ Y 4 2 = ¢,

The general solution is

F2—y* +2xy, x* +y* +2z8) =0

Characteristic Curyes \

From a geometric as well as an analytic viewpoint there are many connec-
tions between the system of ordinary differential equations (1-39) and the
partial differential equation (1-38). Ofimportance in this regard is the vector
field

V(x.y,2) = P(x,y,2i + Q(x,y,2)j + R(x,y,2)k (1-44)

called the characteristic vector field associated with Eq. (1-38). From each
point in the region.J there emanates a characteristic vector. Letz = ¢(x,y)
be a solution of Eq. (1-38) in #. Geometrically the solution is visualized
as a smooth surface S lying in ., called an integral surface. Let n be the
normal vector to S [see Eq. (1-14)]. If V is the characteristic vector at a
point on S, then

Pp+ Qg — R _
(P*+¢* + D*

Accordingly V lies in the tangent plane to § at each point on S. Conversely,
if S'is a smooth surface with equation z = ¢(x,y), and if at each point on S
the characteristic vector V at that point lies in the tangent plane to .S, then
S'is an integral surface, and z = @(x,y)isa solution of Eq. (1-38) (see Fig. 1-2).

A smooth curve C lying in 7 and such that the characteristic vector V at
each point on C is tangent to C is called a characteristic curve of Eq. (1-38).
Accordingly the characteristic curves are just the field lines of the vector field
V(x,y,z). A necessary and sufficient condition for a smooth curve C to be
a characteristic curve is that the subsidiary equations (1-39) hold along C.
This follows from the fact that a set of direction numbers of the tangent to C
is the set of differentials dx, dy, dz, and the subsidiary equations state that
these direction numbers are proportional to the set of direction numbers
P, O, R of the vector V; that is, the tangent has the direction of V.

Ven=




QUASILINEAR FIRST-ORDER EQUATIONS; METHOD OF LAGRANGE 21

The characteristic curves constitute a two-parameter family of space curves.
Exactly one characteristic passes through each point of 7. To see this, take
x as the independent variable in Eq. (1-40). The system (1-40) satisfies the
hypotheses of the fundamental existence theorem for a system of first-order
equations (see Ref. 2). Thus, if x, is fixed and y,, z, are chosen values, then
there exists a unique solution

.y = .y(x’yO’ZO) z= Z(xJo,Zo) (1'45)
in a neighborhood of x, such that

y(xo,yo,zo) = Yo Z(xod’o,zo) = 2y (1-46)

In xyz space each function in Eq. (1-45) represents a cylinder, and relation
(1-46) states that these cylinders intersect at (x,,7q,20). In a neighborhood
of the point (x,,y,z,) the cylinders intersect in a smooth curve C which passes
through (x,,7,2,). Since the system (1-40) is satisfied along C, it follows
that C is a characteristic curve. By the uniqueness of solution of the system
(1-40) subject to conditions (1-46), C is the unique characteristic through
(X0, Y0-20). Now regard y, and z, as parameters. Then the family of curves
defined in Eq. (1-45) constitute a two-parameter family of characteristic
curves such that exactly one member passes through each point of J.
Moreover every characteristic curve of the partial differential equation
belongs to this family. Note that the preceding statements imply that dis-
tinct characteristic curves cannot intersect.

If S is an integral surface of Eq. (1-38) and C is a characteristic curve,
either C does not intersect S, or else C is embedded in S. To show this,
suppose z = @(x,y) is the equation of the integral surface S. Let C be a
characteristic curve which intersects S at (x4,7¢,zo). In a neighborhood of
x = X, there is a unique solution y = y(x) of the differential equation

dy _ Qlxy.e(xy)] 1-47
dx  Plx,y,9(x,p)] -

such that y(x,) = y,. The space curve C’ defined by the equations y = y(x),
z = @[x,y(x)] passes through the point (x,,4,z,) and lies in the surface S.
Also

dz 0 Py, +0p, R

£:¢m+(pyy:(pm+(pyp— P :P

Thus the functions which define C’ satisfy the system (1-40); moreover
y(x¢) = yo, and z(x,) = z,. But the functions which define the characteristic
C satisfy exactly the same conditions. There can be but one set of functions
y(x), z(x) with these properties. Accordingly the characteristic C and the
embedded curve C’ are one and the same.
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Geometric and Analytic Justification of Lagrange’s Method

A heuristic geometric argument based on the preceding result may be given
in support of the fact that under the present hypotheses on P, Q, R each
solution of Eq. (1-38) is defined by a relation of the form in Eq. (1-43), at
least in the small. Let S be an integral surface of Eq. (1-38), and let (xg,,20)
be a point on S. Choose a smooth curve I' such that (1) I' lies in S and
passes through (xy,v0,20), (2) I' is noncharacteristic; i.e., the tangent to I is
nowhere parallel to the characteristic vector V along I'. Through each point
of I' there passes exactly one characteristic C, and Cis embeddedin S. Also,
the tangent to such a characteristic C does not coincide with the tangent to
I' at the point where Cintersects I'.  In this manner a subfamily of the family
of characteristics is singled out, and in a neighborhood of (x,,y,,z,) this sub-
family of characteristic curves generates, or sweeps out, the integral surface S
(see Fig. 1-3). The particular subfamily in question is obtained from the
two-parameter family of all characteristics by imposing a functional relation
F(cy,c5) = 0 on the parameters ¢;, ¢, appearing in Eq. (1-42).

Assume that

u(xs_yzz) = ( U(xa)’az) = Cy (1-48)

are functionally independent integrals of the subsidiary equations in 7.
Let (xo,70,2o) be a fixed but otherwise arbitrarily chosen point of . Then
in a neighborhood of (x,y,2,) the surfaces

u(X,y,Z) - u(x07y0720) v(xayaz) = U(xmyo:zo) (1'49)

intersect in a smooth curve C, which passes through the point. The curve C
is the characteristic passing through (x,,7,2o). Choose x as the parameter

Figure 1-3
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along C; then differentiation of Egs. (1-49) yields

" 4 dy+ dz_o n dy+ dz_o
x uyd_x uza_ Uy vydx vz'g)}—

Hence, from the subsidiary equations (1-40), it follows that
Pu, + Qu, + Ru, =0 Pv, 4+ Qv, + Rv, =0 (1-50)
These equations hold simultaneously along C. In vector form they are

V:-Vu=0 V-Vo=0

Thus (1-50) is just a restatement of the fact that at each point of C the charac-
teristic vector V is perpendicular to each of the vectors Vu, Vv and so is
parallel to Vu x Vo. Recall Vu x Vo has the same direction as the tangent

to C at the point.
The term general solution applied to the relation (1-43) can be justified

analytically. Let u, v be as described in the preceding paragraph, and let
F be any continuously differentiable function such that F(u,v) = 0 implicitly
defines a function

z=g(x))

having continuous partial derivatives in some neighborhood of a point
(x0,Y0,20) of 7. Exactly as in Example 1-4, differentiation of F = 0 with
respect to x and y and elimination of F lead to the equation

o(u,v) o(u,v) o(u,v)

—— Py =2 1-51
30,2 " A T Ay (1-51)
Now

du,v)  Q d(u,v) du,v) R I(u,p) (1-52)

d(zx) Po(yz) 0(xy) Po(yz)

The preceding relations are obtained from the simultaneous equations (1-50).
If the expressions for the Jacobians are inserted in Eq. (1-51), the result is

Po, + O, = R (1-53)
Hence ¢ is a solution of the partial differential equation (1-38). It is empha-
sized here that the preceding results are local, since the reasoning is based
upon the existence theorem for the system of ordinary differential equations
(1-40). Thus the properties have been shown to hold only in some neigh-
borhood of a point (x4,y,,z0) of 7.

EXAMPLE 1-12 xzp + yzqg = —(x* + %)
From Example 1-9 two independent integrals of the corresponding subsidiary equations

are

==

u(x,y,z) = =G U(x,y,Z) = x2 + y2 + 22 = Cg
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If ¢,, ¢, are assigned positive values, the corresponding surfaces are a plane and a sphere.
In the first octant these surfaces intersect in a segment of a circle (see Fig. 1-4). To show
directly that the curve of intersection is a characteristic, recall that the tangent to C
has the direction of the vector Vu X Vv. Now

—_ 1
Vu — (—;V)H- “§ Vo= 2(xi + yj + zK)
X X

so that

i j— (x2 Hk 2V
VuxVUZZ[le—i—zy] (x +y)]____
x? ’xz

Every characteristic in the first octant is a segment of such a circle. Suppose F'is a function
such that F(u,v) = 0 can be solved for z to obtain

¥ '
z=@(x,y) = f} — (x*+ )

where ¢ is continuously differentiable. Then ¢ satisfies

XZQy 1 Yzy = —(x* + yz)

1-6 CAUCHY PROBLEM FOR QUASILINEAR FIRST-ORDER
EQUATIONS

A fundamental problem in the study of ordinary differential equations is
to determine a solution of a first-order equation y’ = f(x,y) which passes

Figure 1-4
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through a prescribed point in the xy plane. Under quite general conditions
a unique solution to the problem exists. An analogous problem in the study
of first-order partial differential equations in two independent variables x, y
is to determine an integral surface such that the surface passes through a
prescribed curve in xyz space. Such a problem is termed a Cauchy problem.
In this section a method of solving the Cauchy problem for Eq. (1-38) is
described.
Before proceeding with the general case consider the following example.

EXAMPLE 1-13 Find a solution z = ¢(x,y) of yp — xq = 0 such that ¢(x,0) = x*.
The problem is to find an integral surface which passes through the curve I' defined by
the simultaneous equations z = x* and y = 0. This curve lies in the xz plane. By the
method of Lagrange one obtains the general solution of the differential equation as

z=f(x*+y?)

where f is arbitrary. Every integral surface is a surface of revolution about the z axis.
The condition that such a surface contains I' is f(x?) = x*. Thus f(t) = t%. The solution
of the Cauchy problem is z = (x* 4 y*)? (see Fig. 1-5). There is but one surface of
revolution about the z axis which contains I', and so the solution obtained is unique.

In general there may or may not exist a solution of the Cauchy problem
for Eq. (1-38). There is also the possibility that infinitely many distinct
solutions exist. All three cases are illustrated, with the aid of the partial

Figure 1-5
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differential equation of the preceding example. If I' is the curve stated in
the example, there exists exactly one solution. Suppose instead I' is the
circle x2 4+ 2 =1,z = 1. Choose any function A(¢) such that 4(1) = 1 and
consider the function z = A(x? + y?). The corresponding surface is an
integral surface which contains I'.  Clearly there are infinitely many solutions
in this case. Observe that the given curve I' is now a characteristic curve of
the partial differential equation. At the opposite extreme of circumstances
let I' be the ellipse x2 + y2 =1, z =y. If z = f(x? 4 »?) is a solution of
the Cauchy problem, then on the circle x2 4 y* =1 one has z = f(1), a
constant. However this is incompatible with the requirement that z =y
whenever x2 + y? = 1. Thus no solution exists. Note that in the last case
the given curve is such that its projection on the xy plane coincides with the
projection on the xy plane of a characteristic curve, but I' itself is non-

characteristic.

A Method of Solution X/

Let I' be a given smooth curve defined parametrically by

x=f@t) y=gn z=h (1-54)
for a <t < b. Assume also that I' is noncharacteristic. To construct an
integral surface of Eq. (1-38) which contains I' one can proceed as follows.
Let u = ¢;, v = ¢, be two independent integrals of the subsidiary equations
(1-39). Write down the equations

u[fD.gOMN] = ¢ lf(D.80AD] = c, (1-55)
Eliminate ¢ from the pair of equations so as to derive a functional relation
F(cy,c0) =0 (1-56)
between ¢; and ¢,. Then the solution of the Cauchy problem is
Flu(x,,2),0(x,,2)] = 0 (1-57)

EXAMPLE 1-14 Find an integral surface of
(y+xzp+(x+yz)g=2z—1

which passes through the parabola x =1,y = 1, z = ¢
The subsidiary equations are

dx _ dy _ dz
y—{—xz—x—i—yz—z?——l

SinceP+ Q=+ Y+ DandP — Q =(x — iz —1),

dx—i—dy__ dz dx——dy_ dz
x+y Cz—1 xX—y oz 1
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/

Two independent integrals of this system are /
z—1 z+1 | |
u= = v = =C
x+y x=)

Note that the characteristic curves here are the straight lines determined by the intersection
of the planes

z—1—cx+y)=0 z+1—clx—y)=0

The given curve I' is noncharacteristic. Equation (1-55) takes the form

12— 1 12+ 1 N
=c1 =C2 x
r+1 r—1 A

From the first equation, t = ¢; + 1. Insert this into the second equation; then (¢; + 1)? =
cic;. The integral surface which contains I" has the equation

z—l-f—x-f—y2+1=zz—l
x+y x* — y?

An Existence and Uniqueness Theorem

From a geometric viewpoint a functional relation F(c;,c;) = 0 imposed
on the arbitrary constants c¢;, ¢, singles out a one-parameter subfamily of
the two-parameter family of characteristic curves in Eq. (1-42). Analytically,
the condition that the resulting surface contains the given curve I is that the

relation

Flul[f(2).8(),h(D)],0[f(1).g(D),A()]} = O (1-58)

holds identically in #, for a < t < b. But if F is obtained by eliminating ¢
between the pair of equations in (1-55), then clearly the identity holds. The
success of the method hinges on the ability to eliminate ¢ in Eq. (1-55). The
following local existence and uniqueness theorem for the Cauchy problem
shows that this is always possible provided I' is noncharacteristic.

THEOREM 1-1 LetJ be a region of xyz space and Z the projection of
Z on the xy plane. Let the following properties hold: (1) the coefficients
P, O, Rin Eq. (1-38) are continuously diﬁ“erential,)_lg functions of x, y, z, and
P, Q do not vanish in 7 ; (2) I' is a given space curve lying in J and is
defined parametrically by Eq. (1-54), where the functions f, g, 4 are invertible
and have continuous first derivatives; (3) [f'(1)]* + [g'(1)]* £ 0, a < t < b;
(4) (x0,¥0-20) is a point on I' corresponding to ¢ = #4; (5) P(x¢,V0,20)2 (to) —
Q(x0,y0:20)f ' (t)) # 0. Then there exists a neighborhood N of (x,,y,) in %,
a neighborhood |t — 7)| < 0 of 7y, and a unique function z = ¢(x,y) such
-that ¢ is a solution of Eq. (1-38) on N and

h(t) = @[ f(1).g(1)]
holds identically in ¢ for [t — 7| < 0.
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Proof The proof is based on the following property of the system (1-40).
Under the present hypotheses on P, O, and R there exists a two-parameter

family of solutions

Yy =y(xc165)  z=z(x,01,¢5) (1-59)

of Eq. (1-40), where the functions y and z are continuous and have continuous

first partial derivatives with respect to the parameters c,, ¢, in a certain range
of values of these parameters which includes y,, z,. Moreover

y(xo,cpcz) =G 2(Xg,C1,C2) = C2 (1-60)

for each pair of values ¢;, ¢,. The proof of this property is given in Ref. 2.
From Eq. (1-60) one obtains

T

at x = x,. Hence the Jacobian 0(y,z)/0(c;,¢;) 7 0 in some neighborhood
of (xp,50,29)- In turn this implies that Eq. (1-59) can be solved for ¢, ¢, to

obtain the functions

ay_l ay_o 32_0 0z {

€ = u(X,y,Z) Co = U(x,)’,z) (1'61)
and the functions u and v have the property that

Yo = U(Xg,¥0,20) zg = 0(Xg; Y0s%0)

The Jacobian 0(u,0)/d(y,z) is different from zero in some neighborhood of
(x0,y0,20) since it is the reciprocal of 0(y,z)/0(c;,¢;). With u and v constructed
in this manner, define the functions ¢,(¢) and ¢,(¢) by

ci(t) = ulf(D).g(0)h(1)]  co(t) = v[f(2),8(1),h(1)]
Then ¢,(2,) = y,, and cy(t,) = z,. Moreover ¢, and ¢, have continuous first

derivatives with respect to ¢ in some neighborhood of t = ¢, and, by the
chain rule,

dey dr dcs dr

— V [ p— — * — -

- a a a (1-62)
where

d
=0+ g0+ H Ok

Recall that the vector dr/dt is tangent to I'.  Now at least one of the values
c;,(to), cy(t,) is different from zero. For suppose that c,(z,) = c,(t,) = 0.
Then at ¢t = t,, x = xo, ¥y = )y, z = z, the vector dr/dt is perpendicular to
the vector Vu and also perpendicular to the vector Vuv. Since the Jacobian
o(u,v)[0(p,z) # 0, at (x,,ye,2) the vector Vu x Vo has a nonzero x component
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and so is not the zero vector at that point. Also dr/dt is not the zero vector
at t = t,, by virtue of hypothesis 3. Hence dr/dt has the same direction as
Vu x Vv. But Vu x Vo has the same direction as the characteristic vector V
(see Sec. 1-5). Thus I' is characteristic at (x,,),2,). This, however, is
impossible by virtue of hypothesis 5, which asserts that V x dr/dt-k # 0
at that point. Thus at least one of the derivatives c,(#,), c,(¢,) must be
different from zero. For definiteness assume ¢,(z,) 7 0. By a basic theorem
of calculus the equation ¢; = ¢,(¢) can be solved in a neighborhood of ¢, to
obtain the inverse function ¢ = #(c;), and moreover #(y,) = f,. Substitute
t(c,) for ¢t in the equation ¢, = c,(f). Then

¢y = csft(er)] = w(ey)

With the function y constructed in this manner consider the equation
v(x,y,2) — ylu(x,y,2)] = 0 (1-63)
Clearly, if in this relation x, y, z are replaced by f(¢), g(¢), h(?), an identity
in ¢ results. In particular this implies the equation is satisfied by x = x,,
Y = Yo, Z = 2Z,. Observe that the left member of Eq. (1-63) is continuously
differentiable in a neighborhood of (x4,y¢,2,). Now it is asserted that
v, — ¥ (Wu, 70 (1-64)
at (xo,Y0:Z0). To show this consider that

, dc, dcy/dt Vv . dr/dt
’('U (Cl) = — = =

dc, dcy/dt Vu-dr/dt
If v, — v (W)u, = 0 at (x,,4,20), then
dr dr
szuo—&,;—quv-:i—i=0

Recall the expression for the triple product (Vu x Vo) x dr/dt. Then the
preceding equation takes the form

dr
\% —-k=0
(Vu x v)xdt

Hence

dr
Vx—-Kk=0
X
which contradicts hypothesis 5. Thus (1-64) holds. In turn (1-64) implies
that Eq. (1-63) can be solved in a neighborhood of (x,,),z,) to obtain a
continuously differentiable function z = @(x,y) such that z; = ¢(x,,y,). In
fact there is a neighborhood of #, such that

h(t) = pLf ()g(0)]



30 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS; FIRST-ORDER EQUATIONS

hold identically in ¢. The proof that ¢ is a solution of Eq. (1-38) in a
neighborhood of (x,, Vo,2o) follows from the discussion in the paragraph of
Sec. 1-5 which precedes Example 1-12.

Under the hypothesis that I' is noncharacteristic there can be at most one
solution of the Cauchy problem in a neighborhood of (xy,y0,zy). For if two
distinct integral surfaces of Eq. (1-38) contain I' near (x,,2,), then in a
sufficiently small neighborhood of (x,,29), I' is the unique curve of inter-
section of these surfaces. But then I' is a characteristic.

PROBLEMS
Sec. 1-2
\/C assify each of the followmg equations to the extent of the definitions given in Sec. 1-2.
@) Uz + X%y, + (cos Y)u, = (tan xy)u + x%y* L ARG & o' o owdoe T OU' L
(b) a_<p z_aiv + i— +e=0 no= \aa o - C?QCQ)"W& — 2L vevriek
ox) ox* % Tilee
o™ LS, X+ yt—zp+ (1 —2)g=x @ xp—yzig=0veor—="""" ¢ o " \ -
\.—-"'\ﬂ”( :\SF-{\,( S« C,Ur\at O)(CJVQ(- - :l : RIS AR S P -
- xrn-cs)e) Uyllzzy + Ugllyy — u< + xy? =z ®) pg=:z :
VAR - - —_ =
10> o r\C)%'2Lw\’wﬁw\u\ai\u ({Cb, ’ \
o ® =+ 5 T = Laplace’s equation
)EQY\CP:\ - _Sa( Cc:l"‘c.}\ - &
0 .
h) w_ oM __ 7 Cauchy-Riemann equations

O0x dy B_y ox
L ovde € —\neen” -
Sec. 1-3

(2§ @) Show that each sphere in the family x* + y* + z? + ¢,z-= 0 intersects each sphere
m the family x? + ¢1x + yE+2z2=0 ML\ —
\)Let G be a given differentiable function of the variables x, y, z such that G(x,y,z) = ¢\

defines a surface for each value of the constant ¢ in a certain range of values and so a family
of surfaces. Let K(x,y,z) = 0ipplicitly define a differentiable function, z=f(x,y) an SO
Sects

asurface S. IfSi 0 onally each surface in the above farmly-of'surfacesr show
that the quasilinear equation pG, + gG = G, must be satisfied. R L: L
r»"" g): 4 ? ' ‘

lowest order ,‘

. \3;) z=xf() " / B u=eFx—2)" (© GE+y+22=0
5 ' . @ u=x"F (y z) n alpositive integer it 3
Ry § BN
(ey ze= + p(x* + 1) =0 -
= L vV A
) z=f()cosx +g(ysinx ® u=fx—ct)+gx+ect) 7

) u=fi(y — mx) + xfo(y — mx) + x*f5(y — mx) -
R

-
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4 Consider the relation ®(x* + y?, y* + 2% u® + xy) = 0, where @ is an arbitrary func-
_ /;D tlon Let w G(x,y,z u) y:+ 2% and H(x,y,z,u) = u® + xy. Let
74" x,y, z be indépendent variables, and suppose for each choice of @ the equation O(F,G,H) = ~

0 implicitly defines « as a function of x, y, z. Follow the method of Exarnpm"

differentiate ® = 0 with respect to x, y, z so as to eliminate ® and derive the first-order

quasilinear equation

2yzuum — 2xzuu,, + 2xyuuz = z(x2 - }’2) )

5 Consider the relation ®(F;, ..., F,) = 0, where @ is arbitrary and Fy(xy, ..., X, 0),
i=1,...,n, are n differentiable functions. Let x;,..., x, be independent variables,
and suppose for each choice of @ the equation ® = 0 implicitly defines u as a function of
X1,..., X, Differentiate ® = 0 successively with respect to x;, xs, . . ., x, and so obtain

/t\he n equations ~

IR

D OFu,+ Futts) =0  j=1,...,n

=1

where (D means 8@/ aF,, Fm means 0F; /ax etc. [Eliminate ® and show that a quasilinear

equatlon

L ou
Z Ak(xla- cos Xny u)a_ = G(xls- e o5 Xny ll)

k=1 : Xk

results
@hmmate the arbitrary constants a, b Cuen which appear and obtain a partial differen-
al equation-of lowest Order. -

(@) z = et w @/ a(x® + y?) + bz? = 1— 53 BN
© z= bx“yl'“ d) z=ax®+ 2bxy + cy?

(&) u = Ae® cos ay (f) u = Acosaxcosat

@® u= Aetcosax \ () az+b=ax+y

@) z—ax—l—by—{—az—i-b2

7 1nd a partlal differential e@of lowest order satlsﬁed by each surface in the given
family surfaces.
(a) All planes through the point (L__LO) not perpendicular to the xy plane.
(b) All spheres of unit radius.
@ The family of all tangent planes to the surface z = xy.

Sec. 1-4

8 3, Hold one independent va,z‘d“ble constant and integrate with respect to the remaining
variable so as to obtain-d {"solution involving an arbitrary function. Verify that your
answer is correct by substituting into the differential equation.

. X
@ ,q=x2+.y: (b) P"‘Sm; (©) Zz+xz=x3+3xy
—~ LT - X ey <t b\)\\-/_
/ e S -'-"“ =

',\9{Let Ap 4+ Bg =0 be a first- order equatlon “where 4, B are constants. Assume a
solution of the form z = f(ax -+ by), f arbitrary and a, b constants. Substitute into the
differential equation to determine suitable values of a, b.

— 4 2 - . \ /7 . ~

[N . = 4 .,\ Ll 4 [ 7\’“ [ N Dl
N v ! - i) L = o -
— -_— T X )

= ! )

S — . VaE <
E — T . -
-— S

—
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€

10‘5 Obtain the general solution.
@)y 3p —4g = x* (b(p—3q=sinx+cosy
(c)/_5p+4q+z=x3+1 + 2% @F p+29—5z=cosx + y* + 1

—ag =e™cosby  a, m, b constants

@)Make the change of independent variables £ = log x, n =logy and reduce the
ifferential equation to one with constant coefficients.” Obtain the general solution.

(@) 4xp —2yg =0 ® 2xp +3yg =logx
() xp—7yq—xy (@) 8xp — 5yq + 4z = x%cos x

//’@ axzx-}—byz,,—i—cz—xz—l-y

e yp +yg=x
- A p—xqg=xy + 1

: y .
P

!

|

i 4

"\.‘\:‘(

/

y/
///

(_12) Follow the method of the text in Example 1-8 and obtain the general solution in the
1o

rm (1-37).
@ xyp—x*q+yz=0 () yp —xq=0
© \x+ap+(y+bg+cz=0 a,b,cconstants

; ﬂa_@hﬁ Lu = Au, + Bu, + Cu, + Du = G be a linear first-order equation in three
] independent variables x, y, z and dependent variable u, where A4, B, C, D are constants

and G(x,y,z) is a given function. Assume 4 # 0. To obtain a solution of the homogene-
ous equation Lu = 0 which involves an arbitrary function assume a solution of the form
u = e Pz/Af(ax 4 by + cz), substitute into Lu = 0, and show thap the constants a, b, ¢
must satisfy Aa + Bb + Cc = 0 if the assumed form satisfies Lu = 0 for arbitrary choice
of f. Conversely, if a, b, ¢ are chosen so that the preceding equation holds, then u =
e~2=/Af(ax + by + cz) is a solution for arbitrary (differentiable) f. If 4 = 0 but B 0,
one can proceed similarly with u = e=0+/3f(ax + by + cz), etc. Find a solution involving
an arbitrary function for each of the following equations.

@@ 2u,—u,+4u,+u=0 M) u,—du,+Tu,—u=x+y+z+1

Sec. 1-5
@Obtain the general solution.
@ ptxg=:z Qtp + yq =nz  nconstant
© +z2p+(p+29=0 }gg))(y+x)p+(y—x)q—z_-5
O+ —9=:

) (mz—np+ (nx —I2)g=1ly — mx I, m, n constants

@)) x®p + y*q¢ =axy  a# 0, constant - -~
@’ (*x — 2x9p + (2y* — x*p)g = 9z(x® — »?)

P — 2q = 3x2? s1n (y + 2x) m) (x*—)y* —z9p + 2xyq = 2xz

f i) x(y — 2)p + y(z — x)g = z(x — y) D yp—xq+z+x2+2P—1=0
/

—
IRp— ¢ 2 — 22 __ Lz
) cosya —I—cosxay COS X COS y i_\(_y(z—}-e)p-{-(z—}—e")q 22 — g%ty

@ xp+yg=2x)a> — 2%

Foaiegr
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@ Refer to Prob. 2b and find the general form of the equation of all surfaces orthogonal

to the given family of surfaces. \esr (L
»~ Cl o=l ’
TN x2 2 RCAVE
(@ x*+ y*+ 2* = 2ax ,/(b) x_+y2+zz—cz 0 ¢ =
. \_ﬁ)\// b .

——

\ 16, (a) Let ®(x,y,z) be a continuously differentiable function and let ¢ be a fixed constant
such that @ = ¢ defines a smooth surface S. Show that the family of all smooth space
curves C orthogonal to .S must satisfy the system of equations

dx dy dz

®, o, O

//ZIB he velocity potential @ of a stationary velocity field of fluid flow is @(x,y,z) = xy +
k.xyzz-r The velocity field is V = V®. The trajectories of the field are the curves C such
that the tangent to the curve at each point has the direction of V at the point, i.e., the field
lines. Find the trajectories.
(c) The potential @ of an electrostatic field is @(x,y,z) = 1/x + 1/y + 1/z. The electric
field is E = —V®. Find the field lines of the E field.

— ,
(\}l/‘ Find the general form of the equation of all surfaces such that the tangent plane to
each point on the surface passes through the fixed point (0,0,).

lx 18 _)Let X, . . ., X, be independent variables in a region # of n-dimensional space, and let

ip—_o (1)

0x;

be a linear equation with coefficients P; which are continuously differentiable and such that
they are not simultaneously zero in #. A function u = ¢(x,, ..., x,) is said to be a
solution of (1) in £ if @ is continuously differentiable and (1) holds identically in #. The
system of ordinary differential equations

i 2

is called the subsidiary system of (1). These equations define an (n — 1)-parameter family
~of curves in n space, called the characteristic curves of (1). If x, is chosen as the independent
variable, then (2) can be written in the form
dx, P, ) dx,_y P,

dx, P, dx,, P,

(3)

The general solution of the system (3) is of the form
X; = Xi(Xn, C1y v e ey Cnoy) i=1,...,n—1

where the c; are arbitrary constants. If these are solvable for the c;’s, the general solution

of (2) can be written as u;(x;,...,Xx,) =¢;, i =1,...,n — 1, where the n — 1 functions
u; are functionally independent in #. Each relation u; = c; is called an integral of the
subsidiary equations (2). For fixed c; the equation u,(x,, ..., x,) = ¢; defines a hyper-
surface (of dimension » — 1) in n space. For each fixed set of values ¢;, ..., ¢, then —1
hypersurfaces u; = ¢;, i = 1,...,n — 1, intersect in a characteristic curve C in n sp&.
Through each point (x{, . . ., x,”’) of # there passes one, and only one, characteristic C.

Each function uy(x,, . . . , x,) satisfies (1) in Z. For given a point in Z there exist constants



A
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¢, . . .,y such that a characteristic C passes through the point, and so equations (2) hold
at the point. Differentiate the equation u; = c;; then
. Ou; ou; [ P; dx, & ou;
O=du;= ) —dx;= —dx, | = P, —
¢ El 0x; Zl 0x; (Pn ) P, El 0x;

If uy,...,un, are functionally independent in £, the general solution of (1) is u =
f(uy, ..., us ), farbitrary. For each choice of f this defines a solution of (1), since

n ou n n—1 af au’ _n—-—l af auJ _
Sra-3r(Zaw) -Zaldre) -

= Bu; ox;

n au_ n Ou;
Z_lp,-a—xi_o 2 Pio—=0

i=1 Xi

j=1,...,n — 1, hold simultaneously in #. Since the P, have values different from zero
at each point of £, it follows that the Jacobian

a(u, Uiy o o oy u'n—l)
a(xl, o o oy xn)

in #. This implies that (locally at least) there exists a function f such that u =
flgy ey ).

Let v be a particular solution of the linear equation

=0

z P, — —I— Ru=0 4
- 0x;

=1

where R(xy,...,x,) is continuously differentiable, in %. Let u;,...,u,_; be n — 1

functionally independent integrals of the subsidiary equations (2). Then the general
solution of (4) is u = vf (uy, . . ., ua—y), farbitrary. For if fis a given function, then Uy, =
vz, f + vfr,- Hence

n

ou & ov n
Piee =Y P
2 0x; fzgl 0x; " vi=1

=1

=f(—Rv) = —

so u is a solution of (4). Conversely, if « is a solution of (4) and w = u/v, then w,, =
(vuz, — uvxi)/vz, so that

12 ou u - ov

n
P,—=->»P,— —— » P, —
z ax, v Ox; v 5 0x;

Ry - Z(-ry=0
v v

Thus w is a solution of (1). It follows that w = f(uy, ..., u,_,) for some f, and so u =
of Uy, . . . , Un_y). The general solution of the inhomogeneous equation

ou
zP——I—Ru—-G 6))
i— 0x;
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where G i$ a given continuously differentiable function, is u = u, + u,, where u, is a par-

ticular solution of (5) and u, is the general solution of (4). Find the general solution of
each of the following.

@Plum + Pouy + Pau, + Ru =0 P,, P,, P;, R constants
C/ ® O+ 2+ @+ 0w+ + pu, =0
\(C/)\ 3uy + Suy, — u, = cos y — 2e=*
EL\ Uy — Uy + Tu, + u = wﬂ‘cz A, a, b, c constants
(e) (x + 2)u, + yu, — 2u, = 4e*
@ Xzuy + yzuy — (x* + y»u, = zy?sin y
©® (z—Yuy + yuy — zu, = y(x + z) — )*
(hj (tan x)u, + (tan y)u, + u, = sin z
O  xuy + yuy, + zu, = nu n constant
G Vxug+ Vyu, +Vzu,+u=x+y
ou ou ou

u
k) — + x;,— — — =
k) 2% 1 ax2v+ X1X, o + X1X9X3 2%,
du ou ou u
(D) x;=— + XX — + X1 XoX3 — + X1X2X3X; — + U = X12x,2
axl axZ axa ax4
19 A first-order quasilinear equation in » independent variables x,, . . ., x, and dependent

variable u« has the form

ou
P.

Tas

1

where the functions are assumed to be continuously differentiable functions of the x; as
well as u, and such that the P; do not vanish in some region 7~ of (x,, ..., xn, 4) space.

Let # be the projection of 5~ onto the hyperplane u = 0. A solution u = @(x,, ..., X,)
of (1) on Z is a continuously differentiable function of the x; such that if ¢ and its deriva-
tives are substituted into (1), an identity results. Assumew = p(x,, . . ., Xn, 4) is a solution

of the linear homogeneous equation

n 0 0

P~ +R— = @
“~ ox; ou
=1 -

in the n + 1 independent variables xi, ..., x,, 4. Assume also that w, * 0 and that
w = 0 implicitly defines a continuously differentiable function ¥ = @(xy, ..., x,). Then
Uy, = —wzj/wu, j =1,...,n. Substitute these expressions into the left-hand side of (1):
n

" 5 N . 2 P;(ow]0x;)

zpi_=zpi( ’)Z_L__ = R

- axi A Way . Wy
=1 =1

where (2) has been used. Thus « is a solution of (1). The problem of solving (1) is
reduced to solving (2). From the results of Prob. 17 the general solution of (2) is w =

fwy, ..., wy), where wy, . . ., w, are n functionally independent integrals of the subsidiary
equations
dx, _ _dx, du

P, P, R @)
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Then the general solution of (1) is f(wy,...,w,) =0, f arbitrary. Obtain the general
solution of the following.

@) u, + xu, + xyu, = xyzu

®) xu,+C+wu, +(y+wu,=y+z

© xuac+yuy+zuz=u+2
z

@ GC—Xu,+G6—pu, + 6 —2u,=s—u,s=x+y+z+u
Sec. 1-6
< 25 Determine the integral surface which passes through the given curve.
@ ptg=z;z=cosx,y=0
Zp—q=y—x;x=1,z=y*
/(c) xp—yg=0;x=y=z=t
x+z2p+(y+2)9=0x=1—t,y=1+t,z=t
PaC xX*p+yq=zx=ty=22=1
() xzp +yzg +xy =0;xy =a%>z=h
/(g) 2xzp + 2yzg =z — x* — Yy x + y +z=0,x*+ y* + 22 = a?
e (D) (y —2p+ —x)g=x—y;x=1t,y=2t,z=0
o) (Y +2yxp+yg —2)=0;x"+)y!=a* z=h
G C+)yp+2xyg=xz;x=a,y'+2*=a
{/«"Z@ x(y—2p+yz—xg=2x—yx=y=z=t
)} z(x+z)p—y(y+z)q=0;x=1,y=t,z=\/t

M/>® yp —xq=2xyz;x =t y=12z=1
n (—x2+2xz)p+2y(z—x)g=0;x =0, y* + 422 = 4a®
@p sec x + ag = cot y; z(0,y) = sin y

l:@ Find a surface orthogonal to the sphere x* + y* + z? — 2ax = 0, a > 0, and passing
t

hrough theline y = x,z =h,0 < h < a.

@In Eq. (1-38) let the coefficients P, Q, R be analytic functions in 7, that is, differentiable

number of times and such that the Taylor’s series expansion about a point of J~
converges. Let I' be a curve described by Eq. (1-54), where f, g, h are analytic functions
of t. Let I'lie in .7, and let (xy,y,,20) be a pomt on I' corresponding to ¢t = 7,. We wish
to determine a solutlon of the Cauchy problem in a neighborhood by means of a power-
series expansion. The problem is whether or not the given data determine the coefficients
in the expansion

z = zg + po(x — Xo) =+ qo(y — yo)
1
+ 5 [@acfo (X — X0)2 + @aylo (& — X)) — Vo) + Puo (F — yo)?1 + - - -

about (xy,)0,20). The condition that z = @(x,y) contain I' near (xo,yo,2o) is
h(t) = o[ f(1),g(1)] 1)
Differentiate (1); then

pf' () +qg () =Hk(2) @
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Set t = t,4; then

Pof () + qog’(20) = H'(2o) 3
From Eq. (1-38),

Popo + Qo?o = R, 4

Accordingly, if the determinant
A=Fg —0f ®)

is not zero at t,, then (3) and (4) determine p, and g, uniquely. In this event successive
differentiation of (2) and Eq. (1-38) determines the higher derivatives of @ uniquely also.
Note that the condition A # 0 at ¢, is hypothesis 5 of Theorem 1-1 and ensures that I" is
noncharacteristic at (x,,y0,%o). If A = 0 at ¢t = ¢,, either Eqgs. (2) and (4) are dependent,
or else they are incompatible. The first possibility occurs if, and only if, I' is characteristic
at (xo,y0,20). In this event there are infinitely many distinct integral surfaces containing I.
If the second possibility occurs, no solution of the Cauchy problem exists. In each of the
following Cauchy problems determine whether or not a solution exists. If a unique
solution exists, find the power-series expansion to second-degree terms about the indicated
point containing the given curve. ‘

-’@) xp+yg=00QL1);x=1y=1t*z=1¢
(b) yp—xq=0;(1,0,l);x=t,y=0,z=t2
© yp—xq=2z(x*+y»;(1,00); x =cost,y =sint, z =t
— yp —xq=x*+y9;001,0;x=0,y=1¢t2z=0
23 With reference to Prob. 19, Eq. (1) in the case n = 3 becomes
Plum-}—qu,,-ll-Pﬂlz:R (1)

where the P, and R are functions of x, y, z, u. Let S be a given surface in xyz space
defined parametrically by

x = f(s,t) y = g(s,t) z = h(s,t) 2

The Cauchy problem for (1) is to determine a solution of (1) such that at each point (x,y,z)
on the surface S

u(x,y,z) = F(x,y,z) 3)

where Fis a given continuously differentiable function. A method of solution is as follows.
Let w;, wy, wy be functionally independent integrals of the subsidiary equations (3) in
Prob. 19. Eliminate the parameters s, ¢ from the simultaneous equations

wl{f(sat)’g(sat)sh(sst)yF[f(sat)’(syt),h(sat)]} =G
W = Cg W3 = C3

to obtain a functional relation ®(c,,cs,¢3) = 0. Then the solution is ®(wy,ws,ws) = 0.
Obtain a solution of each of the following Cauchy problems.

(a) xu,+yu,,—l—zuz=nu;u=x+y+zonthesurfacex=t,y=s,z=st
() u, + xu, + xyu, = xyzu; u = x* + y*on thesurfacex =5,y =¢,z=0
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82 LINEAR SECOND-ORDER EQUATIONS

condition that M = L is that
Eyx) = A0  F®=Bx Go=cx P

Lhj=1,...,n

that is, the coefficients are identical. Clearly the foregoing is sufficient to
ensure that M = L. Conversely, suppose M = L. Then Mu = Lu holds
for every polynomial in the variables x;, ..., x,. Choose u = 1. Then
G(x) = C(x). Chooseu = x,. Then G = Cand Mu = Lu implies Fy(x) =
B,(x). In this manner the identity of the coefficients in M and L can be
established.

The operator L in Eq. (2-72) is called self-adjoint if L* = L. It is clear
from the foregoing that a necessary and sufficient condition for L to be self-
adjoint is that the equations

n 04,
IS B, i=1,...,n (2-79)
.7
hold on #. Accordingly every self-adjoint linear second-order operator has
the form
=330 (as )+ c (2-80)
== A Ox;,
If L is self-adjoint, then Green’s formula states that for each pair of functions
u, v with the continuity properties assumed above,
f (vLu — uLv) dr —f (z]’ly,) do - (2-81)
b(Z)
where
ou ov ) ,
P, A —U— i=1,...,n 2-82
) = z ”( ox, | ox (2-82)

In the case where the coefficients in the operator L are constants, it follows
from Eq. (2-79) that L is self-adjoint if, and only if, B, =0,i=1,...,m.
Some classical examples of self-adjoint operators when n = 3 appear in the
equations of Examples 2-14 to 2-16.

PROBLEMS e

TN
Sec.(2-2
(1_) a) Show that the general solution of the wave equation

N
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Ny PROBLEMS 83

Find the general solution of the inhomogeneous wave equation uy, — c*up, = x* + ——
xt — sin wt, w > 0 a constant.

/ /f J@Find the general solution of the equation of spherical waves

10w 1 0(, ou
2ot ror\ or '
Hint: Make the change of dependent variable v = ru.

3 Symbolic methods of obtaining particular solutions of Eq. (2-1) exist for the constant-
coefficient case. Let L be the linear operator in Eq. (2-3), where the coefficients are real
constants. Then L = P(D,,D,) is a polynomial in the operators D., D,. If f(x,y) is a
function, it is understood in the following that the symbolic equation

f(x,p)

PO.D) "

means ¢ is a function such that

P(Dq,Dy)[p(x,y)] = f(x,y)

| Derive each of the following symbolic equations. \

—_— O,
f“(a’) e®t"|P(D,,D,) = e****[P(a,b) provided the constants a, b are such that P(a,b) # 0. \

/ (b) sin (ax + by)/P(D,%;D,*) = sin{ax + by)/P(—a?,—b*) provided P(—a?,—b%) # 0. A \
| ’z
| E

! SImllar equation holds for cos (ax -+ by).

p

(c) icos (ax + by)/P(D,,D,) = Re [e!®+™ [P(ia,ib)] where i = v —1 and Re [1] means T
i “fhe real part of [ ],” provided a, b are real constants such that P(ia,ib) # 0. {

(d) sin (ax + by)/P(Dz,D,) = Im [ette=+®) [P(ia,ib)] where i = v ~1 and Im [1 means :
“the imaginary part of [],” provided a, b are as stated in c. f

(e) ‘e™ cos (ax + by)/P(D,,D,) = Re [em+i(+) [P(m + ia, ib)] provided m is a real !

constant and a, b are as stated in c.

(f) ,x "[(Dy + @)™ = (@™ — ma~‘™*" D, + [m(m + 1)]2!]a~(™+» D2 — - - -)x™® provided
#* 0 and n, m are posmve integers. A similar result holds for y"/(D + a)"‘

‘.’..\,M.va‘ e r———— [ e ——

4 Obtain the general solution.

@) r — 105 + 91 =0 &\@4‘x,+z,,,,=cosy+1
@) zZwt+z+x+y+1=1 '(d)r—xy
(&) 2y + 2z = €™ ;\@r—t—l—p—’rq—kx—ky—l-l—o

);%))2s+3t—q=6005(2x—3y)f305in(2x—3y) ‘
\Ds+ap+bq—l—abz=em+’”’ a, b, m, n constants

() r—4t=12x*+cosy + 4 @D r—t—3p+3g=xy+ et¥
k) r—2s+1t=4e* 4+ cos x

5 /if the operator L with constant coefficients is factorable as in Eq. (2-6), a particular

“solution of Eq. (2-1) may sometimes be obtained by the following procedure. With _
reference to Eq. (2-6) let L,z = v. Now obtain a particular solution v, of the first-order
linear equation L,v = G. In turn derive a particular solution z, of the first-order equation
L,z =v,. Then Lz, = Ly(Lyz,) = L,v, = G. Use this method to obtain a particular

e —
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solution of each of the following equations. Also find the general solution.

(@ r+ 55+ 6r=1log(y — 2x) @r—s—?_t-—(y—:l,)ci’
4x y
(C) r_4t—?—;

67Use simple integrations, reduction to an ordinary differential equation, etc., to obtain
\a solution involving two arbitrary functions.

o x
(@ t=x®+y8 f(bﬂzx,,-—-——l-a a = const
Y N ¥
© t—xq=x* (d) xr=c*p + x** ¢ = const
@yzm,-i—zx:cos(x—i—y)—ysin(x+y)
) Y+ 2yg =1

Q) (x =z —2,+2,=0 Euler-Poisson-Darboux equation
Hint: Let u = (x — y)z.

/ /1//% Show that the equation

ax*zge + 2bxyzyy + €y*2yy, + dxz, + eyz, + fz = G(x,))

where a, b, ¢, d, e, f are constants, is transformed into an equation with constant coefficients
under the transformation of independent variables & = log x, = log y.

uations.

(@ x —y*—2xp+2yg=0 b)) x*r—xys—xp=1
‘/(c) XYZoy — Y2y — 2x2;, + 2yzy — 22 =0

(@ x*r — 2xys — 3y*t + xp — 3yq = 2log xy + 4x
(® x*r — y't=xy
X*Zp + 2xyzyy + y?2y — nX2, —nyz, + Z=Xx + ) n = const # 0
p+yg—xys =z
(axD, + byD,)*z + 222 =0  a, b, A constants

@Use the method of Prob. 7 to obtain the general solution of each of the following
q

9 (a) Let L be the linear operator in Eq. (2-3). Define a functionally invariant pair of
Eq. (2-5) as done in the text for Eq. (2-12). Refer to the method in the text and show that
¥, @ is a functionally invariant pair of Eq. (2-5) if, and only if, v, @ satisfy the system of
partial differential equations

2[4y, + Bw.py + vup) + Cyup,] + 9(AQey + 2Bpyy + Coyy + Do, + Ep,) =0 (2)
Ly =0 3)

(b) Let.the coefficients in L be real constants. Then the characteristic equation (1) has
real-valued solutions if, and only if, A = B> — AC > 0. Assume A > 0. If 4 # 0, let
' rp be the distinct roots of 4r? + 2Br + C, and let ¢, =rix + y, @y =rox + y. If
A=0,let ¢, = x, ¢, = Cx — 2By. Then ¢,, @, are functionally independent solutions
of 1). If ¢ = ryx + y, show that (2) becomes

Dr, + FE

7 p=20 4

(Ary + By, + (Bry + O)y, +
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Let « = Ary + B, f = Br; + C, y = (Dr + E)/2. Then the general solution of (4) is
Y = e V*/%h(fx — ay). Lett = fx — oy, substitute this form of v into (3), and show that
h(t) must satisfy a first-order equation

ah’(t) + bh(t) =0 ()
and so

h(t) = ebtle

(c) Let the coefficients in L be real constants, A > 0,

AE? — 2BDE + CD* 4 4AF =0 (6)
Show that Eq. (2-5) has the general solution

7 = e(cm+dy)/2A[f(rlx + ) + glrex + »)]

¢ =CD — BE,d = AE — BD, r4, r, as described in b above.

10 With reference to Prob. 9a, a functionally independent pair of Eq. (2-5) when the
coefficients are not constants can often be constructed as follows. Factor (1) as

A((pm - mlqu)((pa: - m2(p1/) =0

and obtain particular solutions of the linear first-order equations ¢, — myp, = 0,1 =1, 2.
Now choose a simple but nontrivial solution of Ly = 0 such that Eq. (2) in Prob. 9a holds.
Obtain the general solution of each of the following equations.

@) e¥(r —p)=e*t—q : b P —xNr—t)+4xp +yg—2)=0
© xr+@p—x)s—yt=qg—p

\"'“——"_—__—.
Sec. %:im\ .

11 Obtain the general solution.

@) gy + 2ugy + Uy — 20y, — 2Uy, + U, = X COSX + Y COSY + ZCOS Z

) 2upy + gy + 2Up, — Uy — Uy, = X2+ Y2 + 2P

©)  Upp + 2upy + Uy — Uy, — 2u, —u=e€*+2cosy +z+ 2

(@) xPuyy + 2XyUzy + YPuyy + 2yzuy, + 2X2Ug, + z%u,, = In xyz

(e) uy = Augy + 2Buy, + Cuyy, A, B, C positive constants such that B2 — AC =0

Construct exponential-type solutions. Also find a particular solution if the equation
1S inhomogeneous.

@) zp— 2z +2z,—2=0 ZE) )Z:c:c + 4zyy + zyy + 2o + 2, = 3€¥ + Xy
/(/c;\z —2z;—z,=x + -‘ﬁm/z + Zyy = x + ye¥
\/{, 2 z y y zx vy §4

@xm + Uy =0 () soe + Uyy + U, =0

(@) Upy + Uy +k*u=0 k = const (h)  wuy + uyy = kuy k = const

(i) Cz(ux:c + uy'y) = Uyt ¢ = const

13 Find the equation which the constants /, m, n must satisfy if the function « defined by

B
u(x,y,t) = J fUx + my + bt, §) d§
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satisfies the two-dimensional wave equation in Example 2-3. Assume that it is legitimate
to differentiate within the integral sign.

14 Assume that it is legitimate to differentiate within the integral sign. Verify that the
function « defined by

u(x,y,z,t) = f f f(xsin&cosn + ysinésinn + zcos & + ct, &, m) d€ dn
-7 -7

(Whittaker’s solution) satisfies the three-dimensional wave equation

Uy = cz(u:c:c + Uyy + uzz)

15 Assume that it is legitimate to differentiate within the integral sign. Verify that the
function u defined by

27
u(x,y,z) = ( f(xcos & + ysin & + iz, &) d i=vV_1

v 0

satisfies Laplace’s equation in Example 2-5.

16 Show that Eq. (2-30) holds.

17 Let L be the linear operator (2-3) in which the coefficients may be variable. Let
Eq. (2-27) define a transformation of the independent variables where the functions have
continuous second derivatives. Carry out the calculation of the derivatives of z, substitute
into Eq. (2-1), and show that the transformed equation is

- 0Bz + 20(EMzgy + O()zgy + (LiE + DE, + EE,)z;
+ (Lyn + Dy + Enyz, + Fz =G
where Q(8), Q(§,7), and Q(n) are given in the text [following Eq. (2-28)] and
Lig = A@er + 2B@yy + Copy,
Hence show that the normal forms of Eq. (2-1) in the three types are
Zgy + 0zg + Pz, + vz = G'(§,n) hyperbolic
Zyy + 0zg + Pz, + vz = G'(§,m) parabolic
Zge + Zgy + 0z + Pz, + vz = G'(E,n) elliptic

where «, f, y are (in general) functions of &, 7.

18 (a) In the hyperbolic equation
Zyy+ Dz, + Ez, + Fz =G

suppose that dD/ox = 0E/dy holds. Then E dx + D dy is an exact differential. Choose
a function a(x,y) such that da = Edx + Ddy. Then E = 0a/dx, D = da/dy. The
equation now takes the form

Zoy + Qyzy + Gpzy + F2 =G
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Make the change of dependent variable z = ue=¢*¥) and show that the equation is trans-
formed into

Ugy + bu = Ge®

— F_ g — DE — 2~
b(x,y) = F — a,a, =F— -

In particular the transformation is possible whenever D = D(y), E = E(x).
(b) Consider the parabolic equation
Zew + Dz, + Ez, + Fz=G

Define the function a by

a(x,y) =fD(x, y) dx

y held fast. Make the change of dependent variable z = ue=%/% and show that the equation
is transformed into

Uyy + Eu, + bu = Ge®/?

b(x,y) = F — t{a,* — }a,, — $Ea,
(c) In the elliptic equation

Zpw + 2Zyy + Dz, + Ez, + Fz =G

suppose that 0D/dy = 0E/ox holds. Then D dx + E dy is an exact differential. Choose
a function a(x,y) such that da = Ddx + Edy. Then D = da/ox, E = aa/ dy. The
equation now takes the form

Zow + Zyy + Qp2p +ayzy + F2 =G

Make the change of dependent variable z = ue~%/2 and show that the equation is transformed
into

Uge + Uy, + bu = Gedl?

2

b(X,y) =F — i’azz - %av - %’aaca: - %aw

In particular the transformation is possible'_ whenever
D=D(x) E=E(@)

197 In the hyperbolic equation

Zyy + Dz, + Ez, + Fz =0

the functions # = 0D/0x + DE — F, k = 0E|/dy + DE — F are called invariants of the
differential equation. For transformations of the independent variables of the type
& = &(x), n = n(y), or a transformation of the dependent variable z = y(x,y)u, the differ-
ential equation is transformed into one of the same form with invariants

h, = uh k, = pk

Show that if either # = 0 or £k = 0, the general solution can be obtained by quadratures.
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Hint: Suppose h = 0. Then

322+D32+E32+F 0 82+D Eaz D

ox 0y ox dy T ox -a; Z) B_y + Dz

Let u = 0z/9dy + Dz and solve the first-order linear equation u, + Eu = G to obtain an
intermediate integral.

20 Obtain the general solution:
@ zy,+z,+z,+z=0 ) zoy +xyzz +yz=0
Z. zy 1 3z, 3z

© zzy — + = @z — 2 =0

x—y x—y x—y x—y x—y (x—yr

21 Let L= AD,*+ 2BD.,D, + CD,* 4+ DD, + ED, + F be a second-order linear
operator with real constant coefficients.

(a) Assume L is hyperbolic, 4 * 0. Show that the characteristics are the two families
of straight lines

E=y+mx=c¢ N=y+mx=c

where m;,,, are defined by Eq. (2-33) and A is defined by Eq. (2-26). Use the equations of
the characteristics to obtain a transformation of independent variables such that the equa-
tion Lz = G is transformed into the normal form

Zgy + dzg + pz, + fz = H(,n)

where d, p, f are constants. Thus in the special case where D = E = F = 0 show that the
general solution of the homogeneous equation Lz = 0 is z = f(y + mx) + g(y + myx).
If one of the coefficients D, E, F is different from zero, show that the change of dependent
variable z = e~ (@1+28)y further transforms the equation into

Ugy + Bu = H(&,n)eldnt+né)

where 8 = f — pd. Discuss fully the case when 4 = 0.

(b) Assume that L is parabolic, 4 # 0. Show that the characteristic curves are the straight
lines £ = Bx — Ay = C,. Choose as a second independent function 7 = x and show
directly that the equation Lz = G is transformed into the normal form

Zyy + dzg + pz, + fz = H(,m)

where d, p, f are constants. Thus in the special case where D = E = F = 0 show that the
general solution of the homogeneous equation Lz = 0is z = xf(Bx — Ay) + g(Bx — Ay).
If one of the coefficients D, E, F is different from zero, show that the change of dependent
variable z = ue™""/2 further transforms the equation into u,, + du; + fu = H(&,n)e™/2,
where f = f — $p® Discuss fully the case when 4 = 0.

(c) Assume L is elliptic, and show that this implies 4 # 0. Show that the characteristic
differential equations are

/7

—_— ,_. o
yo=-—m Yy =-m /

where m; = (—B + iV —A)/4, i = V —1, and m, denotes the complex conjugate of m;.
The general solutions of these are ¢(x,y) =y + mx =¢; and y(x,y) =y + mx = c,
[so that w(x,y) = p(x,y)]. Write ¢ = £ + i and determine the expressions for &(x,y),
n(x,y) (these are real-valued functions). Under the one-to-one transformation & = &(x,y),
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7 = n(x,y) show directly that the equation Lz = G is transformed into the normal form
Zget 2y, + dzg + pz, + fz = H(E)

Thus, in the special case where D = E = F = 0 show that the general solution of Lz = 0
is z = f(y + mx) + g(y + mx). If one of the coefficients D, E, F is different from zero,
show that the change of dependent variable z = ue—(45+?1)/2 further transforms the equation
into

Ugs + yy + Bu = H(&,n)eldstom /2
where f = f — $d* — ip*.

22 Classify each equation. Reduce to normal form and obtain the general solution.
@) 4z, — 824 + 4z, = 1 )4z, — 4z, + 52, =0

/(c) r_2s+t+a(P_q)+CZ:(X+2y)2
‘\(_@r_t_}-P_l_q‘}‘x‘*‘y"l‘l:/O,/

® xr—(x+y)s+yt=i—i;)(p—q)

a, ¢ nonzero constants
X2 + 2xys + yit = 4x?

K-\' 2. _ _i 28_2 — 2_8_25
1@xr yit=xy (h) Ox x ox - 2y*

(i) r — (2sinx)s — (cos?x)t — (cos x)g = 0
(sec*y)yr —t+ Qtany)g =0

xy(t —r) + (x*—yDs =py —gx — 2(x* — y?)
M yzoe — 2yzay + 2y = 2z + 6y

m a 2 2

23 Classify each of the following equations.

@) (Upe + Uy + Uyy) = Uy ¢ > 0 a real constant
ou 0%u o0%u

b)) —=k|— +— k > 0 a real constant
at axz ay2

© Ugy + Uyy + Upy = 0
(D Upy + Uyy — Uy = 0
€ upe+ Uy, +u, +Au=0 A a constant

(f) ua:a: _l_ uyly - uzz - utt = 0

Sec. 2-5

24 _In each of the following Cauchy problems determine whether (i) there exists a unique
solution, (ii) there exist infinitely many distinct solutions, (iii) no solution exists. If i,

find the solution. =7
RN . S AEALLTRL
@Y Uy — Uy = 0; u(x,0) = b, b a constant, u,(x,0) = sin x = e

() ug — uy = 0; u(x,0) = sin x, u(x,0) = b, b a constant
© Uy —uy=0,u=0,u,=10nC, Cistheliner=x
@D uy—uy=0,u=0,u,=xo0nC, Cisthelinet = x
(e) wuy — 10uy + 9uyy = 0; u(x,0) = x2, uy(x,0) =1

) z,,=0;z=cosx,zz=10onC, Cistheline y = x
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(8 zm = 0;2(x,0) =1, z,(x,0) = x*

(h) z, =xy;z=cosx,z,=x*on C, Cistheline y = x
() zy+zz=x;z=x%2,=00nC, Cistheliney =x
() ze = 0; 2(x,0) = x, z,(x,0) = 1

& =z, —4z,, = 16y + 4e7¥; z(x,0) = —1, z,(x,0) = 4x + 1
D zy — 2z + zyy = 4€¥;.2(x,0) = x2, z,(x,0) = §

(m) z,, = x®+ y?; z(0,y) = 1, z,(0,y) = 0

25 Solve each of the following Cauchy problems.
@) XPuyy — 2xyUzy — 3Y%uy, = 05 u(x,1) = x, u(x,1) =1

M) Yoo + (X + Pizy + xttyy, = xy; u(0,) = y, u(0,y) =1,y >0
2

© 2 — 2y — = 05 1) = 3, 1) =2

d) wug + (2cos x)uy, — (sin? x)u,, — (sin x)u, = 0; u = x2, u, = 1, on C, C is the curve
y =sinx

e xPuy — 2XUzy + Uyy + Uy = 0; u(l,y) = yZ, ux(l,)’) = e¥

Sec. 2-7

26 Let

L A82 2B > Ca2 Da+Ea+F
DR T R i Ml

where the coefficients are functions with continuous second derivatives in a region # of
the xy plane.

(a) Write out in full the expression for the adjoint‘L* of L.

(b) Show from Eq. (2-75) that for any pair of functions «, v with continuous second deriva-
tives in Z the identity

0 oP
vLu——uL*v=-—Q - =
ox dy

holds, where

0= 4 ou ov 4B ou ov + (b dA 0B
= Ua—x ua—x Ua—y ua—y 5; a—yuv

P_B ov du Lc ov ou n oB n oC E
= —_—— ) — —_— ) — —_ —_
“ox  Uox “&% "% ox | 3y uo

(c) Let I' be a simple closed curve lying in %, %, the region enclosed by I'.  Use Green’s
formula (2-77) in the case n = 2 and show that

f (vLu — uL*v) dx dy zf Pdx + Qdy
R, r

the line integral being taken in the positive sense around I'.

(d) Show directly from the expression for the adjoint of L derived in a that the adjoint of
the adjoint of L is L: L** = L.
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(e) Show that L is self-adjoint if, and only if, the equations

0A oB 0B oC
ox dy Ox dy

hold in £. Thus every second-order self-adjoint operator, in the case n = 2, has the form

0 ou ou 0 du ou
Lu=—|A— + B +—|B—+C—]) + Fu

ox\ ox 5); dy\ ox dy
(f) A special case is the laplacian operator
02 0®
=3 W

Use Green’s formula derived in ¢ to obtain the relation

ou ov
f (v Vu — u V?v) dx dy zf (v— — u—) ds
» r on on
1

where du/odn denotes the directional derivative of « in the direction of the exterior normal
non I'. The line integral is taken in the positive sense around I'.  This relation is called
the symmetric form of Green’s theorem in the plane.



L\)) rmot —kkt &Qnerz‘,g» sd(«lt}ﬁM dé. ‘kl\Q‘ &hhamoﬂ(yg% ..............................................

g quxu Pa e S S VIR TR SV T o GanS'fan(l
................................................... M..S...gg.x‘.ce) +5- Cxre ). A.__. x+ X’;J, ,m.f

A2 Ob¥aia... ‘(TJ\Q_ 88}%(4/0 ;OLMJUQV\ ........... ‘ -~ S e
@k ) Y\,,_....1.°.g...+.9.{:..:_JJ......h...................,..,‘ ............................................. OO NSO
................................................ A A O v +)) ,:'. %{ 9)(4.3) ) I
(}) .......... 4_..11.).(..9..4_..%.9.2 ..... R o S
................................................................................... 2,.&(_,(_43).., Q.,g. +.L . L
() Bt %X A I AN, i) . T S — -
-X L o
........................................................... : iﬁ_;po)_tgapg)_.%._;gj
(A) ....... Oy S SN T E
.................................................................................. z 9C 3) 9(:9 Zié_ Y R W—
kf),ijj*%ﬁe)<+}9~~ ........................ S e
............................................................................... 2 .._.....g_q.x) 053 e gqx)sm\j o= .. / 2
o) Y_.,..E-....,t...(z...‘...a,.,....(....)(..nfa...\ﬂ..w(....\....f.‘_...o .......... s L A S
................................................................................... —_:Q,E_(x+39>.\. %(Xm)’) L;c‘_‘.x_, L‘j e 25, B S —
@}) 25 +3E. e £-€85(2L%-3) ~30- $m¢2x--}j) ------
B WP E'(x) —_— e&Lg(EY»’Lj) e ‘} %(2’}( '}j) oo 5’4(2;(—5}3) ...............................
@\)5 _\.4.(7 *..\:)2 *bC\bl ....... ,@m“‘\3 .......... ........ qy.w ..... M~,~-V~\ ...... m}hnt:_‘ ................... _— |

A=ran q\p ]
........................................................... @ ’}:'(‘5)+ qmm e \Xf’(‘”‘?"‘l‘ﬂj)




oY =
Sl gl Lin " |
............................. .(.0.....»(_.4.{._—....,3...}29(.14-, Ceb M)t 7 S,
&= {ltzx»fj)*tﬁ(x)‘“ﬁ) +~>< -fzx A Cffl
.............................. ())Y\_,..,sp-\-} 'x\_g..f..en_y oo »
.............................. (K) Yo 2S. .‘{-t 4 g 2 VR A, N ST S : S
:&(x{.j),(..}gs(x#j)—@%-e S o 5 S R
.............................. 5 Obtain..a. (’a( £-exmdag Sobutvion. o{ ach. ot Fhe- Qo»lluww%
.............................. C{Mﬁmj 0. fm‘{ H\& ﬂfﬂﬁm.fa(«.hma
.............................. (ﬁvr*"ss"“ét Loﬁ(j 2‘)().,‘ B L S T T S S
.............................. e B E(ywu)*%(\ﬁ..‘gx).f?.x?— Gp{.\ﬂ +%}2«-{?—X¢}xj+i)hﬁ(y.py
.............................. () o o 2te QA - ) 5‘
.............................. ()l A ‘;’i S T e
“E=fly=a) mcywvwlogz},«» Blogx;
.............................. é’ Ok S,M//c )\1{' / 004.5/ M*cﬁm -(:g) A dfe,lu{(&(
............................... Ollf'fffeﬁkf“l e/u M/e%&.‘/ {‘)ob.fq‘wq5géﬂﬁm v} Va,V')VlG
............................... t’(MO ﬁfb“h’"\’f‘j‘ vao‘hms, el e T
.............................. Ka\) tcx} . }1
................ “2 Q—CX) +\HQ‘)+ ..___‘é.. e "}.io'"
.............................. \b) %xj ; ”a?...g\w | N c,cms’fmrk~
B 2= ?{w) +-ﬁ(‘3)+ )?683 A AR
.- i e ; e e
.................................. (c).é_.xzcz
TSSO SR e Pt Q aﬁ;@) ,’53122“74!; ..... ‘\'
E Py ;'% ........... . C_.“C.mS‘l" e
Xyt +1§)+ﬁ&l ............. ﬁw .i),.‘jaﬂxx ......................................
RSO SIS SORE R ,.;‘.,.. ol m. ..............................................




(&) 32‘)( Cﬂ$€)(+]/)"j$m(x+)j I :
A o g rf(\’)ﬂﬁ. ..353’32 * -SM(K-FJ)
(5)7?6+}y¢2 .............................................................

........................................................................ 2= gv),i_ﬁ_c_"l.)r ,Lo’.)j‘rl,

(rR t(x_.ﬂ) %Kj ~%x +%j~o - Elepe. PQ%SSMP‘DA{M% ...... G’\«/ﬁm

........ Y S S S %r,

. obw=rtxe=y) = w0 +9C‘ﬂ)

.................................................................................................. T
£--ObXmin. At htu(ui Solution.. otf? ud\ @{. ..... + MQ&MMOWM ..............................
(5‘) x e .‘, ,L« e ?‘KF _1_2»5{}( o WA ot ! U“; ....... fodonny . . .,;

............ T — ,,.Qucj),;-x’ ¢ i

rereeeg e e.....‘.‘ ..................... g g .......r....‘{.;.;"..4.2..,.'...r.-..:.;p...’.. ....... ey ? sy ; '\.'""f"'.‘“"‘." ”‘.\ % A\_m"#\ ...............
d)) ......... %r ..... X jg_xP,} ..........................................................................................................
.............................................................. ‘p’i‘:‘\&koﬂ% * .S'., (-j)

€)- /)(59 \}' mzx e ,...,f)_?;f- ‘ . . *
?’j .......... o ; ’?Qﬁ? 4{.(&,9 : acjzﬂ i szt sssansgtans g s saantane s asenaees
(ﬂ\) 7()(__.2_7(33 %jt‘f“X{p 3y2 Z(avij.{..q..;( ....................................................
(e)f)(r j‘t ...... B i ..

e S oo oot g e L.%.f,.-_ p&@‘ oY Fer —Q-L‘Xj) _;'. ‘9(3 L%;) ...........................................................
&)P) f)(‘ Zxx*,z.xj ij ‘*{"jz%”\) \qxz, nj% "("h?.’ X‘f"f} ﬂ“QﬂS"-"FO ............................
........................... ; .,3,.,,...,7‘ ,:~\.‘:\‘, :

(@ p+99~xY5=2 A
.............................................................................. .;..,. Xﬁbp) .h...}%c‘pg)

1’5"




Y 2

Selglilin

.............................. o) e (,\,,p),* @ ({ ;/) \,

........................................................................ P g ex...el)rya & ¢e)

............................. t-b)-- (y ,.9(,)(" ﬁ)(—lf(xlo.fnp?f—ﬁ/)m—ﬂ‘“;
.............................. (G- e Y2, Js =y w?,-f’ e —
................................................................................................. 'Zﬁ‘g(**"ﬁ) e 9( g
— B4 i . e
.............................. 11 thva o {}xe. deney’aﬂ ;,,Lwh o - : G ) ’
.............................. @) q“.‘. ;:_ux "“ujﬂ - ll\jz W -\n My 52 x w.{,x .(.,7 £a5 j + z COER
.............................. el Xf( %Yy M?.“a (x““ﬂ/ X‘f‘%) +2- SMX—-JCCOS)H' ZSM] m’(@ +25M F— 2(.4_( 2
.............................. U,} 2(5()( ‘(-V\+2L| L,y...., ,.)(1..7"'_(_ 7¢L q. S :
.............................. e &:(7"—?, X""‘E) 4Gy L’X‘\*‘Z‘j y2 ’é) - ')(‘5/21’ \j//,/l. S
............................... ('C)"M)V( .f....u;(..j...,t. l;j__ué%..zg‘ ke e _(_z,cggj oo g.+ z,
.......................................... U\":é—f 5 &y .‘) ‘,‘_%) — 80(,.‘% s’_‘q._) .(..e/s...c,,;j S

.............................. u} 9(%(_‘.1;(3\)‘ .{.7 - +2j% M +2X%ﬁt+l \A —ln Xy?;
.............................. (@)12 A +2[50\ ALYy ﬂ}@ L. Posi bive--tsnstonts. ,(w,h ‘H/ut B'l'-ACNO..

............................... - f()f-\-rjt) ».zr-t)-f‘g()(*rt‘;‘ﬁ Fﬁ)

17. Cm\S«\p(wo\‘ cx(bﬂeahaﬂfkdpa Sn\udnms A\So #;ml o P«m mlar

............................... S0l wh o ({' {}1& 7““’00“ e W\hOmaﬂemou,;........................

............................... (0\) Zxx R, T Z)(y + %’ o D — N Wee— — R
.................................................................................................................... e k‘>ﬂ ‘
S A BN
U ﬁ\")%)rx*'q%(*”% 9y - '%x.(.% = ‘AP”(-L K i S —
.............................. ?=?X?L,‘ff\x "4‘4\") * ﬁh“"‘”‘"“ b} ; e




2 ol 1ia
.................... :Z.IQXPL L) ey ( h I R
(,UZXX’*. 7 o hm. X*’{""je — u ..... SRR S S

= ex{’[ h(”"'(j)}-\- _L9L+ (j..-z)f 4:-,/: N

S A ST PSS VR

(A A
.................... X IS | N 25 o [ j)]j(\f_T
(’)C) U‘XX 4o M‘j‘j + \.‘(‘2 D W - e S SR
........................................................................ ugcxp[d%‘f.@ji( ,(_‘..FZ]
)Mty - Ko oz o '. R
@ o™ jj .............................. =€ xf[h;(i-g(w_‘.]() ....... y ] ................................
dv ....... W WA y,}(q}gzum ...................................................................................................................
..... XX \j e @('OE 9(9(_\_,'@ _9 . ,_L(,(.‘.@ )J
()€ -y = Mg c,ans....ﬁ ....... S ..................................
................................ XX)V\__QX{;[ st APy -}_- c (,,Z~+ p’) {J

.................................................................................................................................................................

13 Frvad.£he. Cfuaﬁm inchich- an aowéhm(:; «4 pmJ . w\usfr S«d‘ls{-'

Yé—tkc 'GV\\AG('{M we-clefined. A MY ) = f ,}(ﬁx.rmﬁ +hty })‘} ........................................
ﬁqé;;f, 25 {-1}( ‘two—-p(fwenilmw/ waxe.. Cfu:i,hdw Loa.... EXaW/@----2~'~3 ...... -
Assume-- {«hd’ kS %[@.ma,ée - ,,l;ffgmnﬁal;w_.. ...... W\.\J\J(\,\.\ ............................................
wdg{,a)rﬁ} ....... s ‘)&\/{ .............. S

........... 4e+ml-.:_,ntc_2' ...... evvensersn s ssssessssesosgessersssnessessss s e ere e
ch‘znif ....................................................................................................................................................................................
2. C(q5$, \5 each. Cﬂwkm Re&wce "ZD v\@(mo& %:mm Wy}. gh—h‘m .........................................
'E\\Q %QV\Q{*J" 50\\&*\05‘\ .......................................................................................................................................................................................
(a\)ﬁcz\ -l "t""l“%’-‘ O R :

....................... )‘xﬁ\aj(?g\(a\)ght, Ee g(x*ﬁ’) e xg(x,pﬁ)_l. %._

.........................‘............‘................................................. ............................................................

.............




o Y

oLyl lia - " ; |

............................. (&) y~..qs++:+a (P«})-(—C% C)(.‘_.z)ﬁ.........q}.(.‘.....mw @(o......(‘gy};hn:('g.....

............................. 17 qr(q.bah 4 Ef&}(fo[/\ (;(1.2,5)}; ¢ +3)+@XF[’¥(X+1 ))] 5%})4. _(_,xﬂw.}....,&}._
.............................. (d) r«t.g«pf»z 1—9&4-3;4,1 20
.............................. &) 1r+,z;(jg4:.j.b 4—9{., -
....................................................................... {)q(&\,ohgjz_.g(_é,){.ag 93¢ ,2) ..\..Q._p.{.,
.............................. (‘f) A (M-j)& .{.j{,_%%?.(?,?,) :

.............................. 8) e r,_.j .(: %:j
..................................................... ﬂ(ﬂsbcgmwhcﬂ\la AYF0.4:78=. E(l'j)..}.,x.g (%} d q(j LG»:*)X
................................................. N ~° % L @i.u.‘.
.............................. d‘) ( = ’aj,{ - ‘

.............................. u) . ( 6 ’*")5 ( w sx) {_ (Cc&x)g.. e
S » Hy{)«bﬂ;‘— 4 2= ,l' (&-wj-» Co&x)»-}. %(7“"‘5“' u;x)
s U) “ﬂ(\gcgy)r,..—{; e ( ngmy)? =.0. i
.............................. (K)- W)L SR EVLR oy IR {’31 83 BT N 4 etV
.................................................. ije{bal‘c W)\C{Q\lﬁr e ,.t.j?.—r__gj E 'f*C)Z"('“j )+ 9( X) ___xj
.............................. L{) \j %O( Zn j_{..%yj,_ EX ..(..63 o

............................... @) 2 {4 ) 3] ,.L.....(..{.._.g{.,. Ay A mq[ Pa; f.\;@.:.,.
................................ ,C"'MW“ b-s
.................................................. H jftrbo(x(. W‘\WQ\‘CXX'—F"’\) = "?(' ')( a‘*\\)—:;% (—7( 1.“9
.............................. 23 cCa;};fy £4.Ch ‘;d,ﬂw.&ﬂawm.@ ; ‘w\,‘g’

e r——t



(a) C{ up(b ij *LA-’J.’L) LL P §~ A reaﬂc‘ms’mnf ........... v .;...;.;é..: ...............................
................................................................................................................ H _-jferba {, SO I

....................................................................................................................................................................................................................
.

(b) ....... n;-a-z-‘_-:, ...... ’ij—

..................................................................................................................................................

........................................................................................................................................................

(€)- M- “jj .Q.\{?:% +/)X ITEY. . | ........ A . a....f.eMS ‘mn‘t ................ S
......................................................................................... 5,(14 pé, c.:,,

ireuriieatesernireragitenaiasanrorannainseeneietirraeperasnaserasiionsioeeerarenneensrienncsarierannseransinnitenienninegenee
................................................
N

-V, - Tn.tadh. ‘r& ‘\)5\9. %wamg ﬁawc\\j ?nb&ms a{efve( ing..
rOnRAhep-()-Aheve-exists...a. WAT§AL- Solukton,. (AL).. {hem PISE- Fmil'CL:j ..............................

Mv\?---—sabu(ﬂms; Eiit)-no-Sobwkion--@xssds . T iy ﬁvzﬂ(--*l’*ﬁ--‘--!olwhm -------
] Km)u\ bl m G u(x/o) oo c,nmat-, Y- Ly 0)= SN R |
M'n'j?b\ﬁ S bkt ety e e ST WER)- Sm{9,~ SENINE ST W . .

(&) °,U-°)u»~icmC C. ss»the ,QMeJ: x
15 ) b aibibarny chwsiee-oiff-fuachiv -5 {gc:&) SR N W | —

(,”U‘}( ..... - .;,\{.Eme 3 =0, U X..om. C LA H\& WAL =
F5-feg)iv-on HIYAMY twi - o\;—-}xzfmc’ﬂm 38 ) ,S-Ca) = ;‘.@ \&:‘.f}(x—.{) {:(o) ...............................

................................................................................

.....................................................................................
t e




Unigue. Sobadyom 5w h 2ol _\_4: t/g e — =

d\”)zj)g,?;, L8 X sz.’] oM. C L8 "‘“AQ ﬂme S —

- > 4 ..-.\a e Q.ch

..... @,\) ey jg pzy 527 CBEX,,. Zg—x cm.....C ....C,...,g.....*.hg‘.....(m.e..:y. P
e = NS - v }.x‘b‘, .L.ﬁ i K \A/Lfr g

.............................. () :3; 1/,& =Ko 2_..;(, % =o..00.C,.C.. ;} he. dine Y=

.............................. ““”7&(‘. ;ol,.,,ﬁqu._ ;e'_‘t..l.{. 3~, + E (1 x)

............................. U) EX 2Oy 2(9(0) BBy = (’){ a) ..'1,
.............................. T 515)1 acvityary fwice -diff. (mchm $-4- ,jl(é)«) B ) - /n)

............................... - (K)- zxj 4{- iy = léj +£/.Qj,2-6>(/9) ,....]} % (Xe):4w+; .
............................... Uﬁl*,“ﬁ Solwﬁd*l) 2wy +s9/2_ 2.:4/) e c,j e

B R T L L L R R T O P P P PPy PP PP P PP P PP PP PELTTTPeS T T TP R P P PP P PR PP PP PP PP PP

ettt (m)zw‘:xzi-y’z,?:(a;j)c'!/%k(é/j)mﬂ - — e
............................... V\““’“Q-SQ*\A‘*\WJ%"*"/f’)_‘fxz"z/z_"t}‘ : e .
.............................. 255 Ve..each- o{» Ehe. G.\ﬂow m.g,....quc\ad Pm blems.
.............................. (,ﬁ> vy "“Xx ~1xy \&‘j '}) u\5j—-a) M(»}) - Ky j( ’K)])wi
................................................................................................................. A "7‘“&""3‘“\

............................... ) M, u . {x,(.ﬂ) \&‘J-"X\% Xj 35 u{oﬁ} \Q L}{o)j)..., \j>b

L&} 2 Vg 29 \A» ~Ymer: uﬁx,t) = —-"'-1 Y, () =R
.......................................................................... U\_—x_/z_‘.,z\.o_q__,




(_d) u ot Cl{_gg)()u‘ . (g, x)q ........ C;,nyum())\}\:;cb,\ygion ........ WL‘JHM
X J

C ........ é'""lf ...... “H’I( ........ NN 3gﬂ..

(e)- pbl _'z.zf..l..é\y,busj*,\aj =0.4-4ehY) = j > €45-3)- ,.@ .............................

................................................... U\“('(Ug ')(-1-‘_3““)() e 'Zéch"‘j) 'f‘)Z(é"‘) Xe




144 ELLIPTIC DIFFERENTIAL EQUATIONS

where
a " 27
f f Y ,0)J (& nxt’[a) cos nb dr’ db’
_ ,JoJo
Ame =2 7a®J? 41 (E i)
a [ 2r
f f r'f(l”,@')J,,(S,,kr’/a) sin n6’ dr’ db’
Yoo
B =2 7% 1 (E )
n=12,...; k=1,2,...
and
a ("t 2r
f f r’f(”’,e)-]o(fozcr//a) dr’ db’
4. —Jodo
v matJ2(Eox)
PROBLEMS
Sec. 3-2

A1 Determine conditions under which the following functions are harmonic in three
dimensions. ' '

A u=ax®+ by? + cz? a, b, ¢, d constants
() u=flax + by +cz+d) a, b, ¢, d constants
(©) u=a;xX®+ ayy® + az® + 2a;,xy + 2a15xz + 2a53)z

where the a,; are constants.

(d) u = Aeoztbv+ez A, a, b, ¢ constants

(¢) u = Asinax cosh by + B cos ax sinh by

2 (a) Let ¢ be a harmonic function, not identically a constant. When is u = f(p) a
harmonic function?

(b) Let @, v be harmonic functions. When is 4 = @y harmonic? Interpret the condition
geometrically. '

3 A harmonic function in three-dimensional space which depends only on the distance
from a fixed point is called a purely radially dependent potential. Letr = (x* + y* 4 z2)}%,
Determine all twice differentiable functions f such that u = f(r) is a potential. Do this
also in two dimensions.

4 Let u bea harmonic function in a region. Show that any derivative of u is also harmonic
in the region (assume the property that a harmonic function has derivatives of a ~rders

in the region).

@ Let i = V' —1. It is known that each function S of the complex variable z = x + iy,

x, y real variables, can be written

f(2) = ulx,y) + iv(x,y)

where u, v are real-valued functions. It is shown in the theory of functions of a complex
variable that if f'is an analytic function of z, then u and v are harmonic functions. For
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each of the following cases find the functions u, v and verify that they are harmonic.

A f@ =2z
b)) f(2)=4z2 -2z +1

o) flo)=¢

(d) f(z) = cos z, where cos z = erre”

2
1
/(e) f(Z)=; z;ﬁO

6 A linear transformation
x = ayé + ap Y = ané + axn

is called an orthogonal transformation if the coefficients (assumed real) satisfy
an® + ax® = ap® + ax® =1 Q11851 + Q12853 = 0

In this case the transformation represents a rotation of axes. Let u(x,y) be a twice differ-
entiable function of the variables x, y, and let v(§,m) = u[x(&,1),y(§,m)]. Show that

Veg T Vyy = Uaa + Uy

(b) Let the xy coordinate system be related to the coordinate system by the translation

X*=£&+a,y=mn+b. Letu, vbeasdescribed ina. Show that the same relation holds.
It follows (by combining the results of a and b) that the laplacian is invariant under the
group of rigid motions in the plane; that is, u is a scalar invariant. In particular, if  is
a harmonic function, so is v.

7 Let u, v be harmonic functions in a region #. Let S; be a closed surface such that
(1) S8, and its interior lie within £, (2) the divergence theorem is applicable to S; and the
region bounded by S;. If n is the outward normal on S;, show that

8 (a) Let Z be the set of all points in the plane such that x* + y* < 1. Letu = x® —3xy~.
Find the maximum and minimum values of 4 on Z.

(b) Let C be the circle x* + y* = a* about the origin. Verify Gauss’ mean-value theorem
in the plane for the function « of part a.

9 Let Z be a bounded region with boundary S. Let u be harmonic in £, continuous on
2, and such that 4 > 0 on S. Prove that ¥ > 0 in £.

10 Let 4, v, w be harmonic in %, continuous on %, and such that v(Q) < u(Q) < w(Q)
holds for all points Q on S. Prove that this inequality must hold everywhere in Z.

11 Let u be harmonic in a region # of xyz space. Let P be a point in %, S, a sphere of
radius r, with P as center such that S, and its interior lie within #. Prove the average-

value property

1
u(P) = -I;f udr

%ﬂ
where V' = 4xr,%/3 is the volume of the spherical region %, whose boundary is S, and
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Ry =R, + Sp. Hint: Multiply both sides of Eq. (3-12) by 4nr? dr and integrate from
r=0tor=r,.

12 (a) Let Z be a region in space with boundary .S such that the divergence theorem

~

J V-Adr=fA'ndS
% S

is applicable to # = # + S. Set A = v Vu, and obtain the equation

ou
vaud'r +f Vu-Vvdr =fv'a—d5
# % s

where n is the exterior normal on S (note that this assumes # has continuous second

derivatives on %, v has continuous first derivatives on %). If u has continuous second
derivatives on %, show that

ou
f uludr —f—f |Vu|* dr =f u— ds
2 % s "

(b) Prove that if u is harmonic in # and has continuous second derivatives on % and
ou/on = 0 on S, then u is constant on Z.

(c) Prove that any pair of solutions of the Neumann problem Au = f in %, ou/on =g
on § having continuous second derivatives on %, differ by a constant.

13 Prove that there is at most one solution having continuous second derivatives on 17
of the mixed problem Au = fin #, du/on 4+ hu = g on S, where 4 is a continuous non-
negative function, not identically zero, on S. '

14 (a) Derive Eq. (3-17).

(b) Derive Eq. (3-19).

(c) State and give a complete proof of the maximum-minimum principle for plane harmonic
functions.

(d) Let Z be a region in the plane, and let u be harmonic in #. Let P be a point in # and
C a circle of radius r, such that C, and its interior, lies within #. Prove that

1
u(P) = — 2f udx dy
*Jaz

where %, is the circular disk bounded by C.

15 (a) Let S be a simple closed surface, Z the unbounded region exterior to S. Let u be
harmonic in £, continuous on £ + S, and vanishing uniformly at infinity. Suppose u is
not identically zero and M = max |u(P)| for P on S. Prove that [u(P)| < M holds in Z.

(b) Suppose that u is harmonic everywhere and vanishes uniformly at infinity. Prove
that » must be identically zero. Hints: If u = 0 on S, then u is identically zero everywhere
(see proof of Theorem 3-6). Hence assume M # 0. Let P be a point of Z. Choose a
sphei‘e S, of radius r about the origin sufficiently large such that (1) P lies within §,, (2)
|u(@)| < MJ2 holds for all points Q on and outside S,. What does the maximum-
minimum principle imply for the region bounded by S and S,? Inblet e > 0, and choose
a sphere S, about 0 sufficiently large such that (1) P lies within S,, and (2) |u(Q)| < €
holds for all points Q on and outside S,.
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Sec. 3-3
b/\ T
. 16 Laplace’s equation in rectangular coordinates in two dimensions is um + Uy = 0.

=ASsume a separable solution ¥ = X(x) Y(y). Substitute into the differential equatlon and
follow the method of the text used for the polar-coordinate case to show that

where A is a separation constant (real or complex), and

X d*X , d*Y
— dx? Y= dy?

Let ,u = \/ I and show that separable solutions must be of the form
U= (ax + b)(cy +d)+ (Ae”“” + Be““’)(Ce“" + DeH)

__,___..—«—-«17 (a)x“A thin rectangular_homogeneous thermally conducting plate lies in the xy plane
and 5’(‘:cup1es the rectangle'0 < x < a,\0 < y < b. The faces of the plate are insulated,
and no internal sources or Sifiks are present.” “The edge y = 0 is held at 100°, while the
remaining edges are held at 0° Find the steady temperature u(x,y) in the plate.

'/l(g):fmd u(x,y) if the edge y = O is held at temperature T sin (wx/a) 0<x<a,where T
- is a constant.
(c) Find u(x,y) if the edge y = 0 is held at temperature Tx(x — a), where T is a constant.
Hint: Since no heat sources are present in the plate, the steady-state temperature  must
satisfy

Au=0 0<x<a;0<y<b
The boundary conditions in a are

u(0,y) = u(a,y) = 0 0<y<b u(x,b) =0 0<x<a
u(x,0) = 100 0<x<a

As in Prob. 16, assume a separable solution # = XY of Laplace’s equation in rectangular
coordinates, and obtain the ordinary differential equations

X" +2X=0 Y"— 1Y =0

Now the boundary conditions u(0,y) = u(a,y) = 0,0 < y < b, are satisfied by the separable
solution if the factor X satisfies

X0) = X =0

Show that this leads to the values 4, = n®*z*/a®,n = 1,2, .. ., as the only possible values for
the separation constant. The corresponding eigenfunctions are X, = sin (nnx/a), n =
1,2,.... Thus the corresponding solutions for Y are

nwy

Ya(y) = ca cosh — + d, sinh —

The separable solution u, = X.(x) Y,(y) will satisfy the boundary condition u.(x,b) = 0 if

nmb nwb
¢,cosh— + d,sinh— =0
a a
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Thus
nwy  cosh (nmb/a) sinh (nmy/a)
Ya(y) = e cosh 27 — sinh (#mbja)
b —
ot =D

The separable solutions

nmx nm(b —
Un(x,y) = sin—Z- sinhﬂ(Ty) n=12,...

satisfy all the boundary conditions save one. Consider the superposition

© X nm(b —
u(x,y) = z B, sin maT sinh W( »)

n=1

In order to satisfy the condition along y = 0 it is necessary that

© nmb nmwx
ansinh—a—sin7=100 0<x<a

n=1
This will be so if the coefficients

a nwx
lOOSin—a—dx n=12,...

Bn = sinh (umbja) fo

18 Find the steady temperature in the plate of Prob. 17 if the edge x = a is held at
temperature 100° while the remaining edges are held at 0°.

19 Derive the steady temperature in the plate of Prob. 17 if the temperature is held at T,
along the edge y = 0, at T, along the edge x = a, at T;along the edge y = b, and at T,
along the edge x = 0, where T,, T3, T3, T, are constants.

20 Let the prescribed conditions on the edges of the plate in Prob. 17 be as follows:

X
u(x,0) = T, sin 22 ux,b)=0;0<x<a

u@0,) = Tpy(b — )  ufay) =0;0<y<5b

where T, and T are constants. Derive the expression for the temperature in the plate.
Hint: Construct the superposition u = v 4 w where v and w are harmonic functions in the
rectangle which satisfy the boundary conditions

. mx
v(x,0) = T, sin 52 v(x,b) =0

v(0,y) =0 va,y) =0
w(x,0) =0 w(x,b) = 0

WO =Tepb—))  wlay) =0 )

e
\_ 2} (a) A thin homogeneous plate occupies the region
= ~

0<x<a y=0
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in the xy plane There are no heat sources in the plate, and the faces are insulated. The
temperature is held at O°/along the edges x = 0, x = a, while u = (=T along the edge y = 0

(T constant). Also lim u(x,y) =0 umforrnly for 0 < < x < a. Derive the series repre-
y-»oo
sentation for the temperature in the plate. Obtain a closed-form expression for the

temperature with the aid of the equatlon

® sin [(2k — 1)x]e— 21w tan—1 (sin x/smh ¥)
z 2k —1 o 2

k=1

s

(b) Derive the series expression for the temperature in the plate described in a if instead
the boundary condition along the edge x = a is

ou
a—x-i—hu=0

where 4 is a positive constant, the remaining boundary conditions being the same.

22 In the problem of the torsion of a beam in the theory of elasticity there occurs the
stress function'¥'. If the stress function is known, the tangential stresses and the torsion
moment can be determined. It is shown in the theory that if the axis of the beam coincides
with the z axis and the beam is of uniform cross section, then V" must satisfy Poisson’s
equation AY' = —2 in #, where Z is the generating cross section in the xy plane, and the
boundary condition ¥" = 0 on C, where C is the simple closed curve which bounds Z.
Show that if the beam has the rectangular cross section 0 < x < a, 0 < y < b, the stress
function is

¥(x,y) = ax — x*
8a3 & sin [(2k — 1)nwx/a](sinh [(2k — 1)=(b — y)/a] + sinh [(2k — Dmy/al
- E 2k — 1) { sinh [(2k — 1)mb/a] }

Hint: Recall the discussion in Sec. 3-1. The function v(x,y) = ax — x* satisfies Av = —2
in Z and is zero along x = 0 and along x = a. Now construct a function w which is
harmonic in £ and such that

w(0,y) = w(a,y) =0 0<y<b

w(x,0) = w(x,b) = x? — ax 0<x<a

23 Solve the boundary-value problem

Au=cx+dy inZ u=0  on the boundary

where ¢ and 4 are constants and £ denotes the interior of the rectangle 0 < x < qa,
0<yc=<hb.

24 In rectangular coordinates in three dimensions Laplace’s equation is

Ly = Ugg + Uyy + U,

Assume a separable solution 4 = X(x)Y(y)Z(z). Obtain

XI/ Y/I Z//
X + Y "z
Argue as before that

XII \ Y/I Zl/
x~ *=\v*z



150 ELLIPTIC DIFFERENTIAL EQUATIONS

where o is a separation constant. Further

_=a2__=_ﬁ2

Y Z

Hence the factors must satisfy

X 4+ o*X=0 Y+ 02Y=0 Z'—(*+pHZ=0

Accordingly separable solutions are of the form

u = etiavptipypotyz

where o # 0, # # 0, and y* = o2 4+ f% If « = 0, f # 0, separable solutions are
u=(ax + b)ex Bvg+p=

If « = B = 0, separable solutions are

u = (ax + b)(cy + d)ez + f)

where a, b, ¢, d, e, f are constants. It is clear from symmetry that other forms of solution
can be written down from the above forms. For example,

u = e:taxe:t iﬂyei i')’z
where «® = % + p?and f # 0, y # 0, is a separable solution in rectangular coordinates.

25 A homogeneous solid bar occupies the region 0 < x <q, 0<y <), 0<z<ec.
There are no heat sources within the bar. The base z = 0 is held at constant temperature
T, while the remaining sides are held at 0°. Show that the steady-temperature distribution
in the bar is given by

16T 2, 2 sin[(2n — Dnx/a] sin [(2m — 1)my/b]
UGy =5 2 2 (2n — 1)(2m — 1) sinh wpne

n=1 m=1

sinh [Wam(c — 2)]

where

2n — 1272 (2m — 122718
Dypm = + n,m=l,2,...

a? b?

What is the temperature at the center of the bar? Hint: The steady temperature x must
satisfy Laplace’s equation inside the bar. The boundary conditions are

u(x,0,z) = u(x,b,z) = u(0,y,z) = u(a,y,z) = 0

and

u(x,y,0) =T u(x,y,c) =0

As in Prob. 24 assume a separable solution ¥ = XYZ. Show that X must satisfy

X' +a2X=0 0<x<a; X0)=X(a=0

and hence the separation constant « = «, = nw/a,n =1,2,.... Similarly show that
Y+ BtY =0 0<y<b; YO)=Y(b)=0

implies f = B, = mw/b, m = 1,2,.... The z-dependent factor must satisfy

Z — (4 BDZ =0  Z(c) =0
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Let Ynm = (2,2 + Bn®)*%, and derive the 02 separable solutions

. nmx  mmy |
Unm(X,),Z) = sin = sin — sinh [Y,n(c — 2)] n=12,....m=1,2,...

b
which satisfy all the boundary conditions save one. Determine the coefficients B, in
the superposition

L & nmwx ma
u(x,y,z) = 3 > Bumsin — sin —b—y sinh [ynm(c — 2)]

n=1 m=1

so as to satisfy the remaining condition. Use the orthogonality properties

b(a
f f P X, V) Prm(x,y) dx dy = 0 (p.q) # (n,m)
3 JO

where

. Jjmx | kmy )
(p,—k(x,y)=sm—a—sm— j=12,...;k=12,...

b
26 Solve Prob. 25 if instead the faces x = 0, x = a,y = 0, y = b of the solid are insulated,
while conditions on the top and bottom remain the same as stated there. An insulated
face means that the derivative of the temperature « in the direction of the normal to the
face is zero.

27 An infinitely long bar of homogeneous material occupies the region 0 < x < q,
0 <y<b 0<z< . There are no heat sources within the bar. The base z =0 is
held at the temperature Txy(x — a)(y — b), where T is a constant, while the sides are held
at 0°. Also the temperature satisfies the condition lim u(x,y,z) = 0 uniformly in x, y

22— 0

for 0 <x <a,0 <y <b. Find the steady temperature in the solid.

28 (a) A thin thermally conducting homogeneous disk with insulated faces occupies.the
region 0 < r < a in the xy plane (where r, 6 are polar coordinates). The rim is held at
100°.  What is the steady temperature in the disk ?

(b) Solve the preceding problem if instead the temperature on the rim is held at 1006(1 —
0/27), 0 < 6 < 27. What is the temperature at the center of the disk ?

29 The disk of Prob. 28a has the following prescribed temperature on the rim r = a:
u=c,caconstant,0 < 6 < a,u = 0,a < 6 < 27, where a is a given angle, 0 < a < 2.
Find the series expression for temperature at interior points of the disk. In particular
consider the case where ¢ = 100 and o = =/2. :

For this case use Poisson’s integral (3-35) to derive a closed-form expression for the
temperature inside the disk. Use the closed-form expression to show that

lim u(r,0) = 100 0 < 6 <7_ZT

r—a

lim u(r,0) = 0 % <0 <2n

r—a
What is the temperature at the center of the disk ?
30 A thin homogeneous metal sheet with insulated faces occupies the region 0 < r < a,

0 <6 < «,in the xy plane. Here r, 6 are polar coordinates and « is given angle, 0 < a <
27. The temperature along the edges 6 = 0,0 = ais held at zero. Onr =4,0 <0 < «,
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the temperature is given by f(6), where f is a continuous function. Derive the series
representation

© nw/a 6
u(r,0) = z B, (:) sin i
n=1 \& o

for the temperature in the sheet, where

B, =—f f(@)sm—d@ n=12,...
Consider the particular case where f(6) = 100 and « = =/2. Use the formula for the
sum of the series given in Prob. 21 to derive the closed-form expression

200 tan—! [2a®r? sin 20/(a* — r%)]

w

u(r,0) =

for the temperature. Observe that u(r,0) = u(r,7/2) = 0, and verify that

limu(r,f) = 100 0 <6 <—
r—a 2

r<a

31 Find a function u harmonic in the region 0 <r < a, 0 < 6 < «/2 such that u =1
on the edge 6 = 0,0 <r < a,u =0 on the edge 6 = 7/2,0 < r < a, and u = 0 on the
rim r =a, 0 <0 < x/2. Hint: Consider that the harmonic function v =1 — 20/=
satisfies the boundary conditions along 6 = 0, 6 = =/2. Now construct a harmonic
function w in the region such that the superposition u = v + w satisfies the conditions of
the problem.

- 32 A thin annulus occupies the region 0 < a <r < b,0 < 6 < 2w, where b > a. The

faces are insulated, and along the inner edge the temperature is maintained at 0°, while
along the outer edge the temperature is held at 100°. Show that the temperature in the
annulus is given by

00 log (r/a)
log (b/a)
33 Determine the temperature distribution in the annulus of Prob. 32 if instead the

temperature on the outer rim r = b is held at u-= 7'cos (6/2), 0 < 6 < 2w, where T is a
constant.

34 After division by r, and replacement of R by y and 4 by —A4, show that Eq. (3-23) can
be rewritten as

A
Ly+/1py=D(rDy)+7y=o 0<r

Here D = d/dr, and the differential operator is self-adjoint (see Sec. 1, Appendix 2). Let
0 < a < b, a, b fixed, and consider the self-adjoint Sturm-Liouville problem

Ly 4 Apy =0 a<r<b;ya@=0;yb =0

(a) Review Sec. 1 of Appendix 2, and show, directly from the differential equation and the
boundary conditions, that eigenfunctions y,, y= corresponding to distinct eigenvalues
An, Am, TEspectively, are orthogonal on [a,b] with weight function p = 1/r:

a
f}}"—))’"dr=0 n#m
b

r

and also that the eigenvalues are real and positive.
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(b) Find the linearly independent solutions
y = exp (fiwlogr) w:\/i;iz\/jl_
and hence the general solution

y = Acos (wlogr) + Bsin (wlogr)

(c) Show that the eigenvalues are A, = n’=*/[log (b/@)]*, n =1, 2,..., and that corre-
sponding real-valued eigenfunctions are

yn=sin(wnlogr) wnz\/i_,,;nzl,Z,...
a

35 A thin thermally conducting sheet occupies the region 0 <a <r <b, 0 <6 < a,
in the xy plane, where r, 6 are polar coordinates, @ and b are given numbers such that
a < b, and « is a given angle, 0 < « < 27. The edges r = a, r = b are held at 0°, as is
also the edge 6 = 0. The edge 6 = « is held at 100°. Find the steady temperature in
the sheet.

/ i . p——r o . . . /‘VP\\‘ .
. 36 Let C be th le'r =gin th 1 d Z th C. h
36 Let C be the circle’r in the xy plane an e region interior to ‘C,_.z Derive the

solution of the boundary-value problem =
__-‘—."———-————-7 "
';Au=x2—y2_\ in Z u= on C
in the form

T 6
u(r.6) :(r a®r?) cos 2
12

Hint: Examine the form of the function on the right in the differential equation, and derive
the particular solution

)
xt —y*  rtcos26 1

T 2\
: - T . . . .
of the Poisson equation. Now derive the solution of the Dirichlet problem

A

Aw=0 in®  waf)=—v@ onC |\

37 (a) A homogeneous thermally conducting cylinder occupies the region 0 < r < g,
0<6 <2m0<z<h, where r, 0, z are cylindrical coordinates. There are no sources
of heat within the cylinder. The top z = & and the lateral surface r = a are held at 0°,
while the base z = 0 is held at 100°. Find the steady-temperature distribution within the
cylinder.

(b) Solve the problem in a if the top is held at 100° instead of 0°, the remaining conditions
being the same.

38 The cylinder of Prob. 37 has its base held at 100°. The lateral surface and the top
radiate into an infinite medium, which is at temperature 0°. Thus there are the boundary

conditions
=0 — +yu
r=a aZ

8u+
e

where ¥ > 0 is a constant.

=0
z=h
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Derive the solution

(oo}

B Jo(&nrla) En(h — 2) - pialh — 2)
u= 400)/an§1 EE T raIE) [E,. cosh —Q + ya sinh ——;———:l

where 0 < &; < &, < - - - are the positive roots of the equation

EJ3(&) + yaJy(§) =0

39 A wedge-shaped solid occupies the region described by the inequalities 0 < r < a,
0<6<p,0<z<h, where fis a given angle, 0 < f# < 2n. The top z = h, the lateral
surface r = a, and the faces 6 = 0 and 6 = B are insulated. The base z = 0 is held at
temperature f(r,0). Derive the expression for the steady temperature in the solid if there
are no sources of heat within. Consider the special case f(r,0) = 100.

Sec. 3-4

40 In potential theory it is shown that the gravitational potential y due to matter dis-
tributed in space satisfies Laplace’s equation in regions free of matter, and in a region
containing matter of density p satisfies Poisson’s equation

Ay = —47p

If S is a simple closed surface which bounds a region #Z of space containing matter of
density p, and if the region exterior to S is free of matter, the potential and its first partial
derivatives are continuous across S. Also, the potential in this case must vanish uniformly
at infinity. Let S be a sphere of radius @, and suppose the interior of S contains matter of
constant density p. Derive the expression for the potential (a) at points inside S, and (b)
at points outside S. Hint: Use spherical coordinates with origin at the center of the sphere.
Then y is spherically symmetric and satisfies

2y l—47rp 0<r<a
Ypp + — =
r 0 r>a
Integrate the equations directly and impose the requirements which the potential must
satisfy.

41 Let0 < a < b, a, b fixed numbers. The spherical annulus in space which is bounded
by the spheres r = a, r = b is filled with matter. The density varies according to the
formula p = 1/r, where r is the distance from the origin. Derive the expressions in
spherical coordinates for the potential in the regions 0 <r <a,0 <r < b, r > b.

42 Determine the electrostatic potential ¢ in the annular region bounded by the concentric
spheres r = a,r = b, 0 < a < b, if the inner sphere r = a is held at constant potential V,
and the outer sphere r = b is held at constant potential Vy, V, # V.

43 A homogeneous thermally conducting solid is bounded by the concentric spheres
r=a,r=b,0 <a<b. There are no heat sources within the solid. The inner surface
r = a is held at constant temperature u;, and at the outer surface there is radiation into
the medium r > b, which is at constant temperature u,. - Determine the steady temperature
uinthesolid. Hint: The steady temperature is spherically symmetric and satisfies Laplace’s
equation in regions where there are no sources. At r = b the boundary condition is

0
a_u + h(u —u) =0 h a positive constant
’
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44 Heat is generated at a constant rate "‘Q &ithin'ﬁ”l{omogeneous solid ball of radius a.
The surface r = ais held at the constant temperature 7. Show that the steady temperature
inside the ball is given by

Qa® —r?)
—= 4T
“ 6k

What is the net flux of heat out through the surface r = a? Hint: The temperature must
be finite, spherically symmetric, and satisfy Poisson’s equation

inside the sphere.

45 Solve Prob. 44 if instead there is radiation of heat out into the region r > @ and the
external medium has constant temperature zero. In this case the boundary condition at

r=ais

ou

— +thu=0
or

46 (a) Let (r,0,9) be spherical coordinates, as shown in Fig. 3-3. A homogeneous solid
ball of radius a contains no heat sources. The portion of the surface defined by r = a,
0 <6 < #/2, is held at a constant temperature 7, while the remainder is at temperature
zero. Show that the temperature inside the ball is given by
T T & /p\2k+1

("a’) [P21(0) — Pyy12(0)] Paysa(cos 6)
(b) Solve the problem in a if instead the bottom hemisphere is held at temperature — 7.

Hint: In b let u denote the solution of the original problem in a. What properties do the
functions v = 2u, w = — T possess?

47 Determine the temperature in the ball of Prob. 46 if instead the surface temperature
isu=T(0 + 2sin%?6), 0 < 6 < =, where T is a constant.

48 The solid described in Prob. 43 has the inner surface r = a held at the temperature
u = f1(6), and the outer surface r = b is held at the temperature u = fy(6), where f,, f;
are given functions of 6. Show that the steady temperature in the solid is given by

(o]

D,
u(r,@) = z (C,,r" + F—l) P"(COS 0)

n=

where
a™t14, — b"*'B, a4, + b-"B,
n T T gl _ pentl n T g-(2ntl) _ p—(2nt1)
2n+ 1" .
A, = > f1(6)P(cos ) sin 6 db
0

2n+ 17 .
B, = 5 f2(O)P,(cos 6) sin 6 d6
0

n=0,1,2,.... Consider the particular case where f(8) = T, fx(6) = T.(1 — cos 0),
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T,, T, constants. Hint: The temperature is axially symmetric. Assume a solution

n

@ D
U= ZO(Cnr" + rn+1)P"(COS 6)
—

The boundary conditions imply

D, \"
n+1) P,(cos 0) = f1(6)

e 0]
C.a™ +
ngo ( a

© D,
z (C-nbn + bn+1)P”(cos 6) :ﬁ(e)

n=0

Let m be a fixed nonnegative integer. Multiply both sides of each equation by
P (cos 6) sin 6 and integrate over 0 < 6 < . Use the orthogonality properties of the
Legendre polynomials to obtain two equations in the unknowns C,,, D,,.

49 A homogeneous conducting solid hemisphere is bounded by the xy plane and the
surface r =a, 0 <6 < #/2. The curved surface is held at the temperature u =
T(1 — cos 6)), T a constant. The base is insulated. Find the steady temperature in the

1 ou

solid. Hint: Insulated base means — — =
r 00|g_, /2

Sec. 3-5

50 Let # be the closed rectangle 0 < x < a, 0 <y < 5. Show that the eigenfunction
expansion of the solution of the boundary-value problem

AY = -2 jn.@ ¥ =0 on C

where C is the boundary of the rectangle and £ is its interior, is

32 ©® ©
Y(x,y) = gy z z Prm(X,))
n=1 m=1

where

sin [(2n — 1)=x/a] sin [(2m — 1D)wy/b]
Prm = 2r — D2m — D[2n — 1)%/a®> + 2m — 1)?/b?]

51 Find the eigenfunction expansion of the solution of the boundary-value problem in
Prob. 23. :

52 Let # be the closed rectangle 0 < x < 4,0 < y <b. Find the eigenfunction expan-
sion of the solution of the boundary-value problem

op
DAp —cop=F inZ% a—n=0 on C

where D, ¢, and F are positive constants, C is the boundary of the rectangle, and n is the
exterior normal on C.

53 (a) Let A be the three-dimensional laplacian. Let Z be the closed parallelepiped in
xyz space defined by 0 < x <a,0 <y <b,0 <z <c, # the interior of %, and S the
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bounding surface of the parallelepiped. Derive the complete set of eigenfunctions of the
eigenvalue problem

Ap + A =0 in Z p=0 on S
. nmx _ mmy | pnz
gvnm?:SlnTSlnTSlnT n=1,2,,,_;m=1,2,._‘;P=1’2,“.

and show that the eigenvalues are
Ny m2 Pz
j"n,mzi = 772(; + 'b—z' + ?)
(b) Let #Z and S be as described in a above. Find the eigenfunction expansion of the
solution of the boundary-value problem
Au=xyz inZ u=0 onS
54 Find the eigenfunction expansion of the solution of the boundary-value problem
Au=a*—r* inZ u=0 onC

where C is the circle of radius a about the origin, #Z denotes the region interior to C, and
r and 6 are polar coordinates.

55 Solve the boundary-value problem in Prob. 50 by means of an eigenfunction expansion
if the region £ is the region interior to the circle r = a in the xy plane.

56 Let # and C be as described in Prob. 54. Show that the eigenfunction expansion of
the solution of the boundary-value problem

Ap=x*—y? inZ =0 onC
is
2. Jau(&amr/a)
0) = —|2a* ST E N 6
w0 [2“ 2 ETEn | 2
m=1
57 1In the theory of elasticity it is shown that if a thin elastic plate (of uniform thickness)

lies with its midplane in the xy plane and a surface force density f (force/unit area) acts in
the vertical z direction, the vertical deflection w(x,y) satisfies the fourth-order elliptic-type

partial differential equation

AA fCe,p) AA O*w 0w o*w
W=TN W= T2 T g

where N is a material constant.

(a) The homogeneous equation AAw = 0 is called the biharmonic equation. Show that
if u is a harmonic function in a region £, then u is a solution of the biharmonic equation
in £.

(b) Show that if u, v are harmonic in #%, then w = xu -+ v is biharmonic in #. Hence the
general solution of the biharmonic equation is

w = F(x 4+ iy) + xF(x + iy) + G(x — iy) + xG(x — iy)
where i = V' —1 and F, G are arbitrary functions. Hint: Consider the vector identity

Alpy) = ¢ Ay + v Ap + 2V - Vy
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(c) Let 2 be the closed rectangle 0 < x < 4,0 <y < b and let C be its boundary. Con-
sider the eigenvalue problem

AAu 4+ 2u=20 in 2 u=Au=0 on C

Show that all the eigenvalues are negative. Hint: The reality of the eigenvalues can be
shown by an argument similar to that given for the self-adjoint problem discussed in the
text. To show the eigenvalues are positive, let 4 be an eigenvalue and u a corresponding
eigenfunction. Then

f ulAMAudxdy = —lf ut dx dy
R R

Now in the Green’s formula for the operator A replace v by u and V2u by AAu. Then

0 ou
— 2 — R — J— —
f (4 AAu — |Au|?) dx dy —J; [u 7 (Au) — Au an:l ds=0

since u = Au = 0on C. Hence

lf u*dxdy = —J |Aul*dx dy <0
4 4

and 1 = 0if, and only if, Au = 0in #. But if Au = 0 in %, then u = 0 everywhere on Z.
(d) Since 4 < 0, let A = —w?, w real and positive. Consider that

(A — o)A+ ) = (A + o)A —w) = A — 2= AA — @
Thus if u satisfies
Au+owou=0"inZ# u=Au=0 on C

then u is an eigenfunction of the eigenvalue problem in ¢ corresponding to eigenvalue —w?.
But by Example 3-5 the eigenfunctions of this problem are @,,(x,y) = sin (nnx/a) X
sin (mmy[b) with corresponding eigenvalues

n277.2 mZTr2
a® + b2

n=12,....m=1,2,...

Wpm =
Hence show that the values 4., = —w,,* are eigenvalues of the problem in ¢, with @,
corresponding eigenfunctions; that is,

AAq)'n.m — wnmz(pnm =0 Prm = A(an =0 on C

The completeness of the orthogonal sequence {@,.} implies that these are all the eigenvalues.

(e) If there are no vertical deflections and no bending moments along the edge of the
rectangular plate, the deflection w is the solution of the boundary-value problem

AAw—f(;;y) in Z w=Aw=0 on C

(these boundary conditions are often termed the Navier conditions). Assume the solution is

e o]

w(x,y) = 2 2 CamPrm(X,))

n=1 m=1
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Then w = Aw = 0 on C. Since w is a solution of the differential equation, it follows that

S S Connntpan(y) =L
n=1 m=1 N

Let p, g be a fixed pair of positive integers. Follow the procedure of Example 3-5, and use
the orthogonality properties of the sequence {®,n} to show that

A 4 aft ,
Cpe = —22_ _ f £,y sin = sin 272 dx dy
Nw,?® Nwylab Jo Jo a b Y
Hence the solution
m
Ww(x,y) = 2 2 in = * sin ;’y

b =1 m=1 @nm®

(f) Show that if the plate is uniformly loaded so that f(x,y) = f,, a constant, the deflection is

16f0 < sin [(2n — 1)mx/a] sin [(2m — 1)my/b]
M) = Z 2 @n — D@m — Dfrm

n=1 m=1

where
2n — 1% (2Cm—1)*|?
ﬁnm = [ (12 + b2 J

If the plate is square, show that the deflection at the center is approximately 4fya*/=®N.
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where the functions Cy(t), C,(2), and Cyn,(t) are to be determined by the method set forth
in the text. One obtains

¢ £ ¢
Co(t) = f d& f F(mdn  cft)= L f Fy(&) sin [w,(t — §)] d§
0 0 Wq Jo

q

Crmqlt) =

i
f anq(&) Sin [wnmq(t - ‘S)] d‘S
0

nmq

where

4 b f7l2 R
F(t) = ————— f J‘ f F(r,0,z,t)r dr dO dz
wh(b® — a?) 2 Jo 0

8 b [fwl2 R gz
F(t)=—— F(r,0,z,t ~—vrdrdod =12,...
o(t) nh(bz—az)J;J; J{; (r,0,2,t) cos —rdrdodz g
1 b [nl2 [k
Fmg(t) = —— f f j F(r,0,2,t Y9 nmg(r,0,2)r dr d6 dz
”V’nma“ a 0 0

Now the superposition
u=v+w

yields the solution of the original problem.

PROBLEMS
Sec. 4-2

% solution of the homogeneous wave equation (4-5) of the form

u(x,y) = p(x)e®t = v —1; w real and positive

is called harmonic time-dependent. Substitute into Eq. (4-5), and show that the amplitude
factor y must satisfy

v+ k=0 k? = —

where primes denote derivatives with respect to x. Hence show that harmonic time-
dependent wave functions are of the form

. w
u(x,y) = Ae**=®? k= 4 —; 4 = const
C

(b) 'Assume a solution of Eq. (4-5) of the form
u(x,t) = p(x)et®: w real and positive
and derive wave functions of the form

)
u(x,t) = Aekst®? k= 4+ —; A= const
c

(c) Let fbe a twice continuously differentiable function. Show that

u(x,t) = f(x —ct) — f(—x —ct)
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is a wave function which satisfies the boundary condition

u(0,t) =0

If, in addition, f'is an even function of its argument, f(—{) = f({), then u satisfies the initial

condition

u(x,0) =0

(d) Construct a nontrivial real-valued wave function which satisfies the stated condition.
(i) u is harmonic time-dependent and «(0,z) = 0 all «.

(ii) « is harmonic time-dependent, #(0,¢) = 0 all 7, and u(x,0) = 0 all x.

(iii) »(0,t) =0, lim wu(x,t)=0, lim wu(x,t)=0.

xr—+ © pr——00
(iv) u,(0,t) = 0 all # and uy(x,0) = 0 all x.
(V) (up + ow)|.—o = 0 all #, & a real constant.

2 The one-dimensional homogeneous wave equation with damping is

Uy + 2yut — Czuzx =0

where  is a real positive constant [recall Eq. (4-3)]. Solutions of this equation may
represent waves whose amplitudes are damped out with increasing time or waves which
are attenuated as they travel.

(a) Assume a solution of the form u = e~ "v(x,t). Show that v must satisfy
Vit — Y20 — Cpe = 0

To obtain particular solutions of this equation assume

v =ypx)e = vV —1; o real

and show that y must satisfy

;y2 + wZ
= c2

W+ k=0 &k

Hence derive particular solutions of the homogeneous damped wave equation of the form

(w? + ¥
Cc

U= Ae—yteii(kz—wt) k = +

where A4 is a constant. These represent traveling waves with amplitude 4" = Ae~"* and
with speed

w cw

k@

(b) Assume a solution of the form u = p(x)e™**!, w a real and positive constant. Show
that v must satisfy

4

C =

2 —

2 2'
w”_azwzo a__w

62
Write & = a + ib, a, b real. Calculate o, equate real and imaginary parts, and obtain

2
w wy
a2—b2=——_ ab=_
c? c?
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Show that b = Fk(w) and a = +wy/c*k(w), where

V2 wy -
clo(w?® + 4y1)% — w*]%

k(w) =

Hence derive the particular solutions

_ [ + 4% — ot

B V2e

The amplitude A" = Ae~*@* - 0asx — + 0. Thus as the wave progresses to the right,
the wave is attenuated. The speed

u = Ae—-h(w):cei(kz—a)t) h(w)

o ch(w)
ko Y

’

¢ =

depends on the frequency w. In a superposition of such waves with different frequencies
each component has a different speed.
(¢) Derive the solutions

(w? — yz)l/é )

U = Ae Ve w! k= + ; w? > P

c

2 2)L4
S (¥* — w?)”
u Ae""”e (y+-w)t k ;7’2> w?
C

@Use D’Alembert’s solution (4-15) to construct the solution of the initial-value problem
=(4-17) with the given initial data. Note that f, ¢ may not satisfy the differentiability
conditions assumed in the text at every point. Nevertheless verify that the function
obtained by applying D’Alembert’s formula satisfies the initial conditions. Show also
that the wave equation is satisfied except possibly at points along the characteristic curves
of Eq. (4-5). Sketch the solution at times # = 0, # = 1/c, and ¢ = 2/c.
@ fx)=e7"g(x) =0, —0 < x < 0
) f(x)=1/0+ x?),g(x) =0, —0 < x <
@ f(x) = Asin wx, g(x) = Bcos ux, —o0 < x < o
(d f(x)=0,g(x) = Asinhax, —o0 < x <
Qo ) =1,1x| <1,fx) =0, x| >1;g(x) =0, —0 < x <
g fE)=1—|x,|x] <1, f(x) =0, |x| >1;g(x) =0, —0 < x < 00
(8 f(x)=cosx,|x| <72, f(x)=0,|x| = 7/2;g(x) =0, —0 < x < ©
() f(x) =0, —0 <x < w;g(x)=1, x| <egx)=0,]|x| >¢ > 0a constant

4 Recall the rule for differentiation of an integral with respect to a parameter. Show
that if fis twice continuously differentiable and g is continuously differentiable, D’ Alembert’s
solution (4-15) satisfies all the conditions of the initial-value problem (4-17).

@ Construct the solution of the initial-value problem (4-11) if the data are as described.
@ F(x,t) =1, f(x) = sin wx, g(x) = 0

-\(_@) F(x,t) = xt, f(x) = g(x) =0

(€) F(x,t)=4x + 1, f(x) = 0, g(x) = cosh bx

(d) F(x,t) = Asin wxsin pt, f(x) = g(x) =0

() F(x,t)= Asin (kx — wt), f(x) = g(x) = 0, k = wc
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6 Verify that the function w defined by Eq. (4-16) is a solution of problem (4-18).

7 Consider the boundary- and initial-value problem

ut;=czu_¢x x>0,t>0
ux0) =f(x) ux0)=gx) x=0
u0,)=0 t>0

Note that in order for the data to agree at (0,0) it is necessary that f(0) = 0, g(0) = 0
(see Fig. P4-1). The given functions f, g are defined only for x > 0; however, assume for
the moment that f, ¢ are defined in some manner on (—o0,%0), and apply D’Alembert’s
formula (4-15) to the problem. Impose the condition along x = 0, and obtain

1 ct
[ f(—ct) + f(ct)] + % g&)ds =0 t>0
—ct
This equation will hold provided f, g are defined such that
t
flct) = —f(—ct) f g(&)dé =0 t>0

—1

Hence, the appropriate procedure is to extend fand g as odd functions on (—00,00):

fx)=—f(—x) gx)=—g(—x) x<0

Now D’Alembert’s formula defines the solution of the problem

1 z+ct
%[f(x—ct)+f(x-l-ct)]+—f g(&) dé 0<ct<x

2c x—ct
u(x’t) - 1 x+ct
%[—f(ct—x)-‘rf(x—l—ct)]—l-z—cf g(&) d& 0<x<ct
cl—z

Verify that u satisfies the boundary condition along x = 0 as well as the initial conditions.
Note that u satisfies the wave equation except possibly along the characteristics x = J-ct

M

N

i/
u=f(x)
Figure P4-1 ug=g(x)
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in the x¢ plane. Use this formula to construct the solution of the boundary- and initial-
value problem corresponding to the following prescribed data. Sketch the solution at
t=20,t=1/c, t = 3/2c, t = 2]c.
@@ f(x)=1;g(x)=—cosx, x>0
) f(x)=x%g(x)=0,x=>0
© fX)=1,0<x<1,f(x)=0,x>1;g(x)=0,x>0
@ fX)=00<x<1,fx)=2x—1,1 <x<%
) =22 —x),8 <x<2,f(x)=0,x>2;g(x)=0,x=>0

8 Consider the following boundary- and initial-value problem

Uy = Cllly, x>0;tr>0

u(x,0) = f(x) ufx,0) = g(x) x>0

u(0,)=h(t) =0

Assume f, h are twice continuously differentiable and g is continuously differentiable, on
[0,+0). Note that if the boundary and initial values agree at the corner (0,0) in the x¢
plane, the necessary conditions #(0) = f(0), #'(0) = g(0) are implied in the data. Let

denote the function constructed as the solution in Prob. 7. Suppose w is a solution of
the wave equation (except possibly along the characteristic x = ct) such that

w(x,0) =0 wd(x,0) =0 x>0 w(0,t) = h(t) t>0

Then u = v + w satisfies the conditions of the boundary- and initial-value problem first
proposed, except that the wave equation may not be satisfied along the characteristic.
To construct w assume w = @(x — ct), x # ct. Impose the boundary condition at x = 0;

then
p(—ct)=ht) =0

Let &£ = —ct, so that ¢(§) = A(—§/c) and
plx —ct) = h(t — )—C)
c

Define w as

w(x,t) =0 0<ct<x w(x,t)=h(t—)—c) 0<x<et
c

Verify that w has the desired properties at # = 0 and satisfies the wave equation, except
possibly along x = ct, t > 0. Use the results of these considerations to construct the
solution of the boundary- and initial-value problem for each of the following cases.

@ fx)=e>2g(x)=1,hnt)=1

() f(x) =x,8(x)=0,h(t)=sint
© f&x)=g(x)=0,h(t)=1,0<t<T,ht)=0,t> T, where T is a given constant

(@ f(x)=g(x) =0, h(t) = Asin wt
9 Consider the problem

Uy — Cyy = O u=f(x) u, = g(x) on C

where C is the characteristic # = x/c in the x plane. Attempt to fit the general solution
(4-6) of the wave equation to the prescribed data. Show that no solution exists unless
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the given functions f, g satisfy the relation

s =L2 4 g

for some constant a. Show that if f, g satisfy such a relation, there are infinitely many
distinct solutions of the form

X + ct
u=<P(x—ct)+f( > )—tp(O)
where @ is any twice continuously differentiable function such that ¢’(0) = —ajc.
10 Let k£ be a fixed real number such that k£ > 1/c. Consider the following problem
involving the homogeneous wave equation:
Uy = Cliyy x> 0,0 <t<kx
ux,0) =f(x) udx,0)=gx) x=0
u(x,kx) = h(x) x>0

Here the curve in the x7 plane on which the data are prescribed consists of the nonnegative
x axis and the halfline # = kx, x > 0 (see Fig. P4-2). Let v denote the function constructed
as the solution in Prob. 7. Then v satisfies the conditions prescribed on z = 0. Also

1 (kct+1)x
v(x,kx) = G(x) = FH{—f[(ke — 1Dx] + fl(ke + Dx]} + —f §(&) d&

2¢ Jike—1)a
It is desired to construct the solution of the present problem by superposition:
u=v+w
Evidently w must satisfy the homogeneous wave equation and the initial conditions
w(x,0) = wy(x,0) =0 w(x,kx) = h(x) — G(x) x>0

To construct w assume

wx,t)=0 0<ct<x w(x,t) = p(x — ct) 0<x<ect

t=kx

LI iy,

Figure P4-2
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where @ is a function to be determined. Then w satisfies the necessary conditions along
t = 0. To satisfy the remaining condition it is necessary that

@lx) =h(x) —Gx) x=0

Hence

3 £
P = h(l - kc) - G(l - kc)

and

X — ¢t x — ct
(p(x—“)zh(l —kc)_ G(l —kc)

Complete the remaining steps of the derivation and show that the solution of the problem is

v(x,1) 0<ca<x

u(x,t) = ot 1 6
”(lx - ,fc) + HfIBGD] = flax0l + o L g®dE 0<x<ct

where

a(x,t) = — L ke B(x,t) = x + ct

o (1 — ke)ox — ct)

Verify that u satisfies the conditions of the problem. Note that u is a solution of the
homogeneous wave equation, except possibly along the characteristic x = cz.  Write down
the solution of the Cauchy problem if

f)=g(x)=0 h(x) = A sin wx x>0

where 4 > 0 is a constant. Discuss the behavior of u along the characteristic x = ct
for this case.

11 Recall the discussion in Sec. 2-3. The general homogeneous linear second-order
hyperbolic equation with constant coefficients in two independent variables x, 7 is

Lu = Aug, + 2Buy + Cuy: + Du, + Euy + Fu =0

- where A = B? — AC > 0. Let a be a fixed real positive constant, and suppose that for
arbitrary choice of function f

u=f(x—at)

is a solution of the differential equation. Utilize the arbitrariness of f to show that in this
case the relations

(i F=0 (i) D—aE=0 (iii) Ca*—2Ba+ A =0

must hold. Conversely suppose F = 0 and the coefficients are such that

(ivy AE* —2BDE + CD?* =0

Show that plane-wave solutions of arbitrary shape and with common speed a = D/F exist.
On the other hand, if F # 0, or if F = 0, D # 0, E # 0, and iv does not hold, or if F =

D =0, E+#0(or F=E =0, D # 0), the equation does not admit plane-wave solutions
of arbitrary profile having a common speed. Show that if C > 0 and

_Bi\/Z

F=D=E=O 01'2 C

plane-wave solutions of arbitrary profile having common speed a, (or a,) exist.
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12 (a) The system of first-order linear partial differential equations

ov Lai+R__0 0i
FrR TR A o

ov
+ C—

Gv=20
ox at+ v

occurs in the theory of electric transmission lines; they are called the transmission-line
equations. Here v(x,t) denotes the voltage and i(x,t) the current, at distance x along the
lineattimez. Theconstants L, C, R, G arereal and nonnegative. They denote inductance,
capacitance, resistance, and conductance (per unit length). Differentiate the equations
with respect to x and ¢ in an appropriate fashion, and deduce that if », i are solutions of the

transmission-line equations, then » must satisfy the telegrapher’s equation

LCUtt -+ (.RC + LG)Ut + RGv — Upe — 0

[see Eq. (4-4)]. Show that i satisfies this equation also. If L > 0and C > 0, the equation
is hyperbolic. If L =0, or if C = 0, the equation is parabolic. Assume L > 0 and
C>0. If R=0and G # 0, show that the telegrapher’s equation can be rewritten

Uy + bvy — 0y = 0
which is the damped-wave equation, where

1

C = ——
vIC
If R = G = 0, then the wave equation results.

(b) Utilize the results of Prob. 11 and show that if R # 0, or if G # 0, the telegrapher’s
equation does not admit traveling-wave solutions

v=f(x —at)

of arbitrary profile having common speed a. In turn this implies the damped-wave
equation does not admit traveling waves of arbitrary profile.

(c) A transmission line (assumed to be characterized by the telegrapher’s equation) is
called distortionless if the line admits traveling waves

v=-e *f(x —at)

of arbitrary profile having common speed a, for some real nonnegative constant u. If
u > 0, the waves are damped out exponentially with increasing time. Show that a
necessary and sufficient condition for a distortionless line is

RC =LG

In this event show that the common speed is a = 1/V LC.

13 (a) Let L be the linear hyperbolic operator defined by

2

L= 2% a2 4 by X+ ony)
u—axay a(x.y) -~ x,yé; c(x,pu

Assume the coefficients are twice continuously differentiable in some region # of the xy
plane. Verify from Eq. (2-74) that the adjoint of L is the linear hyperbolic operator L*
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defined by
1= 2~ 2y — 2 o) +
v = ox ay ox av ?y v cv

Utilize Lagrange’s identity to show that if #, v are twice continuously differentiable, then

0 opP
vLu—uL*vz—Q———
0x dy

where
P = ¥uv, — vu,) — buv 0 = ¥(vuy, — uv,) + auv

Let I' be a simple closed curve in £, and let Z, denote the region enclosed by I'.  Green’s
formula (2-77) states that if u, v are as described above, then

ff(vLu —ul*v)dxdy = f Pdx + Qdy
r

‘%1

where the line integral is taken in the positive sense around T

(b) (Riemann’s method) Let C be a given smooth curve lying in % and such that any line
parallel to a coordinate axis intersects C in at most one point. Thus C is noncharacteristic.
Consider the Cauchy problem

Lu = F(x,t) (x,y) in %
_ ou _ c
u -— f(x) Pl g(x) on

where F is a given continuous function, f is twice continuously differentiable, and g is
continuously differentiable. The symbol du/on denotes the derivative of u in the direction
of the normal n to C. Let Py(xo,y,) be a point not on C. Then Riemann’s method of
deriving the expression for the solution of the Cauchy problem at (x,,),) is as follows.
Construct the closed curve I' as shown in Fig. P4-3. The segments BP,, AP, are parallel -

Figure P4-3
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to the coordinate axes. Let #; denote the region enclosed by I'. If u is the solution of
the Cauchy problem, then by Green’s formula derived in a above

fvadxdy= ffuL*vdxdy—l-f Pdx 4+ Qdy
T

gl z 1
for any twice continuously differentiable function v. The appropriate choice for v is now
derived. Rewrite P, Q as

_ (), (uv)y

+ u(, —bv) Q= — u(v, — av)

P=

The line integral around I is calculated as follows. Along the characteristic BP,

(wv)| p — (w)|p, N J‘Po

Py
f Pdx + Qdy=f Pdx = u(v, — bv) dx
BP, 2

B B

Along the characteristic Po4

A — A
f Pdx+ Qdy =f 0dy — (uv)| 4 _ ()| p, _ f u(o, — av) dy
P,A4

Py Py
Thus

f Pdx + Qdy = —(w)|p, + $(ww)| g + (uv)| 4]
T

Py A
—i—f u(v, — bv) dx —f u(vy — av) dy —{—f Pdx + Qdy
B Po 0,

where C, is the portion of C lying between the points 4, B. Assume now that v(x,y;x,,ys)
is a function satisfying the following conditions:

L*» =0 in %,

v, =bv ony=y, v,=av onx=x,

(X0, Y03%0,Y0) = 1

The function v is called the Riemann Green’s function of the Cauchy problem. From the
expressions derived above it follows that

Pdx + Qdy—fvadxdy

1
Since the right-hand member involves only known functions, the value u(x,y,) is now
determined.

ulp, = Hw)| 4 + ()| 5] + f
C1

14 (a) Let L be the hyperbolic operator defined by

Lu = uy,

Show that L is self-adjoint: L* = L. Show that the Riemann Green’s function v(x, y ;xo,ys)
associated with L must satisfy Lv = 0 and

v, =0 ony =y, v,=0 on x = X

(X0, Y03X0,Y0) = 1

Clearly the function v(x,y;x,,y0) = 1, all x, y, has the requisite properties.
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(b) Let C be the line y = x in the xy plane. Consider the Cauchy problem

ou
Uy = F(x,))  ulg=[f(x) pe = g(x)

where F, f, g are given functions and du/dr denotes the derivative of u in the direction of

the normal n to C. Thus du/on = (u, — ug)/ V2. Apply the results of Prob. 13, and
derive the solution of the Cauchy problem in the form

1 Yo
u(xo,y0) = 3[f(x0) + f(3o)] + _ﬁf g(x) dx —ffF(x,y) dx dy
o .@1

where £, is the triangular region in the xy plane bounded by C and the lines x = x,,
y - yo through (xo,yo).

15 (a) In the initial-value problem (4-11) make the change of independent variables
E=x—c n=x+ct
Show that the transformed problem is

—Fl(n + 8)/2,(n — &)/2c]
4c?

ugq = 6(5,77) G('E;’?) =

4 (é)
do=f® 5 =2—

where C is the line 7 = & in the & plane and du/on denotes the derivative of  in the direc-
tion of the normal n to C. Show that the transformation is such that the upper half
plane ¢ > 0 in the x¢ plane is mapped onto the half plane # > £ in the &7 plane. Is the
transformed problem equivalent to problem (4-11)? Why?

(b) Use the results of Prob. 14 together with the result in a above to derive the solution
of problem (4-11).

16 (a) Let L be the hyperbolic operator defined by

Lu = u,y + au

where @ > 0 is a constant. Show that L is self-adjoint: L* = L. Show that the Riemann
Green’s function v(x,y;xX,,y,) associated with L must satisfy Lv = 0 and

v, =0 ony =y, v, =0 on x = X
v(xm}’o;xo,}’o) =1
(b) To determine the Riemann Green’s function assume

v=gp[(x — io)(y — ¥l

where g is a function to be determined. Show this assumed form for v satisfies the required
conditions on y = y, and on x = x,. Substitute v into Lv = 0 and show that ¢ must

satisfy
s@"(s) + @'(s) + ap(s) =0 5= (x — x)(y — yo)
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Make the change of variable t = 2V as, and show that the preceding differential equation

becomes
. . oY
o+ @+ tp=0

where dots denote differentiation with respect to 7. This is Bessel’s equation of order
zero. Hence

p(s) = Jo(2V as)

and so

v = Jo2Va(x — x)(y — yo)]

is the Riemann Green’s function of L.
(c) Let C be the line y = x in the xy plane. Consider the Cauchy problem

0
Uz + au = F(x,y) ule = f(x) a—: = g(x)
C

where F, f, g are given functions and du/on denotes the derivative of « in the direction of

the normal n to C. Thus 8u/dn = (u, — u,)/ V2. Apply the results of Prob. 13 and part
b of the present problem, and derive the solution of the Cauchy problem in the form

1 Yo
u(xo,y0) = #[f(x0) + f(y0)] + _\—/_Ef Jo(u)g(x) dx

0
Yo Jo(u)

+ a(x —y)f
0 0 20 M

f(x)dx — f fJo(ZV as)F(x,y) dx dy
‘@1

where s = (x — x)(y — yo), 4 = 2Va(x — x)(x — ¥o), and £, is the triangular region
in the xy plane bounded by C and the lines x = Xx,, y = y, through (x,,,).

17 (a) The one-dimensional telegrapher’s equation [recall Eq. (4-4)] is
et + 2y, + Bu — Cltgy = F(x,1)

where the constants y, B, ¢ are such that

y>0 >0 c>0

Make the change of dependent variable

v(x,t) = e u(x,t)

and show that the resulting equation is

Vi + (B — Y — Wy = €V'F(x,1)

Note that if § = y?% the wave equation results. Now make the change of independent
variables

E=x—ct n=x++ct

and show that the differential equation is transformed into

Vg, + av = H(n)
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where
Y — B
4c?
(b) Consider the problem of solving the telegrapher’s equation subject to the initial
conditions
u(x,0) = f(x) ulx,0) = g(x) —0 < x < ©

where f, g are given functions. Show that this initial-value problem is equivalent to the
Cauchy problem

vy + av = H(En)

2
v = f(€) %:ﬁ%ﬁ onC

where C is the line # = & in the &7 plane and 0dv/dn is the derivative of v in the direction
of the normal n to C. The constant a and the function H are as described in a above.

(c) Assume p? > B, so that a > 0. Apply the results of Prob. 16 and part b of the present
problem, and derive the solution of the initial-value problem for the one-dimensional

telegrapher’s equation in the form

—eyze Flm + 82, (n — &)/2c]
— _ ¥t £)/2¢
HEn) = —er =

a =

u(x,t) = e Yv(x,t)

where
B 1 x+ct
olx,t) = 3[f(x —ct) + f(x + ct)] + % JoWyf(s) + g(s)1 ds — 2act
. x—ct
x+ct
xf o) f(s)ds + i ffJo{Z\/a[(s — x)? — c¥(r — t)?}e¥" F(s,7) ds dr
CJo—et M ' 2c
B @1
where

2 __
a=y4c2ﬁ H=2\/a(x_s)2_c2t2

and #, is the domain of determinacy of the interval [x — ct, x + ct].

Sec. 4-3

18 (a) The idealized string described in the text has fastened ends at x =0, x = 5. In
the case where the string is released from rest and no external force acts, the subsequent
displacement is given by Eq. (4-30) with B, =0,n=1,2,.... Use the identity

sin (@ + b) + sin(a — b) = 2sinacos b

and show that the displacement is given by

u(x,t) = % 721 Ay sin nm(x — cf) b_ ct) 4 % rgl A, sin n—ﬂ(xb_l_ ct)

Now let f, be the function which'is the odd periodic extension of f'to (— o0,00), with period
2b. That is,

Sfolx) = f(x) 0<x<b fox) = —f(—x) —b<x<0

folx + 2b) = fo(x) —0 < x <
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Assume f is continuous and piecewise smooth and

fO =f®B) =0

State why it is true that the displacement of the freely vibrating string is given by

u(x,t) = 3[folx — ct) + folx + ct)] 0<x<b;t>0

Interpret this result graphically in terms of a superposition of traveling waves. Relate

to D’Alembert’s solution (4-15).

(b) Consider the freely vibrating string which is released from its equilibrium position,
so that f(x) = 0,0 < x < b, and with speed g(x),0 < x < b. Assume g is not identically
zero, continuous, and piecewise smooth and

g0)=g®) =0
Let go be the odd periodic extension of g to (—o0,0) with period 2. Show that

e 0]
. hnmTx nmct
ux,t) = z w,B, sin 5 cos 5

n=1
= Hgalx — ct) + galx + ct)]

“and hence

1 x+ct
u(x,t) = 5% L go(§) d&

—ct

Relate to D’Alembert’s solution (4-15).

19 The string with fastened ends at x = 0, x = b executes free vibrations after release
from the initial displacement f(x) and with initial speed g(x). Determine the series
expression for the subsequent displacement u(x,?).

@) f(x) = 4hx(b — x)[b? g(x) = 0,0 < x < b (h = const)

(b) f(x) = 10sin (7x/b), g(x) = 0,0 < x < b

(c) f(x) = Asinwx, g(x) =1, 0 < x < b (w is a constant and is not an integral multiple
of n/b)

@ f(x)=0,0<x<b; gx) =0y, b2 — e < x < b[2 + ¢, g(x) = 0 elsewhere (¢ is a
small positive constant)

20 (a) The kinetic energy of an element ds of the vibrating string is
(dmyu?  (pdx)u?
2 T2

where p is the (constant) linear density. Hence the total kinetic energy of motion is

b
Ksz utzdx
2 0

To obtain the expression for the potential energy consider an element dx of the string when
the string lies in its equilibrium configuration along the x axis. Let ds be the length of the
element at a subsequent time ¢ > 0. The change in length is

d
ds — dx = (1 —}—ux?)%dx—dxguj?x
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if higher-order terms in u,* are neglected. The extension occurs in the presence of an
elastic restoring force of magnitude 7,. Hence the increase in potential energy is

T 2dx
Uy —
olt, 5

The net potential energy is

T. (b
V=—°fum2dx
2 0

The total energy is E = K +- V.

(b) Show that in a traveling wave u = f(x & ct), where ¢ = VT, o/ p, the kinetic energy
equals the potential energy.

(c) The nth normal mode of vibration of the string with fastened ends is given by Eq. (4 27).
Show that u, can be rewritten

( t) C. si nmwx nwct

alx,t) = Cpsin — COs | — — ¢,

Un(x sin — 5

where the amplitude C, and phase ¢, are given by

B,
Co= (At + B)¥%  tane, ="

n

Obtain the expressions

Tom®n®*C,2 sin? (nmct[b — e,)

K’n(t) = 4b

Tom*n*C,2% cos? (nmct/b — €,)
4b

Vn(t ) =

for the kinetic and potential energy of the nth mode. Hence the total energy is

Tomn?Cr?  Tob,2Cr? Mo, 2C,t

En = Kn Vn == - —
+ 4b 4c? 4

where M is the total mass of the string. Observe that the energy of the nth mode is
proportional to the square of the amplitude and proportional to the square of frequency.

(d) Subsequent to release from an initial displacement f(x) with initial velocity g(x) the
string with fastened ends executes free vibrations. Use the series (4-30) and show that
the energy is

2
n

E=

M
4

E 2Cn2

that is, the sum of the individual energies of the normal modes.

M8

n=1

21 (a) The string with fastened ends at x = 0, x = b executes forced vibrations under
the external force per unit mass

F(t) = F, sin wt
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where F,, w are given positive constants. The string is released from rest with zero dis-
placement. Use Eq. (4-41) to obtain an expression for the displacement u(x,t). Dis-
tinguish the cases (i) w # wy, all k; (ii) @ = wy, some k. Case ii illustrates resonance
for the vibrating string with fastened ends.

(b) Obtain the expression for u(x,?) if

2
f(x) =1 — cos mrx

gX)=0;0<x<b

where m is a given positive integer, and the external driving force per unit mass is
. TX
F(x,t) = Fye~tsin 5

where Fj is a positive constant.

(c) Obtain the expression for u(x,t) if f, g are identically zero and the external force per
unit mass is

FO xo—€<x<x0+€;0<t<5
F(x,t) = .

0 xnotin (x, — e, xp+ €)ort >34

Here F, is a constant, and ¢, 6 are small positive numbers. This represents a force of
magnitude F, confined to the interval (x, — €, X, + ¢) about the point x, and of duration ¢.
In the expression for the resulting displacement « let ¢ — 0, § — 0, and obtain the motion
due to a concentrated force applied to the point x = x, at time ¢ = 0.

22 (a) Recall the properties of the unit impulse function given in Sec. 3-5. A con-
centrated impulsive force per unit mass and of unit magnitude applied at time 7 = = to
the point x = & on the string can be represented

F(x,t) = 6(x — &)o(t — )
Thus
Fx,t)=0  (xt)# (§,7)

and
t b

f dtf F(x,t)dx =1 t>T
0 0

Let the ends of the string be fastened, and assume the initial conditions are zero. Use
Eq. (4-41) and the properties of the J function to obtain the formal series

2 21
G(x,t;&,71) = — Z - sin didad sin n—.”E sin i (r — T)J
e S n b b b

for the subsequent displacement. It can be shown that the series converges for all values
of x, ¢, &, . Note that G, as a function of x, satisfies the boundary conditions

G(O,t;é,’T) = 0 G(b,t;f,’r) - 0 . t Z 0

Also
G(x,7;6,7) =0 0<x<b
G(&,t;x,7) = G(x,t;8,7) all x, &

G(x,m;6,t) = —G(x,t;6,7) allt, 7
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The function G is called the Green’s function of the boundary- and initial-value problem
embodied in Eqs. (4-22) to (4-24). The function G is not a solution of the wave equation
in the usual classical sense; however, it has many useful properties.

(b) Verify that the solution (4-41) of problem (4-35) can be written

t b
u(x,t) =f f G(x,t;&,7)F(&,7) d& dr
0 JO

by substitution of the series expression for the Green’s function and a formal interchange
of the operations of summation and integration so as to obtain the series solution (4-41).
Interpret the integral in a physical way.

(c) The string with fastened ends is at rest in its equilibrium configuration along the x axis.
At time # = 0 the string is struck in such a way that the point x = £ receives a velocity
impulse of unit magnitude. Thus the initial conditions are

Ux0) =0 u(x0)=dx—& 0<x<b

Apply Egs. (4-30), (4-33), and (4-34) in a formal manner, and use the properties of the
6 function to show that the subsequent motion is given by

2 21 nmwx nm& nwct
G ’t 5 :O = - sin — sin — sin —
(x,2;£,0) wcznsm 5 sin 5 sin 5
(d) Substitute the series expression for G(x,t;£,0), and formally interchange the operations
of summation and integration to verify that the solution of problem (4-25) in the case

where f is identically zero on [0,b] is given by

n=1

b
u(x,t) =f G(x,t;€,0)g(8) d€
0

where g is the initial velocity. Interpret this result in a physical way.

(e) Let G(x,z;&,7) be the Green’s function obtained in a above. Substitute the series
expression and formally interchange the operations of summation and integration to verify
that the series solution (4-30) of problem (4-25) is given by

b b
u(x,t) =f Gi(x,1;8,0) f(&) d& —i—f G(x,t;£,0)g(8) d&
0 0

where f is the initial displacement and g is the initial velocity.

23 A pair of concentrated impulsive forces, of equal magnitude F, but oppositely directed,
is applied transversely to the interior points of trisection of the string with fastened ends.
Obtain the formal series expression for the subsequent displacement. Show that the mid-
point of the string remains at rest.

g%\) Consider the boundary- and initial-value problem embodied in Egs. (4-22) to
-24). Suppose the external force is independent of z.

F(x,t) = Fy(x)
Choose v(x) such that
—Fy(x)

c?

v(0) =v(b) =0

v(x) =
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Let w(x,t) be the solution of problem (4-25) with f(x) replaced by f(x) — v(x). Verify
that the superposition

u=w-+v

satisfies Eqs. (4-22) to (4-24).
(b) Solve the problem in Example 4-1 of the text by the method outlined in a.

(¢) Use a slight modification of the method outlined in a to derive a formal solution of
the boundary- and initial-value problem.

Uy — Cuy, = F,sin wx 0<x<b;t>0
u(x,0) = x(b — x) u(x,0) =0 0<x<b

where Fy, w, ho, h, are given positive real constants.

25 (a) Consider the boundary- and initial-value problem embodied in Egs. (4-22), (4-23),
and (4-24) when the driving function has the form

F(x,t) = F,(x) sin wt

where Fy(x) is a given function and w is a real positive constant. Assume a particular
solution of Eq. (4-22) of the form

v(x,t) = X(x) sin wt

Show that X must satisfy

X// + ,u2X — —Fl(x) g)
C

c2

Conversely, if X is a solution of this ordinary differential equation such that

X(0)= X)) =0

then the function v is a solution of Eq. (4-22) which satisfies the boundary conditions (4-23).

Suppose w(x,t) is a solution of problem (4-25) with g(x) replaced by g(x) — wX(x); show
that the superposition

u=v+w

satisfies Egs. (4-22) to (4-24).

(b) It should be noted that the method outlined in a assumes a solution of the two-point
boundary-value problem

X"+ pX = X0)=0 X(®) =0 M=§

—Fy(x)
c2
exists. However, a solution of the problem may or may not exist. Prove that (i) if @
is not a characteristic frequency (w # wy, k = 1,2, ...), a solution of the two-point prob-
lem exists; (ii) if = w,, = mmc[b for some positive integer m (that is, the case of resonance,
w coincides with a characteristic frequency), no solution of the two-point problem exists

unless

b
f Fi&) sin ™S di — 0
. b
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In this event there are infinitely many distinct solutions.
(c) Solve Prob. 21a by the method outlined in a of the present problem.
(d) Solve the boundary- and initial-value problem

Uy — Cuy, = Fy sin vx cos wt 0<x<h;tr>=0
u(0,t) = h, u(b,t) = h, t>0
u(x,0) = x(b — x) ufx,0) =0 0<x<b

where Fy, v, w, hy, h; are given real positive constants. Distinguish the cases
() w #naclb,n=1,2,...
(ii) w = mmc/b, m a positive integer.

26 If, instead of being fastened, the end x = O of the string is elastically constrained,
the boundary condition is

K
u0,t) — hu(0,t) = 0 h= A >0

0

where K is the spring constant and Ty is the horizontal component of the tension. Let the
end x = b be fixed. Assume the initial conditions are given by Eq. (4-24).

(a) Separate variables in the wave equation, and show the x-dependent factor X must
satisfy

X"+ AX=0 X'0)—hX0)=0 Xb)=0

where 4 is a separation constant. This is a Sturm-Liouville problem with unmixed
boundary conditions. Review Sec. 1 of Appendix 2, and appeal to the appropriate
theorems in order to verify that the eigenvalues form a real monotone discrete sequence
{4} and that all the eigenvalues are positive. Now, by direct integration of the differential
equation and imposition of the boundary conditions, show that 2 = 0 is not an eigenvalue.
Derive the eigenfunctions and eigenvalues

X, = sin [u(x — b)] An = Up? n=12,...
where the u, are the real positive roots of the transcendental equation
htanbu + u=0

arranged in increasing order. Sketch the graphs of the equations

y = tan bu y=—

>I=

on the same set of axes, and illustrate graphically the occurrence of the roots of the tran-
scendental equation. Hence verify the discreteness and monotonicity of the sequence of
eigenvalues {4,}. Note that

(2n — Dm @2n+ Dm
— < < -

n =1, 2, ..
2b H 2b n=1
and for large n

(211 — l)'rr
Hn b
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By direct integration show that the eigenfunctions {X,} form an orthogonal sequence
on [0,b].
(b) Derive the normal modes

Un(x,t) = sin [un,(x — b)I(A, cos w,t + B, sin w,t) n=12,...

where the characteristic frequencies w, = cu,, n = 1,2, .
(c) Show that if the superposition of normal modes

u(x,t) = z (A, cos w,t + B, sin w,t) sin [u,(x — b)]

n=1

is suitably convergent and satisfies the initial conditions (4-24), the coefficients must be
given by

= f ) sin [pa(x — B)] dx
" Jo

b
B, = f g(x) sin [un(x — b)] dx
nwn 0
where
hb 2 u,b
anzﬂ n=l,2,...

2h

27 Derive the formal series solution of the problem

Uy = Cg, 0<x<bh;t>0

u(0,¢) — hu(0,t) =0 uy(b,t) + hyu(b,t) =0 t>0
u(x,0) = f(x) u(x,0) = g(x) 0<x<bh

where h, and , are given positive constants.

28 Instead of being fastened, the end x = 0 of the string is forced (by some external means)
to undergo a prescribed displacement. Then the boundary conditions are

u(0,t) = h(t) u(b,t) =0 t>0 1)
where £ is a given function. Let the initial conditions be given by Eq. (4-24). Continuity
of the spring implies :

hO) =)  h(0) = g(0)

Choose a simple function » which satisfies the boundary conditions (1). Let w be a solution
of Eq. (4-22) with F replaced by

F(x:t) — Uyt + Cygy

Assume also that w satisfies the homogeneous boundary conditions (4-23) and the initial
conditions

w(x,0) = f(x) —v(x,0)  wix,0) = g(x) — v(x,0)
Verify that the superposition u = v + w satisfies Eq. (4-22), the boundary conditions (1)
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and the initial conditions (4-24). An example of a suitable function v is

o(x,1) = (1 _ -’f) h(r)
b
This function interpolates linearly between the value A(z) at x = 0 and the value 0 at x = b.

29 (a) Solve the boundary- and initial-value problem
Uy — CPlpy = —g 0<x<b;t>0

u(0,t) = h, sin wt ub,t) =0

u(x,0) =0 u(x,0) = hyw

where g, hy, w are given real positive constants and

o 27 1,2
w # — n=12...
b

(b) Solve the boundary- and initial-value problem
Uy — CUy, = x(b — x) sin vt
u(0,t) = hy sin wt u(b,t) = h, cos wt

(b — x)hyw

u(x,0) =0  uyx,0) =
by

where v, hy, h;, w are given real constants and

30 If the string vibrates in a medium, e.g., air, a frictional force may be present. In the

case where the friction force is proportional to the speed the equation of motion of the -
idealized string is

Uy + 2yu, — ctuy = F(x,t) 0<x<bh;t>0 ¢))

Equation (1) is called the damped-wave equation. Here y is a known positive constant
and ¢ = V' Ty/p. It was observed in Prob. 2 that solutions of the homogeneous equation
may represent traveling waves whose amplitudes are attenuated as they travel. Assume
the ends of the string are fastened. Then the boundary conditions are given by Eq. (4-23).
Let the initial conditions be given by Eq. (4-24).

(@) The homogeneous damped-wave equation is (1) with F identically zero. Separate
variables in the homogeneous equation, and derive the normal modes

. nmx )
Un(x,t) = e " sin . (A, cos w,t + B, sin w,t) n=12,...

where the normal (or characteristic) frequencies
nim2c? v
w, = T — n=12,...

The normal modes are damped oscillatory provided the damping constant y is sufficiently
small. Henceforth assume this is so.
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(b) Consider the homogeneous damped-wave equation subject to the boundary conditions
(4-23) and initial conditions (4-24). Derive the formal series solution

- . hmX )

u(x,t) = e Z sin > (A, cos w,t + B, sin w,t)
n=1

where

2 [0 Ay 2 [b /
A,,=ZJ;f(x)sinn—Zidx any - +Eﬁg(x)51n—275dx

(c¢) Consider the damped-wave equation (1) subject to the homogeneous boundary con-
ditions (4-23) and the homogeneous initial conditions

u(x,0)=0 u(x,0) =0 0<x<bh

Assume a solution of the form in Eq. (4-36). Show that the functions ¢, must satisfy

2 2C2 )
@r + 2y + Y BT Fy(1) @x(0) = ¢1(0) = 0
k=1,2,..., where the F; are defined in Eq. (4-39). Thus derive the solution

_ytwl(tvé‘ ngé_,nnx
ux,t) =e Z — | e¥$sin [w,(t — &)]F,(E) smT

n=1 mJO

31 Derive the formal series solution.

Uy + 2yuy — Cllpy = —g 0<x<bh;t>0
u(0,t) =0 ulb,t) =0 t=>0

u(x,0) = x(b — x) uy(x,0) =0 0<x<bh

32 With regard to the string described in Prob. 30, a concentrated impulsive force

F(x,t) = 6(x — )01 — 7)

of unit magnitude is applied to the string at time # = 7 and at the point x = £&. The
motion starts from rest with zero displacement. Show that the subsequent motion is
given by

[e 0]
1 . nmx

2
G(x,t;6,1) = [;e—” ngla)—n si > sin n—f sin [w,(t — 7)]

where the w, are the characteristic frequencies derived in Prob. 30. Use substitution and
formal interchange of the operations of integration and summation to show that the
solution of the problem of forced motion derived in Prob. 30c can be written

t b
u(x,t) =f f G(x,t;&,7)F(&,7) d& dr
0 JO

Use this expression and the Green’s furiction together with superposition to derive the
solution of Prob. 31. What relation exists between this Green’s function and the Green’s

function obtained in Prob. 227

33 Give a complete discussion and derive the formal series solution of the problem
Uy + 2vu; — cuy, = Fi(x) sin wt 0<x<bh;t=0

u(0,t) = h, u(b,t) = hy t>0

ux,0) =f(x) wx0)=gx) 0=<x=<b
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Here v, h,, h,, and w are given real positive constants, and F;(x), f(x), g(x) are given real-
valued functions.

34 In the determination of the voltage distribution v(x,t) along a transmission line of
length b the following boundary- and initial-value problem arises.

Uz = LCvy + RCr; 0<x<h;tr>=0

v(0,t) =0 v(b,t) =0 r>0

v(x,0) = v, vdx,0) =0 0<x<h

Here L, C, R, and v, are given real positive constants, and L > R?*Cb*/=*. Derive the
formal series solution

s 2n — 1
v(x,t) = e BY/2L z A, sin (—n—l-rf sin (w,t + €,)
n=1
where
4 2Lw,
A, = %o - tan e, = d
7(2n — 1) sin €, R
[L72(2n — 1) — R2Cb%)%
W, = - n=12,...
2bLC™:

35 Derive the formal series solution

Uy + 2yu; — C*uy, = F, sin vt 0<x<b;t>=0
u(0,t) =0 uz(b,t) = hy sin wt t>0
ux,0) =0 u(x,0) =0 0<x<bh

Here Fy, y, v, hy, w are given real positive constants.

36 The vibrating string illustrates rransverse waves: the direction of motion of the indi-
vidual particles is perpendicular to the direction of propagation of waves. The occurrence
of elastic waves in a solid bar, e.g., metal, illustrates longitudinal waves: the direction of
motion of individual particles is the same as the direction of propagation of waves. Con-
sider a long, slender cylindrical homogeneous solid bar, of uniform cross section, which is
at rest with its axis coincident with the x axis. Theends of the barareatx =0,x = b > 0.
The rod is assumed to be perfectly elastic, so that if an elongation takes place as a result of
the application of external forces at the ends of the bar, tensile forces, directed parallel to
the x axis, are set up within the bar. If now the forces are removed, the bar vibrates
longitudinally in accordance with the laws of elasticity. Let &(x,7) denote the longitudinal
displacement at time ¢ of the point in the bar whose equilibrium position was x for ¢ < 0.
It can be shown that the function £ must satisfy the homogeneous wave equation

i — =0 0<x<bh;t>0

where ¢ = V/ E[p, E = modulus of elasticity, p = density. Accordingly waves of longi-
tudinal displacement occur. Assume the end x = 0 of the bar is held fixed, and the end
x = b is free. Then the boundary conditions are

§0,0)=0  &bt)=0 >0

The second boundary condition is a consequence of the relation T'= EA&,, where T is the
tensile force within the bar at the point x and A4 is the cross-sectional area of the bar. The



PROBLEMS 251

initial conditions are

(b, — b)x
b

where b, is the length of bar at maximum extension. Derive a formal series solution of

the boundary- and initial-value problem.
37 Derive a formal series solution of the problem

§(x,0) = §(x,00 =0 0<x<b

Ett_czém:czo OSXSb~t20
§0,0)=0  ME&u(bt) — EAE(bt)=0 t=>0

(b, — b)x
b

where M, E, A, b, are given real positive constants.

§(x,0) = f(x,00=0 0<x<b

38 Let L be the linear operator defined by
Lu = A(X)uz, + Cuse + Ay + Co(ue + [Ao(x) + Co(0)]u

Assume the coefficients are twice continuously differentiable, and A(x)C(¢) < 0 in the region
of the xt plane under consideration. Then L is a hyperbolic operator.

(a) Consider first the boundary- and initial-value problem

Lu=0 0<x<b;t=>0

au(0,t) + a,u,(0,t) =0 bu(b,t) + byul(b,t) =0 t>0

u(x,0) = f(x) ulx,0) = g(x) 0<x<b

where [0,0] is a given fixed interval, a,, a,, by, b, are given real constants such that

(as® + a,”)(b,® + b®) # 0
and f, g are given real-valued twice continuously differentiable functions. Assume a
separable solution

u(x,t) = X(x)T(t)

of Lu = 0, and show that the factors X, 7 must satisfy the linear second-order ordinary
differential equations

AX" + A, X'+ A X = AX

CT+ C\T+ CT = —iT

respectively, where 4 is a separation constant. Here primes denote derivatives with respect
to x, and dots denote derivatives with respect to z. Without loss of generality it can be
assumed that A(x) < 0, 0 < x < b. Multiply the differential equation satisfied by X by

the function

—exp I:f(AllA) dx:l

A

p(x) =

Show that the self-adjoint equation

(PX') +qX + ApX =0
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is obtained, where p = —A4p and g = —Ayp. Note that p(x) > 0 and p(x) > 0. The
appropriate boundary conditions on X are

a; X(0) + a,X’(0) =0 b, X(b) + b, X'(b) =0
Review Sec. 1 of Appendix 2. The problem in X is a regular self-adjoint Sturm-Liouville
problem. Accordingly the eigenvalues constitute a real sequence {A,} such that

<A< o <y < Apy <+ lim 4, = +o0

n—- 0

There are at most a finite number of negative eigenvalues. If Ay(x) > 0, all eigenvalues
are nonnegative. Corresponding to each eigenvalue 4, is a real-valued eigenfunction g,,.
The sequence {p,} of eigenfunctions forms an orthogonal sequence on [0,5b] with weight

function p

b
f p(X)P(X)P(x) dx = 0 n#m
0

(b) It can be assumed that C(z) > 0, t > 0. For each positive integer n there exists a
fundamental set 7,*)(¢), 7,2 () of the second-order linear equation

CT+ C,T+ (Co+A)T=0 t>0
such that T*(0) = 1, T'*(0) = 0, T'¥(0) = 0, and T,*(0) = 1. Define the normal modes
of the boundary- and initial-value problem

un(X,1) = QuATV(1) + B, T,P@®)]  n=1,2,...
Each normal mode satisfies Lu = 0 as well as the homogeneous boundary conditions of

the problem.
(c¢) Consider a superposition of normal modes

o9}
u(x,t) = > (AT + BT ()]
n=1
Show that if « is a solution of the boundary- and initial-value problem, the coefficients in
the series must be given by

1 b 1 b

A, = o T f p(x) f(xX)Pa(x)dx B, = ToT? f p(x)g(x)@n(x) dx
2l Jo n 0

where

b
lpal® =f pOPA(x)dx  n=1,2,..
0

(d) Consider now the problem

Lu = F(x,t) 0<x<b;t=>0

a,u(0,t) + ayu,(0,t) = 0 biu(b,t) + bou,(b,t) = 0 tr>0
u(x,0) =0 u(x,0) =20 0<x<bh

involving homogeneous boundary and initial conditions and the inhomogeneous partial
differential equation. Here F is a given real-valued twice continuously differentiable

function. Assume a solution of the form

u(x,1) = D @u(X)p.l1)
n=1
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where the @, are the eigenfunctions obtained in a above and the functions y,, are to be deter-
mined. Then u satisfies the boundary conditions. It will satisfy the initial conditions if

Ya(0) =0 12(0) =0 n=12,...

Substitute « into the partial differential equation, and show that the ¥, must satisfy
Cp + Crpn + (Co + Ay = Fut)  n=12,...

where

Fo(t) =

@nll?

The initial conditions and the differential equation uniquely determine the y,. With the
Y, determined this way, the formal series solution of the problem is obtained. Now,
using superposition, the formal series solution of the problem

b
f p(X)F(x,t)pa(x) dx n=12,...
0

Lu = F(x,t) 0<x<b;t=0

a,u(0,t) + a,u,(0,2) =0 bu(b,t) + bou(b,t) =0 t>0
ux,0) =f(x) wx0)=gx) 0<x<b

can be derived. If the boundary conditions are inhomogeneous
a(0,1) + apu(0,1) = ho(t)  bau(b,t) + bata(byt) = ho(t) 1> 0

where £,, h, are given functions, application of the technique outlined in Prob. 28 together
with superposition again leads to the formal solution.

39 Derive the formal series solution.

@) uy — ctuy,, — w?u = Fysin vt 0<x<bh;t>=0
u(0,t)=0 ulb,t)=20 t>0

u(x,0) = f(x)  ulx,0) = g(x)

where ¢, w, F,, v are given real positive constants, w # ».

(b) ”—“—um—zu,,=0 0<x<b;t>0
u(0,t)=0 ulb,t) =0 t>0
u(x,0) = f(x) uy(x,0) = g(x) 0<x<bh
© uy — A%, =0 0<a<sx<b;t=>=0
u(at)=0 ub,t)=0 t>0
ux0) =f(x) ux0)=gkx) a<x<b
40 Derive the formal solution of the problem

— *[(b?* — xDu)l, =0 O<x<b;t>0
u(@0,t)=0 lim u(x,t) exists t>0

2<t

ux,0) = f(x) ux0)=gx) 0=x=0b

in the form

u(x,t) = sz,,_ ( )(A cos w,t + B, sin w,t)
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where the P, are the Legendre polynomials, and the coefficients

4n — 1 (” x 4n — 1 [° x
An = n—1|7 d Bn = n—1| 7
5 f(X)P3n_s ( b) x b fog(x)Pz 1( b) dx

v0

The characteristic frequencies are
w, = c[2n2n — )% n=12,...
41 Derive the formal series solution of the problem

Uy — cA(xug), = 0 O0<x<b;t>0

lim u(x,t) exists ub,t)=20 t>0
—0
:‘>0

u(x,0) = f(x) u(x,0) =g(x) 0<x=<5»

42 (a) Let L be the linear operator defined in Prob. 38. Assume C, C, are constants,
C>0,C;>0. Also assume A(x) < 0,0 <x <b. Then L is a hyperbolic operator-

Suppose u is a solution of the homogeneous equation Lu = 0. Define the function

v(x,t) = u(x,t)exp (2551' t)

Show that v must satisfy the equation

C.2
AX)gz + Ar(X)vz + Cvy + (Ao + Co — —4_15)1) =0

Conversely, if v satisfies this partial differential equation, then  is a solution of Lu = 0,

Define the function

p(x) = exp ( f% dx)

Show that multiplication by p transforms the differential equation in v into

(pVz)e — rvee —quv =10

where

—Cp(x) _ [CPAC — Ao(x) — Colt )1p(x)
am - e = 20

r(x) =

Since p(x) > 0, r(x) > 0,0 < x < b, it follows that the transformed equation is hyperbolic

also.
(b) Consider the problem

Lu = A(X)upy + Cupe + As(X)uy + Cruty + Ao(x)u = 0

u(x,0) = f(x) ul(x,0) = g(x) 0<x<b5b

with boundary conditions one of the following:

u(0,t) = u(b,t) =0

u(0,t) = u,(b,t) =0

u(0,2) = u(b,t) =0

u(0,t) — hu(0,t) =0 uy(b,t) + hyuu(b,t) =0 hy>0;h,>0
u(0,1) = uy(b,t) =0

1
()
3)
“4)
&)
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Assume C, C, are constants, C > 0, C; > 0, and A(x) < 0,0 < x < b, as in part a above.
In addition assume
2

C
Ao(x)ZZIE 0<x<5bh

Then the problem can have at most one solution; i.e., if a solution exists, it is unique.
The proof of this fact can be made with the results of a above. By linearity, the difference
of two solutions of the given problem is a solution of the homogeneous problem, i.e., with
fand g identically zero. If u denotes this difference and v is as defined in a, then v satisfies

the homogeneous problem

(Pvz)e — rvyy —qv =0 0<x<bh;t>=20
v(x,0) =0 vdx,0) =0 0<x<bh
Bv) =0

where B(v) = 0 is symbolic of one of the boundary conditions (1) to (5), with « replaced
by v. Now v can be shown to be the trivial solution as follows. Define the energy

integral

b
E@) = %f (pv® + rv® 4 qu*) dx
0

Since p(x) > 0, r(x) > 0, and g(x) > 0, it follows that E(¢) > 0, t > 0. Differentiation
yields

dE b
d_ = | (pvgvet + rvws + qvvt) dx
d 0

b
= PUxUt

b
—f (pve)e — rvy — qov, dx
0

0
= p(b)v(b,t)vdb,t) — p(0)v,(0,2)v0,1)

Show that if the boundary conditions are either (1), (2), (3), or (5), then dE|/dt is zero for
t > 0, and so E has a constant value. Apply the initial conditions and show E = 0. In
turn prove that E = 0 implies v is identically zero. If the boundary conditions are (4),

show that

dE 1d L .
-~ 3% [h,p(0)v2(0,1) + hyp(b)v*(b,2)]

and so
E(t) — E0) = —[A;p(0)v*(0,1) + hyp(b)v*(b,t)]
By the initial conditions, E(0) = 0. Thus E(¢) < 0,7 > 0. In turn this implies E(t) = O,

t > 0, and so v is identically zero.

43 (a) Prove the following existence theorem for problem (4-25). Let f have a continuous
fourth derivative and g have a continuous third derivative on [0,6] and such that

fO) =0 =f0®)=f"®)=0 g0)=g"0)=gb)=g"(d)=0
Then the series (4-30), where the coefficients are given by Eqs. (4-33) and (4-34), defines a
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function « which is twice continuously differentiable in x and ¢ for 0 < x < b, t > 0 and
satisfies the homogeneous wave equation and the boundary and initial conditions of prob-
lem (4-25). Hint: Use integration by parts and show that

263 253 b nmwx
A, = B, = — £ (x) cos — dx
ni 0 nimic 0 b
Hence there exists a constant M > 0 such that
M M
|A,,|<—4 |B,‘|<—4 n=1,2,.
n n
Now
. nmx nwct nwmet 2M
smT A, COST + B, sin > < |A,| + |B,| < —

Let T > 0 be fixed. Use the Weierstrass test in conjunction with the convergent series
of constants

< 2M

n=1 nt

to prove the series (4-30) converges uniformly for 0 < x < b, 0 < ¢ < T and so defines
a continuous function u there. Since T > 0 is arbitrary, the function u defined by the
series is continuous for 0 < x < b, t > 0. Clearly u satisfies the boundary conditions of
problem (4-25). Since the series for u(x,0), u,(x,0) converge to f and g, respectively, it
follows that u satisfies the initial conditions. It remains to show that u is a solution of the
homogeneous wave equation. Since each normal mode u, is a solution of the wave
equation, one need only show that the series can be differentiated twice with respect to x
or twice with respect to z.  Show, for example, that the series

o] [e] n 17_
Z - z b2
converges suitably. Do the same for the series obtained by differentiating termwise twice
with respect to z.

(b) Prove the following existence theorem for problem (4-35). Let F have continuous
third partial derivatives with respect to x and ¢ such that

azu,,

0 = F(0,t) = F(b,t) = Fpul0,) = Fuubst) =0

Then the series (4-41), with the functions F, defined as in Eq. (4-39), converges and defines
a function # which is twice continuously differentiable for 0 < x < b, £ > 0 and which
satisfies problem (4-35). Hint: From Eq. (4-37) and the form of the series (4-41) it follows
that if the series is suitably convergent, the function u so defined satisfies the homogeneous
boundary and initial conditions. Fix T > 0, and let

M(T) = max [F,..(x,t)] 0<x<h;0<t<T
Use integration by parts to show

26°M(T)

n=12,...
nds

Fot) <
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and hence

26°TM(T)

niric

lpa()] < n=12,...

Use these inequalities to prove the series (4-41) converges uniformly on 0 < x < b,
0 <t < T and so defines a continuous function there. In addition show that the series
obtained by differentiating termwise twice with respect to x converges uniformly and

© 2,2
Uelt) = > (—%)¢n(t)sin"i; 0<x<b;0<t<T

n=1
Since
Pn = —0.’Pp + Fy
show that

[@n(t)] < 0,2 |@a(t)] + |Fa(t)] < 20*°M(T)(cT + b)

n2m?

Thus the series obtained by differentiating termwise twice with respect to ¢ converges
uniformly, and

d . nmx hod  nmx
Uy = z @n(2) sin % = Z [—w.2pa(t) + Fy(t)]sin %-
n=1

n=1
Hence

[s0]
Uy — Cllpy = an(t)sin'?=F(x,t) 0<x<h;0<t<T

n=1

44 Recall Prob. 12 and the telegrapher’s equation, which results from the transmission-
line equations. In Prob. 17 the initial-value problem for this equation was solved with
the aid of the Riemann Green’s function. If the transmission line is of finite length,
boundary conditions on the voltage and current occur at the ends of the line, in addition
to the prescribed initial conditions. In addition an external impressed voltage may be
present. The resulting boundary- and initial-value problem in terms of the telegrapher’s
equation has the form

Lu = uy;; + 2yu, + 0*u — c*uy, = F(x,t) a<x<b;t>0
au(a,t) + asula,t) = hy(t)  buu(b,t) + boir(byt) = he(t) >0
ux,0) =f(x) ux0)=gx) a<x=<b

Here p, w are real nonnegative constants, and c is.a real positive constant. If w = 0,
y = 0, the wave equation results. If w = 0,y > 0, the damped-wave equation is obtained
(see Probs. 30 to 35). Note that the operator L is a special case of the operator discussed
in Prob. 38 and also is a special case of the operator considered in Prob. 42. Accordingly
the results obtained in those problems apply to the present problem. In particular, if the
corresponding homogeneous boundary conditions take one of the forms (1) to (5) stated
in Prob. 42, there is at most one solution.

(a) As a special case consider the problem

Lu = F(x,t) a<x<bh;t>0
u(@t)=h(t)  ubt)=hy(t) =0
u(x,0) = f(x) udx0) =gx) a<x=<b
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where y > 0, w > 0,and F, h,, ks, f, and g are given functions. First it is desired to remove
the inhomogeneity in the boundary conditions. Consider the function

x — 2b)hy(t)  ax(a — x)hy(t)

_ X
W) = — o0 2(a — 2b)

This function satisfies the boundary conditions. If v satisfies
Ly = F(x,t) — Lw a<x<b;t>0

v(a,t)=0 v,(b,t) =0 t>0

v(x,0) = f(x) v(x,0) = g(x) a<x<hbh

then u = v + w is a formal solution of the problem.
(b) Assume now that the constants w, ¢ are such that

2 2 i *
Y < w? -+ l:Z_(_b—_a)}
Consider the problem
Lu=0 a<x<b;t>0
u(a,t)=20 u(b,t) =0 t>0
u(x,0) = f(x) ufx,0) = g(x) a<x<b

Separate variables, and derive the formal series solution

(v 0]
u(x,t) = et Z (A, cos v,t + B, sin v,t)sin [u,(x — a)]

n=1
where
2 b
An = b——_—afa f) sin [pn(x — a)) dx
B, = 74 + 2 fb £(x) sin [un(x — a)] dx
Vo valb—a)/,
n=%:lb__—1:; Vo = (0,2 + @? — p?)¥E

Wy = ClUp n=1,2,...
(c¢) Consider the problem

Lu = F(x,t) a<x<b;t>0

u(a,t) =0 ub,t)=0 t>0
u(x,0) =0 u(x,00 =0 a<x<b

* where Fis a given function. Derive the formal series solution

o t
u(x,t) = z {i j e~ 77 gin vt — 7)]Fn(7) d-r} sin [t.(x — a)]
0

n=1\V=
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where
) b
Fu(t) = —f F(x,t)sin [un(x — a)] dx
b—a/,

(d) Choose F(x,t) = d(x — £)(t — r), and derive the formal series expression for the
Green’s function

G(x,t;f,'r) =

11> L sin [uy(x — @)]sin [n(E—a)] sin [t — 7))

n=1"n

b—a

Thus, if H(x,t) = Lw, where w is the function described in a, the formal solution of the
problem posed in a is

[e o]
u(x,t) = et z (A, cos v,t + B, sinv,t)sin [u,(x — a)]

n=1
t b
+f f G(x,t:6,7)F(E,7) — H(E,m)] dE dr
0Jg

Sec. 4-4

45 (a) A function of the form
u= w(x,y)eii“’t = \/——1; w real and positive

is called harmonic time-dependent. Show that in order for u to be a solution of the homoge-
neous wave equation (4-45) it is necessary that the amplitude factor satisfy

6()2

sz+va+k2w=0 k* = —

CZ

the scalar Helmholtz equation in two dimensions.
(b) Assume a solution of the Helmholtz equation of the form

yp = etl@+by) 4 B real constants

and so derive the plane harmonic wave functions

2
u = etlazpytot) o + /32 = k% = w

cZ

These have sinusoidal variation in the direction of each space axis as well as time.
(c) Assume a solution of the Helmholtz equation of the form

yp = e?*@Bv o B real constants
and so derive the plane harmonic wave functions

2
U= ei(awiwt)—ﬂﬂ ﬁz =% — k? = o2 — C_O_

c2
If B > 0, such a wave function has its amplitude decaying exponentially in the positive
y direction.
(d) Derive the wave functions

w2
— 0 +wt ] 2
u = e*@thy a, p real; « —|—ﬁ~§
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(e) Construct a nontrivial real-valued wave function such that

lim u(x,y,t) =0 u(x,0,t)=0 u(x,y,0) =0

Z— 0

(f) Construct a nontrivial real-valued wave function such that
u(x,y,0) = 0 all x, y u(0,y,t) =0 all y, ¢ u(x,0,t)=0 all x, ¢

46 (a) Assume that for each choice of (suitably differentiable) function ¢, the function u
defined by Eq. (4-46) is a solution of the wave equation (4-45). Show that the functions
7, { must satisfy the system (4-47).

(b) Suppose { is defined by Eq. (4-51). Show that the function n must satisfy the wave
equation and

n-an:tho
c

where Vo = n,i + 7,j is the gradient of #. This is a linear first-order partial differential
equation with constant coefficients, the independent variables being x, y, . Apply the
results of Prob. 18, Chap. 1, and show that # must be of the form

n = f(x & cnyt, y + cnyt)

Let r = x 4 n,ct and s = y &+ cn,z.  Substitute the function 7 into the wave equation,
and show that

ni/2f;‘r + znmn'yfrs + nm%s =0

This is a factorable linear second-order equation. Apply the results of Sec. 2-2, and show
that

f(r,s) = rF(n,r + nys) + G(ngr £ nys)
is the form of /. Thus deduce the general form of solution given in Eq. (4-52).

47 (a) Assume a solution of the wave equation (4-45) of the form

U= n(x’y)e'i{(z.y.t) i=v_—_1

where 7, { are real-valued twice continuously differentiable functions. Show that #,
must satisfy the system

An+n(%— |V§|2) =0 2V77-V§+17(A§—%) —0

where V is gradient operator, A the laplacian, in two dimensions x, y.
(b) With reference to part a assume
{=k:r — wt

where k = k,i + k,j is an arbitrary real vector and  is an arbitrary real positive constant.
Show 7 must satisfy the scalar Helmholtz equation

w?

An+(—c—2—k2)n=0 k = |k|

and also

k-Vn=0
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which is a linear first-order equation with constant coefficients. Call 7 the amplitude
and { the phase. At a fixed time ¢ the lines { = const in the xy plane define a family of
curves of constant phase. The propagation vector is k = V{, and k is normal to each line
of constant phase. The curves 7 = const define the family of curves of constant amplitude
of the wave. Thus the curves of constant phase and the curves of constant amplitude are
orthogonal families.

(¢) From b and Sec. 1-4 show n must be of the form

n ':f(kyx - kmy)
Let s = k,x — k;y. Substitute n into the Helmholtz equation and obtain

w2

k2c?

[ —p¥fs)=0 ur=1-—
Thus

7 = etr(kyz—kay)

(d) Choose a set of values k,, k, and a value w > 0 such that w < kc. Then (taking the
positive root) 0 < u < 1. Now verify that the function

u = Ae:tﬂ(kyx—kxy)eii(k'r—wt) A = const

is a solution of Eq. (4-45). Such a wave function represents a plane harmonic wave with
amplitude

n = Ae:tu(kyac—kzy)
a function of x and y. The speed of the wave is

’ w<
cC = — C
k

For example, if 0 < w < ¢, the function

(c* — w?)’t
e —

u=ce " cos(x — wt) 7

is a wave function and represents a two-dimensional sinusoidal wave profile which travels
in a direction parallel to the x axis with speed ¢’ = w < c¢. The amplitude 7 = ¢™#*
decreases exponentially with increasing y. These examples illustrate dispersion: the speed
of the wave is a function of the frequency w.

48 Apply the Poisson-Parseval formula (4-57), and construct a solution of the initial-value
problem (4-56) given the functions f'and g.

@ fCy)=1 gxy)=0 b) f)=0 gy =1

49 In the initial-value problem (4-56) let the given functions fand g be independent of y.
Then it is easy to verify directly that D’Alembert’s formula (4-15) furnishes the unique
solution. Show that the Poisson-Parseval formula (4-57) reduces to (4-15) in this case.
Hint: Let £ = x + rcos 6 and n = y + rsin 6 in the double integrals in (4-57). Then
the domain of integration becomes the disk bounded by the circle

€ —xP+ @ —y*=cyt



Ty N

e

262 THE WAVE EQUATION

Suppose f'is independent of y. Then

J‘ct 27 f(x + rcos 0) b m+ctf(§) dEJ'Hy dn
————— rdrdf =
0 Vit — 2 —uty VO — (€ = %) — (0 — yF

where u = V¢? — (§ — x)2. Now carry out the integration with respect to 7.

0 r—ct

50 (a) In plane polar coordinates (r,6) the homogeneous wave equation (4-44) takes the
form
02u . (8%{ 1 ou 1 azu)

or? - ot | ror | r2oee

A solution independent of 0 is called a circularly symmetric wave function. Consider a
function

ulr,t) =f(r —ct) r=(x*+ yH*

Such a function represents a circularly symmetric traveling wave which is propagated
radially outward from the origin with speed c. Show that no solution of the wave equation
of this form exists (apart from the trivial case f = const).

(b) Show that there does not exist a nontrivial amplitude function 7(r,t) such that

u=nrt)f(r—ct)
is a solution of the homogeneous wave epuation for arbitrary choice of f.
(c) A solution of the homogeneous wave equation in polar coordinates of the form

u = R(r)e ‘@ w real and positive; i = V-1

is called harmonic time-dependent. On each circle r = const the variation of u is sinusoidal
with time 7. ‘Substitute into the wave equation, and show the radial dependent factor R
must satisfy

w?* R

rR” 4+ R + 0

Bessel’s equation of order zero. Thus derive the circularly symmetric wave functions

wr wr .
u= |:AJ0 (—) + BY, (—):|e_“"t
c C

where A, B are arbitrary real constants, and J,, Y, denote the Bessel functions of the first
and second kind, respectively, of order zero. Recall that Y, has a logarithmic singularity
at r = 0. Hence if the region in the xy plane in which solutions are desired includes the
origin, the choice B = 0 is necessary.

51 The homogeneous two-dimensional damped-wave equation is
U + 2yu, — c*Au =0 -

where y is a real positive constant and Au denotes the two-dimensional laplacian of u.
Assume a solution of the form

u=ce "
and show that » must satisfy

vy — Y — c2Av =0
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Assume a solution of this equation of the form

v = y(x,y)e " o real and positive; i = V —1

Show that y must satisfy the scalar Helmholtz equation

Ay 4+ pty =0 ﬂ2=w2ty2
Let ’

k = ki + k,j

be a vector in the xy plane such that
K| = g = (w? + y?)%

Show that

p=eXT  r=xi+ yj

satisfies the scalar Helmholtz equation. Thus derive the solutions

u = e—vte—i(kT—ot)

of the damped-wave equation. These represent two-dimensional damped traveling waves

which move with speed ¢’ = w/u < c in the direction of the vector k.

Sec. 4-5

52 (a) Consider problem (4-79) for the freely vibrating membrane with fastened edges
when the boundary C is a rectangle. Assume the membrane at rest occupies the domain
defined by

0<x<a 0Zy<b

The boundary conditions can be written as

u(x,0,t)=0 u(x,b,t) =0 0<x<a;t=>0

u@O,y,t) =0  u(a,yt)=0 0<y<b;t>0

If a separable solution of the form u = @(x,y)T(t) is assumed, the boundary conditions on
u imply that the space-dependent factor ¢ must satisfy the boundary conditions

@(x,0) =0 @(x,b) =0 0<x<a

0,)=0 @@y)=0 0<y<b

These conditions together with the Helmholtz equation (4-64), written in rectangular
coordinates, constitute an eigenvalue problem for the operator A.  This eigenvalue problem
was solved in Example 3-5 in connection with finding an eigenfunction expansion for the
solution of Poisson’s equation on the rectangle with the same boundary conditions. Review
Example 3-5, and verify that the eigenfunctions of the problem are

<p,,m(x,y)=sin’ﬂsin? n=1,2...;m=1,2,.
a

corresponding to the eigenvalues

2.2 2.2
nsmw mem
}'nm: 2+ 2 n:laz,-°°;m:112’--
a b
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The eigenfunctions are orthogonal over the domain

a°b
f f Pam(XY)Pro(x,y)dx dy =0 (n,m) # (p,q)
0J0

These eigenfunctions are not normalized, since

a b ab
‘anz(X,y)CiXdy=— n=12...;m=1,2,...
0vo 4

The time-dependent factor corresponding to @y, is
Tom(t) = App €OS Wt + By SIN W pt

where the w,,, are the characteristic frequencies:

— n\® m\¥]*
wnntzc\/lnm=C77|:(—) + (—b—) } n———_l) 2’-.- ;m=1, 2,-..
a

Observe that in contrast with the vibrating string the vibrating membrane possesses a
doubly infinite sequence of characteristic frequencies. The normal modes of vibration are

nwx . mmy

Unm(X,Y5t) = (A pm COS Wyt + B SIN Wppt) SID - sin 5

(b) In order to satisfy the initial conditions consider a superposition of normal modes

nmx may
u(x,y,t) = A pm COS Wpmt + Bppm SIN Wyt ) SID — sin —=
(xopt) = 2 z ( " )sin — sin —
n=1 m=1
If the series converges suitably, it is clear that the function u so defined satisfies the boundary

conditions. The initial conditions are satisfied if

0 o0
u(x,y,0) = z z A Sin X in I = f(x,y)
n=1 m=1 a
[ee] o]
ux,y,0) = Z z W i Bnm SIN nm sin mny _ = g(x,y)
n=1 m=1 a b
0<x<a,0<y<b Theseries on the left must be the double sine series for f and g

respectively It follows that the coefficients A,n, By, are given by
4 a b
m=—f f f(x,y)sin?z)—csin?dxdy

f f g(x,y) sm —_— sm my dx dy
0 Jo b

(¢) Assume the membrane is released from rest with the initial displacement

nm:

abw .,

u(x,y,0) = Axy(a — x)(b — y) A = const

Determine the formal series expression for the resulting motion.
(d) The membrane is released from rest with the initial displacement

u(x,y,0) = A sin Za)f sin sz A = const

Determine the subsequent motion. What is the speed of the midpoint at time #?
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53 (a) The rectangular membrane with fastened edges executes forced vibrations under the
driving force

F(x,y,t) = Fy(x,y) sin wt

Assume that @ # w.m, all n, m, where the w,, are the characteristic frequencies of the
rectangular membrane derived in Prob. 52. The motion starts from rest with zero dis-
placement. Utilize the eigenfunctions obtained in Prob. 52 and Eq. (4-78) to derive the
expression for the subsequent motion in the form

§’ i B © SN Wyt — Wy SID O | nwX | MTY

u(X,}’,t) = wnm(wg _ wnmz) SIH a Sln b
where

4 a b
B = — J .[, Fo(x,y) sin -—Z— sin —b—y dx dy

(b) In part a it was assumed that the frequency of the driving force does not coincide with
a characteristic frequency. Derive the series solution if w = w,,, p, ¢ a given fixed pair
of positive integers. This is the case of resonance.

(c) Derive a formal series expression for the motion of the rectangular membrane if the
initial conditions are

2
u(x,y,0) = (1 — cos ix) (1 — cos 2%)1) ul(x,y,0) = 0
a

and the external force of gravity acts on the membrane.

54 (a) Recall the properties of the unit impulse function given in Sec. 3-5. A con-
centrated impulsive force per unit mass and of unit magnitude applied at time z = 7 at
the point (&,7) on the rectangular membrane can be represented

F(x,y,t) = 6(x — £)o(y — n)d(t — )
Thus
F(x,y,t)=0  (x,p,t) # (&£,1,7)

t fa (b
J f f F(x,y,t)dxdydt =1 t>T
0Jo Jo

Let the edge be fastened, and assume zero initial conditions. Use Eq. (4-78), and derive
the formal series
G(x,y,t;Em,7) = — z z — sin ilad sin nlé- sin mry sm —_ sm [Wnm(t — T)]

b /=y iy Wam a a b b
for the subsequent displacement. Here the w,, are the characteristic frequencies of the
freely vibrating rectangular membrane. It can be shown that the series converges uniformly
on the rectangle and defines a continuous function. The function G is called the Green’s
function of the problem. In order to simulate the complete motion the function G is
defined to be zero for + < 7. Note that G satisfies the boundary copdition and has the
symmetry '

G(¢&m,tx,y,m) = G(x,y,t;6,m,7)
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(b) For the rectangle 0 < x < a, 0 < y < b the solution (4-78) of problem (4-80) is
nwx _ mmy

u(x,y,t) = z z {w J‘ Fro(7) Sin [Wpn(t — 7)] dT} sin o sin 5
nm 0

n=1 m=1

where
4 a [°b

Fon(r) = — F(x,y,7) sin ITX sin 7y dx dy
ab 0 Jo a b

Use formal interchange of the operations of summation and integration, and show the
solution can be rewritten

t fa *b
u(x,y,t) =f j f G(x,y,t;Em,7)F(En,7) d§ dn dr
040 JO

(¢) Therectangular membrane with fastened edges is at rest in its equilibrium configutation.
At time ¢ = 0 the membrane is struck in such a manner that the point (£,7) receives a
velocity impulse of unit magnitude. Thus the initial conditions are

ux,y,0) =0  ufx,y,0) = d(x — E(y — 1)

Apply the formulas for the coefficients Ann,, Bnm derived in Prob 52b, together with the
properties of the d function, and show that the subsequent motion is given by

u(x,y,t) = G(x,y,t;£,1,0)
(d) Verify that

a b a b
u(x,y,t) = f f Gx,y,t;6,1,0) f(§,m) dE dn +f f G(x,y,t;6,m,0)g(E,m) dE dn
0J0 0 JO

furnishes the solution of iaroblem (4-79) for the case of the fastened rectangle by sub-
stitution of the series for G and G, evaluated at = = 0, formal interchange of the operations
of summation and integration, and comparison with the series solution derived in Prob. 52b.

55 If the edge of the membrane is elastically constrained, the boundary condition is

ou
— 4+ ou=0 on C
on

where 0/0n denotes the derivative in the direction of the exterior normal to C and o is a
positive constant. Let the initial conditions be u(x,y,0) = f(x,y) and u(x,y,0) = g(x,y).
Assume that a known external force F(x,y,t) per unit mass acts on the membrane. Derive
the expression for the motion. Also derive the series expression for the Green’s function
of the problem.

56 (a) If the membrane vibrates in a medium, a frictional force occurs. In the case
where the retarding force is proportional to the speed, the equation of motion is

U + Zyut — c? Au =F

the two-dimensional damped-wave equation. Here y is a positive constant, ¢ = VT ol ps
and F is an external force per unit mass. It was observed in Prob. 51 that solutions of the
corresponding homogeneous equation may represent two-dimensional traveling waves
whose amplitudes decrease with increasing time ¢z. Let the membrane be rectangular:
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0<x<a, 0<y<b, with fastened edges along the boundary C. Derive the normal

modes

¢ nmx | mﬂ'y
Unm = €~ VYA, COS Vyut + B, sin v,,t)sin — sin —= 5
a

and the characteristic frequencies
Vim = (Wpn? — Y2)VE n=12...,m=12,...

where the w,,, are the characteristic frequencies of the undamped rectangular membrane
with fastened edges (see Prob. 52a) and the A, B,, are arbitrary constants. Observe
that the normal modes are time harmonic if the damping constant y < w;;. Assume
henceforth that this is the case.

(b) Let the initial conditions be u(x,y,0) = f(x,y) and u(x,y,0) = g(x,y). Derive the
series solution

[+ 0] [e 6]
nmwx m7T_}/
t
u=e? Zl zl(A”m COS Vpmt + B, SIN ¥,,t) sin — sin —= 5
n=1lm=

where A,,, = A and B,,, = YAun/Vam + Bum, the coefficients A, B.. being those
defined in Prob. 52b, except that v,,, replaces w,, in the expression for B,,,.
(¢) Consider the problem

Uy + 2yu, — c® Au = F(x,y,t)
u=20 onC
u(X,y,O) =0 ut(x’y,o) =0 (x,y) in .(ZT

Assume a solution

Follow the method of the text, and derive the solution

: nwx . mmy
m,,(t) sin — sin —=
a b

uMs

u(x,y,t) = e‘y‘v(x,y,t)

o(x,yt) = Z 2 {

n=1m=1

nmwx m
thF,,m(T) Sin [Vpn(t — 7) d7} sin 2 gin —2 ™)
0 a b

where F,,(t)is defined in Prob. 54b.
(d) Derive the Green’s function of the problem as the series

nwx nn§ | mmy

Glx,p,t:,m.7) = —e—y“—f’ S z

nlml a a

57 Derive the series expression for the vibrations of a circular membrane of radius a
with fastened edge if the external force per unit mass

F(r,t) = @(r) sin wt

acts on the membrane. Here @(r) is a given continuous function. The membrane is
released from rest with zero displacement. Distinguish two cases: (i) @ # W, all n, m;
(i) o = w,, for a given pair of integers p, ¢, p > 0, ¢ > 1 (case of resonance). Here the
Wy, are the characteristic frequencies derived in Example 4-2. Write the solution for
the particular case ¢(r) = F, = const.
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58 The circular membrane described in Example 4-2 is released from rest with the initial
displacement

u(r,0,0) = A(a® — r? A = const

Instead of being fastened, the edge is elastically constrained. Thus the boundary condition

u
— 4+ ou=20 onr =a
or

replaces the fixed-edge condition. Here o is a real positive constant.  Assume the external
force of gravity acts on the membrane. Derive the series expression for the vibrations

of the membrane.

59 Assume no external force acts on the surface of the membrane described in Example
4-2. However, by external means the edge of the membrane is forced to vibrate at a fixed

frequency w, so that the boundary condition
u(a,0,t) = @(6) sin wt 0<60<2m;t >0

replaces the fixed-edge condition. Here @(6) is a given piecewise smooth function which
is periodic, of period 27. The motion starts with zero displacement. Derive the expres-

sion for the subsequent vibrations.

60 A thin elastic circular membrane of radius a has its edge fastened. An external force
of magnitude F, sin wt (F,, w positive constants), confined to a concentric circle of radius
b < a, is applied to the membrane for r > 0. The membrane starts from rest and with

zero displacement. Determine the series expression for the subsequent motion.

61 For the circular membrane described in Example 4-2 assume a frictional force propor-
tional to the speed. Then the equation of motion is

Uy + 2yu; — c* (un + hy + ui;’) = F(r,0,t)
r r

where y is a given positive constant and F'is a known external force per unit mass. Assume
the edge of the membrane is fastened. Give a formal derivation of the solution of the
boundary- and initial-value problem. Derive the series representation of the Green’s
function of the problem. Find the motion for the particular case where the membrane

is released from rest with zero displacement and
F(r,0,t) = F, sin wt F,, w real positive constants

62 (a) Let 8 be a fixed angle, 0 < # < 2, and let # be the sector whose boundary con-
sists of the ray segments

60=0 0<r<a 0=28 0<r<a
together with the circular arc
r=a 0<0<8§p

Here r, 6 are polar coordinates in the plane. Assume an elastic membrane occupies Z in
its equilibrium configuration and the edge of the membrane is fastened along the boundary
C of Z. The membrane is given an initial displacement and speed

u(r,0,0) = f(r,60)  u(r,0,0) = g(r,0)
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A known exterior force F(r,0,t) per unit mass acts on the membrane. Derive a formal
series expression for the subsequent motion. Also derive the series representation of the
Green'’s function of the problem.

(b) The circular membrane described in Example 4-2 is fastened along the ray segment
6=0 0<r<a

as well as on the circle » = a. Use the results of a to obtain a series expression for the
subsequent motion of the membrane.

63 Let Z be the region bounded by the concentric circles r = a, r = b, where 0 < a < b.
An elastic membrane occupies £ in its equilibrium configuration. The edge of the mem-
brane is fastened along the circles r = a,r = b. Give a formal discussion of the problem.
Derive the series representation of the Green’s function of the problem. Find the expres-
sion for the subsequent motion if the membrane is released from rest with zero displacement
and the external force per unit mass F(r,6,1) = F, sin wt acts on the membrane, where
F,, w are given positive constants.

64 (a) The kinetic energy of an element d4 of the vibrating membrane is (pu;? d4)/2,
where p is the density (mass/unit area). Hence the total kinetic energy of motion is

K:-gﬁu,ZdA
R

To obtain an expression for the potential energy consider an element d4 when the membrane
lies in its equilibrium configuration. Let dA4’ be the area of the corresponding element at a
subsequent time # > 0. The change in area is

dA
da’ — dA = (1 + |Vul)S dA — dA ~ |Vul* =

This deformation occurs in the presence of an elastic restoring force of magnitude Tp.
Thus the potential energy due to tension is

dA
T, IV”IZT

The total potential energy is

= EffquP dA
2
4

The total energy is

1
E=K+ V= Eff(putz + Ty |Vu|?) dA

(b) Show that in a traveling wave
u=fk-r— wt)

where

k=ki+kij r=xi+yj

and w = |K| ¢, the kinetic energy equals the potential energy.
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(c) The nth normal mode of vibration for the membrane with fastened edge is

Un = Pu(X,Y)Tn(t) = @a(x,y)(Ay COS Wyt + By Sin wnt)
= C, cos (w,t — €,)

where

Co= (4" + B,)t  tan e, = Bad,

The space factor @, satisfies

Ap, + 2@, =0 inZ g,=0 onC

The nth characteristic frequency is w, = ¢V A,. Show that the energy in the nth normal
mode is

_ pwtCr? @nll?

E,
2

a constant proportional to the square of the characteristic frequency and proportional to
the square of the amplitude C,.

(d) If the edge of membrane is fastened, the initial conditions are

u(x,y,0) = f(x,y)  ulx,y,0) = g(x,y)

and no external forces act on the membrane, then the total energy of motion is the constant
E=f f f {TgCe ) + ¢ |Vf|?} d4
]

Use this result and the result in ¢ above to show that the total energy of motion is the sum
of the energies of the individual modes

N ilo

o] o]
E= z E, = z 0.*Ca? |lal®
n=1 n=1

Hint: For c,

E, =

g f f (T2, + T2 |Ve,|?) d4
R

Apply Green’s formula derived in Prob. 12a, Chap. 3, and show

f IV(pnlz d4 = j‘nff(pnz dA

[ 4
5o that E, = p(Ty? + 0,2T.2) |@.]1%/2.

65 Prove the following existence theorem for problem (4-79) when Z is the rectangle
a<x<b c<y<d Let the given functions f and g be four times continuously
differentiable and such that

f=Af=g=Ag=0  on the boundary C

Then the formal series solution derived in Prob. 52b converges uniformly on # and defines
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a twice continuously differentiable function u which satisfies the homogeneous wave equa-
tion and the boundary and initial conditions. Hint: Recall

fftp A dx dy =ff¢ Ay dx dy
74 4

holds for every pair of twice continuously differentiable functions on # which vanish on
the boundary C. Let @,, be the eigenfunction derived in Prob. 52a. From Prob. 52b,
the fact that Ag,,, = —A.n@.m, and the above, it follows that

4 4
S - — A@ i dx d
Apm abfff%mdxdy ablnmef Pnm dx dy
R R
= 4 Afdx dy = 4 A Afdxd
= T b || P Ay = 2o Prm Of dx dy
% 73

4
= bkt ﬂ Fom B8/ B2 Y
nm .@

Hence

4 M
P f f [Punl 1881 de dy < 7=
’ ,

where M is a positive constant independent of » and m. Similarly |B,n| < M/®umAnm? <
Mj4,,2 Thus

| Anm| <

|(Anm €OS Dpmt + B SIN Wuind )Pam(X,Y)| < |Am| + | Bam| < T

for all x, y, z. 'A dominant convergent series is

z z FIE: dam = | —] + _b-

n=1m=1 "nm a

Accordingly the series of Prob. 52b converges uniformly on %. Now show that the sories

obtained by differentiating termwise twice with respect to ¢ converges uniformly and the
series obtained by differentiating termwise twice with respect to x, and also with respect

to y, converges uniformly on Z. Hence show u satisfies the homogeneous wave equation.

Since the series for u converges on Z for t > 0, it is clear that u satisfies the boundary
conditions. To show u satisfies the initial conditions one can apply theorems on double
Fourier series analogous to those stated in Sec. 2 of Appendix 2. Alternatively the

completeness of the set {@.m(x,y)} in the space of all functions continuous on # and
vanishing on the boundary implies the satisfaction of the initial conditions. Since the
series converges uniformly in x and y at 7 = 0,

0 e}
u(x,}’,o) = Z Z Anmtpnm(xy_y)
n=1m=1
Let p, g be a fixed but otherwise arbitrarily chosen pair of positive integers. Multiply both

sides of the above equation by ¢,,, integrate over £, interchange the order of summation
and integration, and apply the orthogonality properties of the sequence {@..}. The
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result is

y .
Ay = ;Effu(x,y’o)ww(x’y) dx dy

R
But the coefficients A, are the Fourier coefficients of f with respect to the ¢,,,. Hence
ff [u(x’)’,o) — .f(x,y)](an(xsy) dx dy =0
R

foralln, m. Since fvanishes on the boundary of £, so does the difference u(x,y,0) — f(x,y).
Hence the completeness property implies

u(x,y,0) = f(x,y) a<x<b;c<y<d

The remaining initial condition is shown in the same way.

66 Prove the following existence theorem for problem (4-80) when Z is the rectangle

a<x<bc<y<d Letthegiven function F be four times continuously differentiable
with respect to the independent variables and such that F = AF = 0 on the boundary

for £ > 0. Then the formal series solution written in Prob. 54b converges uniformly on %
and defines a twice continuously differentiable function # which satisfies the inhomogeneous
wave equation and the homogeneous boundary and initial conditions.

Sec. 4-6
67 Let the source function in problem (4-104) be a point source, of strength Fy(t), located
at the fixed point (xo, yo, Zo):

F(x,p,2,t) = 0(x — x0)0(y — o)z — z0)Fo(t)
Then
F(xy}’,Z,t) = O (xsysz) # (x09y0,20)

and
fffF(x, ¥,z,t) dx dy dz = F(t)
b

whenever ¥ includes the point (xo,0,20). Use Eq. (4-107) to show that the resulting field
at a point P(x,y,z) distinct from (xo,y,,2,) is

0 0<Lct<r
u(x,y,-"-',t) = Fo(t - r/C)
4mc?r

where r? = (x — x0)* + (y — yo)® + (z — z)®. Observe that u defines a spherically
symmetric wave. Accordingly, the field due to a time-harmonic point source

ct>r

F(x,y,z,t) = Fod(x — x0)0(y — y0)8(z — zo)e™**

which vanishes, together with its first derivative with respect to ¢, at # = 0 is given by
0 0Lca<r

u(x,y,z’t) = Foe—im(t—’r/c)

ct>r
4arctr
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Show that the field due to an instantaneous point source located at (xo,0,25) at time f,
of strength Fy, is given by

0 O0<ect<r
u(x,y,z,t) = { Fydl(t — t,) — rfe]

4mwcir

ct>r

68 Let the source function in the two-dimensional problem (4-58) be a point source of
strength Fy() located at (x,,y,):

F(x,p,t) = 8(x — x0)0(y — yo)Fo(2)

Apply Eq. (4-59) and show that the resulting field at a point P(x,y) distinct from (xo,y)
is given by

0 0<ct<r
ux,y,t)={ 1 J‘ t—rlc Fy(7)
0

dr ct>r

\/62(t — ) — 2

2me

where r? = (x — x0)* + (y — y,)®>. Show that the field due to an instantaneous point
source located at (xo,y,) at time #,, of strength F, = const, is given by
0 0<ct—1t)<r
u(x,y,t) = Fo
27rc\/c2(t — 1) —r?

ot —t) >r

69 (a) Let r* = x* + y* + 2% Find a solution of the homogeneous wave equation for
r > 0 such that

A : ..
Ulo = ~ U0 = B A, B real positive constants

(b) Find a solution of the homogeneous wave equation for > 0 such that
U, "

Uli_o = ug Uy imo = — uy, u, real positive constants
r

70 In spherical coordinates the homogeneous wave equation is

2u c2| 0 , ou + 1 o . 0 ou n 1 o
— T — — — — — n — — —
it 2| ar\" o) Tsin6a0\"" " 36) T sin0 og?

As discussed in the text, a function of the form
u =y —ct)

represents a spherical wave propagated radially outward from the origin with speed c.
Show that no nontrivial function of this form can be a solution of the homogeneous wave
equation. On the other hand, a function

u = n(rt)f(r —ct)

represents a spherical wave traveling outward from the origin but with amplitude n(r,t)
a function of position and time. Assume a solution of this form with f arbitrary (twice
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differentiable). Show that necessarily

ey = L

for some function y. Thus for each choice of y the pair of functions

Y(r — ct)
17=__
r

{=r—ct

constitutes a functionally invariant pair of the wave equation in spherical coordinates.
Hint: Show that n must satisfy

02 20 0 0 0
_”zi_(,z_") e 2o+ =0

71 Derive the solution (4-59) of the two-dimensional initial-value problem (4-58) from
Eq. (4-107).

Sec. 4-7

72 (a) Consider problem (4-114) when ¥ is the rectangular parallelepiped defined by the
inequalities

0<x<a 0=<y<db 0=<z<h

Let the boundary condition be the Dirichlet condition

u=20 onS;r>0

where S is the surface which bounds ¥, Use separation of variables to derive the oo
eigenfunctions ‘
mmy qrz

. hmx .
wma(x,y,z)=sststmT n=12...;m=12,...;9g=12,...

corresponding to the eigenvalues

A nim2 mzﬂ,z q2,”2
nmq — a® + b2 + he

Show directly that the eigenfunctions have the properties

a b (h
\j‘ f f wnmqw'n’m’q' dx d}’ dz=0 (n,m,q) # (nlym,yql)
0J0 JO
abh

”"/)nmq”2 = 5

8

Outline the proof of the fact that (apart from constant factors) the set {¥.m,} constitutes
all the eigenfunctions of problem (4-117) in the present case.

(b) Obtain the normal modes of vibration

Unme(%,Y,2,8) = Yume(X,Y,2)(Anmq COS Wpmet + Brmg SIN W ppqt)
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where the characteristic frequencies

2 m\2 q 27|14
o e 3 < (5]« G
(c) Derive the solution of problem (4-114) when F is identically zero in the form
oc

=1 ¢

|

8
= nmg\~Vs ) s d d d
abhmeJ;L £V, D)W nme(X,,2) dx dy dz

(d) Derive the solution of problem (4-114) when f and g are identically zero in the form

553

n=1 m=1 ¢=1

QI

A pmg COS Wpmat + Brmg SIN O nmgt YW nme(X,y,2)

II
%L
nMs

S

nma

m=
8
_h J‘ f f(x,}’,z)'/’nma(X,y,Z) dx dy dz

nmq

14
f Frmg(7) Sin [0pme(t — 7)] dT w'nmq(xay,z)
0

D pmq

where
nmq(t) - 11 f f f F(X,y,z t)wn'mq(x,y,z) dx d}’ dZ
04J0

(e) Derive the Green’s function of the problem

Gt yz,t Em L) = — Z S 3 Pl WumdEnD o

n 1 m=1¢=1 Wnmq

for t > 7. Define G to be identically zero for z < 7.
(f) Derive the solution of the problem

Uy — ¢ Au = A sin wt in"/7;t20

u = Bsin vt onS;t>0

u(x,y,z,0) = 0 ufx,y,2,0) = By in v

where A, B, w, and v are given real positive constants and @ # Wpmg, ¥ # Wpmg, all n, m, g.

73 Let? be the rectangular parallepiped of Prob. 72. Derive the formal series solution
of the problem

Uy + 2yu; + Pu — ¢ Au = F, sin wt
— =0 onS;tr>0

u(x,y,z,0) = cos i cos w_by cos %z ulx,y,z,0) =0
a

where F,, w, and y are given real positive constants and £ is a real nonnegative constant.
Assume also

TR
b*  h®
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74 In the study of small amplitude vibrations of an ideal gas confined to the interior of
a rigid spherical surface of radius a about the origin it is shown that the velocity potential u
(a function such that the velocity vector v = —Vu) satisfies

Uy = ¢ Au in"/7;t20
ou

—=0 = >0
5 r=a t >

ur0) =fr)  u(r0) =gr) in¥
where (r,0,p) are spherical coordinates and ¥ is the sphere of radius a about the origin.

Derive the formal series solution

1 < . Mn
u(rit) = Ay + Byt + - z (A, cos w,t + B, sin w,t)sin ol
r a

n=1

where {u,} is the sequence of real positive roots of the transcendental equation

tanu = u

and
c

w,=E n=1,2,..
a

are the characteristic frequencies of vibration. The coefficients in the series are determined
by

3 (¢ 3 [
Ay = pr J; ri¥f(r) dr B, = EJ; rie(r) dr

21 + 1/ [ "
A,,=(+—/’")frf(r)sin"—’dr n>1
a 0 a

21 + 1/u2 | ¢ . Mn
\B,, = _—( + 1k )f rg(r) sin B ar n>1
ally 0 a

75 Let r, 6, @ be spherical coordinates and let ¥ denote the hemisphere defined by the
inequalities

0<r<a oses’—; 0<¢<2nm

Derive the Green’s function of the problem
Uy — c* Au = F(r,0,t) in 17; t>0

ou
—=0 onS;t>0
on

u(r,6,0) = f(r,0) uy(r,0,0) = g(r,0) in?”

where S denotes the surface which bounds ¥ and ou/on is the derivative of « in the direction
of the exterior normal on S. Obtain the solution of the boundary- and initial-value

problem in the particular case
F(r0,t) = Fysinwt  f(r,0) = h(r)cos6 g =0

Fy, w positive constants.
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76 With reference to Prob. 74, assume the gas is confined to the region bounded by
concentric spheres of inner radius a and outer radius 5. Then the boundary- and initial-
value problem for the velocity potential u is

U = c Au in?:;r>0
ou
E_,

u(r,0) = f(r) u(r,0) = g(r) in?

r=a,r=5b;tr>0

where ¥~ is the volume defined by the inequalities

0<a<r<b 0<6<~ 0<¢=<27

Show that the eigenvalues for the present case are

do=0 An = &2 n=12,...

where {£,} is the sequence of positive roots of the transcendental equation

&b —a)

tan [§(b — a)] = T abE

Obtain the corresponding eigenfunctions

sin &,r + a, cos &,r
‘/’021 Yu = : n=12..
r

where

ak, cos &,a — sin &,a
Ay = .
a&, sin £,a + cos &,a

Verify that the eigenfunctions are orthogonal on [a,b] with weight function r*:

b
f rp(Nya(r)dr =0 n#*m
0

The characteristic frequencies of vibration are ®w, = ¢§,,n = 1,2,.... Derive the formal
series solution of the boundary- and initial-value problem in the form

(e 0]
u= A, + Bt + z (A, cos w,t + B, sin w,t)p,(r)
n=1

where the coefficients are defined by

3 [ 3 [°
Ay, = J rf(r) dr B, = . aaf rig(r) dr

3 _ 43
b a), a

b b
A, = H’(/Jl Hzf i’zf(l’)wn(l’) dr B, = '—l—f "23(")1.07;(") dr n>1

a B Wn ”U’n”2 a

77 Let? be the cone defined by the inequalities

0<r<a 0<6<p 0<gp<2n
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where r, 6, @ are spherical coordinates and f is a fixed angle such that 0 < 8 < =/2.
Consider the boundary- and initial-value problem

uy — ¢t Au = F(r,t) in?:t>0

ou

— = onS;t>0
on
u(r,0,9,0) = f(r)  u(r,0,9,0) =g(r) in¥

Derive the form of the eigenfunctions and eigenvalues for this case. Derive the formal
series solution of the boundary- and initial-value problem.

78 Let¥ be the cylinder of radius a and altitude # defined by the inequalities
0<r<a 0<6<2n 0<z<h

where r, 6, z are cylindrical coordinates. Consider the boundary- and initial-value
problem

Uy — ¢ Au = F(r,0,z,t) in?;:r>0
u=20 onS;t>0
ur.0,20) = f(r,6,2)  u(rf,z0) =g(r,z) in¥

(a) Derive the eigenfunctions
& nml . (gmz Enml\ . . gmz
(e) __ J,, m 2 n __ Jn si 0 L
Ynma o Cos nU sin o Yrme p n no sin P

corresponding to the co? eigenvalues

Eum®  gPm?

Anmg =
q
" a® h?

n=01,...;m=12,...;9=1,2,.

where &,, denotes the mth positive zero of the Bessel function J,(§). Outline the proof
of the fact that these are all the eigenvalues of the problem. Show that the eigenfunctions
have the orthogonality properties

fﬂwiﬁ,’mwiﬁ;'q' dv =0 ﬂ f PO WO AV =0 (nmq) # (W,m'q)
¥ v

LS

fw;ﬁqw:&q:n'a’ dv =0 all (n’m,q)s (”,,m,,q,)

0

where dV = rdr df dz. Show also that

] @*h[J (€ nm)]?
[Wrmall® = e I* = ——= n=1;m=1;92>1
W Eem)
L R TP

(b) Obtain the «0® normal modes of vibration

(e) (e) (o) (&) o
Unmd(10,2,8) = w0 (r,0,2)(Aping COS Wpmel + By SIN @ ppgt)

nmq

(0) (0) (0) (0) :
Unomo(1,0,2,8) =y (r,60,2)(A sy COS Wpmet + B,y SIN Wpmgl)
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where the characteristic frequencies are

— Vi n=0,1,...;m=12,...;9=12,..

[ nmaq nmaq

(c) Derive the Green’s function

© ©
G(r,0,2,t5r0,00,2,7) = z z z

m=0n=1¢=1
Jn(Enmr/a)Jn(Sner/a)

wﬂmq “wnma ”2

cos [n(6 — 6,)] sin anz sin thZO Sin [Wpme(t — 7)]

(d) Derive the series solution of the boundary- and initial-value problem if g = 0 and

F(r,zt) = Fysinot  f(r0,2) = (a — r)sin "72

where F,,  are given positive constants.

79 Let¥ be the cylinder in Prob. 78. Solve the problem

lltt=(,'2ALl 1n77;t20

au_o au 0 0
ou

> = @p(r)cospbcoswt  z=nh

z

pu(r,0,2,0) =0 ufr,0,2,0) =0

where @ is a given function, p a given positive integer, and w a given positive constant.

80 Let S be a simple closed piecewise smooth surface which bounds a region 7~ of xyz
space. Let ¥ denote ¥ together with S. Assume the divergence theorem is applicable
to7". Let P1> Pe> P be given functions, defined and positive-valued on ¥". Assume also
these are continuously differentiable on¥". Define the elliptic operator L by

L(p = (Pl‘]%)a: + (Pztpv)u + (Pa‘pz)z

for every twice continuously differentiable function ¢ on 7. In the particular case where
p:=1,i=1, 2,3, the operator reduces to the laplacian. Consider the boundary- and

initial-value problem.

puy + 2yuy + fu — Lu = F(x,y,2,t) in “/7; t>0
Bu) =0 onS;tr>0

u(x,y,z,0) = f(x,y,2) ulx,y,z,0) = g(x,y,z) in?

where p is a given positive valued continuously differentiable function on 2 , v and B are
given real nonnegative constants, and F, f, g are given functions. Here B(z) = 0 symbol-
izes one of the three types of boundary conditions

ou ou

= — = — =0 >0
u=20 o 0 an+au c
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(@) If v(x,y,z) is a twice continuously differentiable function on ¥ and t > 0, define the
vector

P =Plvxi + sz'yj + Pavzk

and the energy integral

1
E@t) = Eﬂ (pv2 + Po* + |P|®) dr
;y‘

where dr is the volume element in ¥". Show that

E(t) =Jff(pu,t + Bv)v, dr —}—JffP - Vv, dr
¥ e

Now make use of the vector identity
V-wWA)=Vw-A+ wV-A
and show that

E(t) =jff(pv,t + Bv — Lv)v, dr +ffv,P -ndS
v S

In particular if « is a solution of the partial differential equation in the boundary- and
initial-value problem, then the energy rate of change is

E(t) =fffu,F(x,y,z,t)d—r — 2yff[ut2 dr +ffutP ‘ndS
¥ v S

(b) Prove the following uniqueness theorem for the boundary- and initial-value problem.
If the boundary condition is the Dirichlet condition # = 0 on .S, there can be at most one

twice continuously differentiable solution. If p; = p, = p; on ¥ and f > 0, the same is
true for the Neumann boundary condition du/dn = 0. If p, = p, = p;on¥ and =0,

a solution is unique to within an additive constant. If p, = p, = p; on”" and the boundary
condition is the mixed condition du/on + ou = 0 on S, there is at most one twice con-
tinuously differentiable solution. Hint: Suppose u,, u, are twice continuously differentiable
solutions of the problem. Let u = u; — u,. By the linearity of things u satisfies the
boundary- and initial-value problem with F, f, and g replaced by zero. Hence the energy
rate 1s

E(t) = _nyffutz dr +ffutp -ndS
v S

If the boundary conditionisu =0 on S, # > 0, thenu, =0 on S, # > 0. Hence

E®)<0 >0

This implies E(¢) < E(0), t > 0. But E(0) = 0. Hence E(r)< 0, ¢t > 0. But an exam-
ination of the energy integral shows E(f) > 0,¢ > 0. Hence E(t)= 0,7 > 0. Show this
implies u(x,y,z,t) = 0, (x,y,z2) in ¥, t > 0. Suppose now p, = p, = p;in¥". Then

ou
ugP'n=utPa—n P =P1r=pP2=Ps
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If the boundary condition is du/on = 0 on S, then again E(t)= 0, t > 0. Show that if
g > 0, this imp]ies u=01in7¥",¢t>0. On the other hand, if § = 0, then u = const is

possible. If p;, = p, = p; = p and the boundary condition is the mixed condition, then
E(t) = —ZVJ‘J‘J‘utz dr — O'ffuut das
so that

t
E(t) — E(0) = —ny dt fﬂu,z dr — g ﬂuz ds < 0
0
S

Again E(t)= 0, t > 0. Show this implies that u = 0 on for z > 0.
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representation (5-47) involving the Green’s function. These remarks about
problem (5-52) hold as well for the general problem (5-27).

PROBLEMS

Sec. 5-2

1 Let &, 7, w be fixed values, w > 0. Verify that the function of x and ¢ defined by
u(x,t;E,w) = cos [w(x — &)]Je—*@2(t—7)

satisfies the one-dimensional homogeneous heat equation. Interpret z = 7 as an “initial
time.” Then u represents the subsequent temperature in the infinitely long bar due to the
initial temperature

u(x,7;&,7,0) = cos [w(x — &)]

This distribution is sinusoidal along the length of the bar with frequency w. The summa-
tion over all frequencies is

v(x,tE,7) = ! f cos [w(x — &)]e— k@) gy
T Jo

Show that the improper integral converges for # > 7 in such a manner that in calculating
v; and v,, differentiation within the integral with respect to x and ¢ is permissible, and hence
show that v is a solution of the heat equation on the open half plane. Now make use of
the integration formula

o0
f e~2 cos 2bx dx = 1V 7 e
0

and obtain the expression (5-13) for the fundamental solution.

2 The initial temperature in the infinitely long bar is
fx) = u |x| < é fx)=0 |x| > &

where u,, d are given positive constants. There are no heat sources within the bar. Show
that the subsequent temperature distribution for # > 0 is

) — 34
u(x,t) = o (erf ali —erf x )

2 V 4zt \/41TKt

where the error function is defined by

2 (= ,
erffx=—— | e dy —0 < x < ®©
Vs

3 Solve Prob. 2 if the initial temperature is given by

ul _61 S X S 61
f(x) = {u, —0, <x< —b6,0rd; <x <90,
0 elsewhere

where the constants u,, u,, d;, d, are such that

O<uy<u 0<d;, <6,
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4 A slender homogeneous conducting bar of uniform cross section extends along the
x axis for x > 0. The lateral surface is insulated. The end x = 0 is held at temperature
h(t) for t > 0. The initial temperature is described by the given function f(x), x > 0.
The boundary- and initial-value problem is then

Uy — KUy = F(x,t) x>0;t>0

u(0,t) = h(t) t>0 u(x,0) = f(x) x>0

To solve the problem let v be the function defined by Eq. (5-13) and define the function w by
wix,t;6,7) = v(x,1;6,7) —o(x,t;—67)  —o <x <3t >7

wx,m6 1) =0  —o0 <x < ©

Then w is the fundamental solution of the problem of the heat flow in the semi-infinite bar.
Observe w is a twice continuously differentiable solution of the homogeneous heat equation
for ¢ > 7 and is continuous in x and ¢ everywhere on the half plane r > r except at the
points (&,7), (—§,7), where it suffers infinite discontinuities. Show that

llm W=O XO#E;Xo#—E

(x, ) (z(07)

t>r
lim w(é,t;6,7) = +© lim w(—&,2;&,7) = —©
t—r t—r
t>71 t>r

Note that w is an odd function of x (also odd in £), and is symmetric in x and §. Interpret
w as the temperature in the infinitely long bar (—c < x < ) for ¢ > 7 due to an initial
temperature

f&x) =0(x — & — d(x + &)
This is a point source at x = £ and a point sink at x = —&.  Observe that
w(0,2;6,7) =0 t >

Following the method used in the text prior to Eq. (5-20) give a heuristic derivation of the
solution of the problem in the form « = u; + u, + u;, where

dr
§=0

[e0] ’ t a
u(x,t) =f w(x,t;&,0)f(§) d& uy(x,t) = Kf h(T) a—;
0 0

t )
us(x,1) =f drf w(x,t;&,7)F(&,7) dé
0 0

The function u, is the solution of the problem

Ui = Klgy x>0;tr>0
u(0,) =0 t>0 u(x,0) = f(x) x>0

The function u, is the solution of the problem

U = Klig, x>0;t>0
u(0,t) = h(t) t>0 u(x,0) =0 x>0

Show that u, can be rewritten

2 o x2 o
us(x,t) = —= hlr— ") ey
Vo Jorvi arn?®
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The function u; is the solution of the problem

Uy — KUz, = F(x,t) x>0;tr>0
u(0,t) =0 t>0 u(x,0) =20 x>0

5 The problem of heat flow in a semi-infinite slab is mathematically identical to the prob-
lem of heat flow in the semi-infinite bar. Assume that a homogeneous conductor occupies
the half space x > 0in xyz space. The temperature on the face x = 01is A(t) at time ¢ > O.
The initial temperature in the slab is f(x), x > 0. Thus the subsequent heat flow is one-
dimensional. Assume there are no heat sources within the slab.  Determine the subsequent
temperature for each of the following cases.

@ h(t) = 0; f(x) = u, (4, a positive constant)

() ht) = uo; f(x) =0

(©) h(t) = uy; f(x) = u, (u;, u; nonzero constants)

@ ht)=u, 0 <t<t,h(t) =t t, <t <ty H(t)=0¢t>t,; f(x) =0

6 Theface x = 0 of the semi-infinite slab described in Prob. 5 radiates heat into the exterior
region x < 0 in such a way that the flux across the face is a constant g,. The initial

temperature is u,, a constant. There are no heat sources within the slab. Show that the
subsequent temperature in the slab is

9o X \/4—; e
u(x,t) = uy + = |:x(erf — — 1) + (e—%"/4xt 1):'
K V 4kt 77
Hint: Recall the flux g = —Ku,. Show that if u satisfies the homogeneous heat equation,
then so does g. Use the result of Prob. 5b to obtain the appropriate flux g. Now solve
the partial differential equation u, = —¢/K and apply the initial condition.

7 The model which describes the heat flow in the infinitely long bar in which the insulated
surface is replaced by a condition of radiation into the exterior region (held at temperature
Zero) is

Uy + bu — ku., = F(x,t) —wo <x<w;t>0
u(x,0) = f(x) —w < x < ©

where b is a positive constant. Show that if w is a solution of problem (5-11), where
F(x,t) is replaced by e~?*F(x,t), then

L= e ttw

is a solution of the original problem. Thus the fundamental solution of the original
problem is

UJ(X,I;E,T) = U(_x,t;fﬂ-)e—b(t—r)

where v is defined by Eq. (5-13). Find the temperature in the bar for z > 0 if there are
no heat sources and the initial temperature is u,, a positive constant.

8 A thin homogeneous conducting plate of uniform thinness lies in the xy plane. The
plate is of sufficiently large extent so that edge effects can be neglected. The initial
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temperature in the plate is
U |x] <aand|yl <a

u(x,y,0) =
J 0 elsewhere

The heat source density in the plate is

F(XJ’J) = Foo(x — xo)é(}’ - _yo)

where (x,,),) is a given point and F, is a positive constant. Find the subsequent tempera-
ture in the plate.

9 Let (r,0,p) be spherical coordinates. A temperature distribution u(r,¢) which is purely
radially dependent satisfies

(r*uy),

= F(r,t) r>0;r>0
}’2

Ui — K
and the initial condition u(r,0) = f(r) for r > 0. Here F and f are given functions. Let
w = ru and obtain

We — kWp, = rF(r,t) r>0;tr>0
w(0,t) =0 t>0 w(r,0) = rf(r) r>0

Use the results of Prob. 4 to derive the solution of the original problem in the form

u(r,t) =

V4 f (e~ (r—ro)?/axlt=r) _ g—(r+ro)®/ax(t=1)yp £(ry) dr,
r Tkl

t
1 f 4—([_) f (e=(rro)*/x(t=r) o= lrbr0) /AR G=T) )y F(ry, 1) diry
TK — T

f f f Y(r,t;r0,0) f(ro) AV, +f drf f f w(r,t;re,7)F(re,7) dV,

where dV, = r,? sin 0, db, dp, dr, is the volume element and v is the fundamental solution

U(r,t;ro,’l') - U(rat;—r():T)
873/ 2rr,

1/)(”,[§r0,7) =

where v is defined in Eq. (5-13). Find the solution of the original problem if the source
density is zero and the initial temperature in the space is u,, a positive constant.

10 Show that the solution of the problem

2u,
U, = k| Uy + — r>a>0; a= const
r

u(r,0) = u, r>a u(a,t) = U,

is

1) = (U, — u)[1 — erf —2

where erf x is the error function defined in Prob. 2.
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Sec. 5-3

11 A slender homogeneous conducting bar of uniform cross section lies along the x axis
with ends at x = 0, x = L. The lateral surface is insulated. There are no heat sources
within the bar. The bar has the indicated end conditions and initial temperature. Derive
the series solution for the temperature distribution in the bar for # > 0. o

(a) Ends are at zero temperature; f(x) = x, 0 < x < L/2, f(x) =L — x, L2 <x <L
(b) Ends are at zero temperature; f(x) = 3sin 27x/L,0 < x < L

(¢) u(0,t) = uy, u(L,t) = u,, uy, u, nonzero constants; u(x,0) = f(x), 0 < x < L

(d) Ends are insulated; f(x) = x(L — x),0 < x <L

(¢) End x = 0 held at temperature zero, at the end x = L there is a constant flux go;
ux,0) =f(x),0 <x <L

12 Instead of being insulated, the lateral surface of the bar described in Prob. 11 radiates
heat into the surroundings at temperature zero. The ends x = 0, x = L are held at
temperatures u; and u,, respectively. The initial temperature is u(x,0) = f(x), 0 < x< L.
Show that the subsequent temperature in the bar is

o0
nmwx
1) = -5ty 4, sin — e~ K4nt
u(x,t) = @(x) + e > ¢

where "
(xy  "aSinh [VB(L — x)/V k] + ug sinh (Vb x/V i)
7 sinh (Vb L/V «)
n3m? 2 L . hmx
Ap = T A,,=zf0 [f(x)—(p(x)]sm—L—dx n=12,...

Hint: Find a solution of u; + bu = «u,, which satisfies the boundary conditions. Then
superimpose with a solution which satisfies homogeneous boundary conditions and an
appropriate initial condition.

13 The lateral surface of a slender homogeneous conducting bar of length L is insulated.
The temperature at the end x = 0 is maintained at A4 sin w, for ¢+ > 0, where 4, w,; are
positive constants. The end x = L radiates heat into the exterior region, which is at
temperature zero. The initial temperature in the bar is u,, a constant. The heat-source
density within the bar is

F(x,t) = Fyd(x — x,) cos wt

where x, is a given point and F,, w are positive constants. Determine the temperature in
the bar for ¢ > 0.

14 An infinite slab is bounded by the parallel planes x = 0, x = L in xyz space. The
face x = Oisinsulated. Acrossthe face x = L there is a constant inward flux of magnitude
go- The initial temperature in the slab is #, (a constant). Show that the temperature in
the slab for ¢ > 0 is

kt  3x*—L* 2L 2 (—1)rt! NTX en2n?4/L2
u(x,t)=u0—l-qol:f +T+?z g cos——e¢ nem

n=1
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15 The initial temperature of a solid homogeneous conducting cylinder of radius a is

where r is the distance from the axis. The temperature on the lateral surface is zero.
Assume the cylinder is infinitely long. There are no heat sources within the cylinder.
Determine the temperature distribution in the cylinder for # > 0.

16 An infinitely long tube has inner radius a and outer radius 5. The material of the
tube is homogeneous and contains no heat sources. The inner surface is insulated, and
the outer surface is maintained at temperature #,. The initial temperature is zero. Show
that the temperature distribution forz > 0anda <r < b is

liYO(Enb)Jo(gnr) — Jo(64b) YO(E"r):‘ K&t

u(r,t) = uy + muy z J,2(&qa)

n=1

where r is the distance from the axis and {&,} is the sequence of positive zeros of the function

Joz(Enb) - -]12(51;0)

@(&) = Jo(bé) Yi(ab) — Ju(ad) Yo(bE)

17 A solid homogeneous circular cylinder of radius a and altitude 4 has its axis coincident
with the z axis. The initial temperature is

u(r,G,z,O) =f(r,9,z)
where r, 0, z are cylindrical coordinates. The temperature of the base is held constant,
at temperature u,. The top and lateral surfaces are insulated. Determine the temperature

in the cylinder for z > 0.

18 With reference to the cylinder described in Prob. 17 the top, bottom, and lateral
surfaces all radiate heat into the exterior region, which is at temperature zero. The initial
temperature

u(r,0,2,0) = f(r,z)

Show that the temperature in the cylinder for z > 0 is

o - Enr
u= Z z AnmJo (—a—) [Um COS fmz + A SID ppz]e~*Pmnt

n=1 m=1

where {£,} is the sequence of positive zeros of the function
EJ5(&) + haly(§)
and {u,} is the sequence of positive roots of the equation

2hu
2 h2

tan by =

y%
and
1 b e Er .
App = —— rf(r,2)Jo | — | [t4m COS pmz + h sin unz] dr dz
”",Un'm”2 0J0 a

a* 27,2 2 é 2
”Wﬂm”z = 55_,,2 (a h + En )]02(5,”) [k + 2 (:um2 + h )jl

&a®
}.nm=—a—2-+:um2 n=152"";m=1’2""
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19 Let? denote the domain defined by the inequalities
0<r<a 0<6<6, 0<z<b

where r, 0, z are cylindrical coordinates and 6, is a given fixed angle, 0 < 6, < 7. Let?”
denote the interior of ¥". Consider the problem

uy — k Au = F(r,0,z,1) in 77; t>0

ou
30

ou
6=0 06

0 ul,_, = H(0,z1t) t>0

6="0y
u(r,0,2,0) = f(r,6,2) inv

Given a physical interpretation of the problem, derive the eigenfunctions and then the
series representation of the Green’s function of the problem. Find the series solution of
the problem in the particular case where

F=0 f=0 H(0,z) = H, = const

20 A homogeneous solid sphere of radius a has the initial temperature distribution
a® — rt 0<r<a

where r denotes distance measured from the center. The surface temperature is main-
tained at zero. Show that the temperature in the sphere for > 0 is given by

) = 22005 (1t SR OTD s
TF p=1 n

21 Solve Prob. 20 if instead of the surface temperature’s being zero the surface radiates
heat into the exterior region. The temperature of the exterior region is zero.

22 Let r, 6, @ be the usual spherical coordinates (see Fig. 3-3). Let ¥ denote the sphere
of radius a about the origin, and let ¥~ be its interior. Consider the problem

u, — k Au = F(r,0,p,t) in?;r>0

u(a,0,p,t) = u, t>0

u(r,0,9,0) = f(r,0,p) in?

where F and f are given functions and u, is a nonzero constant. Derive the formal series
solution of the problem. Obtain the solution in the particular case where

Fyo(r — ro)o(6 — 60)0(p — ;) sin wt
r¢sin 0

F(r,0,9,t) =

where F,, w are given positive numbers, (r,,0,,9,) is a given point, and
fr,0,9) = (a® — r®)sin 6 |

23 A spherical conducting shell has inner radius a and outer radius b. Through the
inner wall from the interior there is a constant flux of heat g,. The outer wall radiates
into the exterior region which is at temperature zero. The initial temperature of the shell
is a constant u,. There are no heat sources within the shell material. Derive the formal
series solution of the problem.
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Appendix

CHAPTER 1

1 (a) Linear second order, two independent variables.
(¢) Nonlinear, almost linear, second order, two independent variables.
(e) Nonlinear, quasilinear, third order, three 1ndependent variables.

3 (a) xP — Z = 0

9)’} —xg=2xyz
_/6';/(21) xp + ,Vé =zlogz

(e) Ugz + Uyy = 0

O z=xp+yg+p+g

7 @ (x—lp+y=rz

——

3@ z=xy+L+fE)

e
3

10 @ z=flx+3)+ >

© 2= e ilax = 5) + 2 -

15x® + 150x — a9 +

(g) u“ — c? umz - O

(g) U = Uy,

A D}\_ K C,b

© xp+yqg—pg=z

© z=f(pe P+ x2—2+3y

2e3y
13

m cos by — ab sin by

9 -_—-f(ax i y) * emz m? + a*b?
11 (@) =z =f(x2y4) o
XZ yz
— y—C/a —a
(&) z= x Ii(xy).*.z +c+2b+c
2 2
2 @ = %P
X

13 (a) u = e—w/%f(x . 2y . Z)

14(2) FQy — x*,ze) = 0

(e F(x2 _22,x+z)=0
Y
@ z= 218G . (x —y )
X —y xy

© z =f(x7y) _ x_s)j

X T

,x_ﬂ):o

y+z

_ X+
2

(© F(z
@ L ft 4y

(k) xXyz :f(x “l‘}’-i—z)

353
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i (m) z= x*sin(y + 2x) + f(y + 2x) (0) z=siny + f(sin x — sin y)
3

i . z y

it -1 = -

l ' (@) sin p xy —l—f(x)

': 2 2 2

'} 15 (@ z= yf(x_ﬂ_ﬁ)

d Y

f 17 z=a+ xf(f)

4 Y

?’ 18 (@) u=e ®/Pif(Px — Py, Pox — Piz) Py #0

() u= f(5x —3y,5z +y) + £ siny — 2e~*
(e u=f[z+2logy,z+2log(x +z—2)] — 2

f , . x z
: ® u=f(@yz,x+y+z2+=xy ®» u= X"f(} , ;c)
3 & u =f(x12 — 2X5, X5® — 2X3, X3* — 2Xxy)

19 @ [f(*— 2y, )2 — 2z ue ) =0 (¢) u= xf(% , )z_c) + M

20 @ z=e'cos(x —y) (© z2=xy
/(e) Z= g _?} g ® &+ )y + 2 =2a" + y* + x)
@) (& + y)(a®2® — h*?) = a*hx’z & (x+y+2P=27Ixyz
2 2\14g 2 __ 2
(m)z=(x jy)zexpx 2y

(o) asin(y — asin x) — log [sin(y — asin x)] = az — log sin y

3(x — 1) n 3(y—1

22 (@) z=1— 5 5
. 15(x — 1)*/4 — 9(x — 1)2()’ — /2 4+ 3(y — 1)*/4 i
(c) No solution exists
; 23 (@ u=(x+y+2xyz2"?
C CHAPTER 2 o
'411, /L 4 @ z=[(x+y +g0x+y) © z=f0)+ e — %2 — xy
. e /

(& z=f(x)cosy + g(x)siny + >

: _ ® z=f®) +elg3x —2y) + 2sin 2x — 3))

cos y

M z=fQx+y)+g2x —y) +x'+ 22+ —

. & z=f(x+y + xg(x+y) + §e* — cos x
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5 (a) z=f(y—2x)+g(y — 3x) +Tx? — 6xy + S—i'f —~ (4x2 — 3xy + %) log (y — 2x)
© z=f(y—2x)+g(p+2x) +xlogy + ylogx
6 @ o/ imm il @ smee S
(e z=f(y)+é@+sin(x+y) (2 Z=IM_)
y x =y
8 @ z=f0y)+ gl © z=yfeo +&2
(e z=xylogx + f(xy) + xg (;) @®@ z W=Axf (f) + 5’}(_?5)
10 @ z=fE—)tgete)  © z=fG+)) +g(§)

11 @ u=xfx—y,x+2)+gx—y,x+2)+2sinx —xcosx
~ +2siny—ycosy+2sinz — zcosz

2z

() u=e’”f(x+z,y—|—z)—f—e‘g(x—z,y——z)-{——?’— —Ccosy —z ) L % :

€ u=fGx+VALy+VCt)+gx—VAty—VCo

- A — iy
12 (a) Z = eXp l:hx + m—}

(©) z=exp[hx + (B2 — 2h)y] —

xZ + X _ y2
4 2
(© u=explh(x +ip)] i=+v—1 @ u=expl[hx +i(h® + k?)¥y]
() u=explox + By £ c(a® + f7)V1]

x) + 20
20 (@ z=-e"f(x)+ e2g(y) © Z:x?}y+fxx_§,y

2

22 (a) Paraboliq; z=f(x+y + xg(x +y) + );—
(c) Parabolic; z = exp [Ai(x + 2y)]f(x + )

+ exp [Aa(x + 2))]g(x + ») +

(x +2y +afc)* a*—2¢c
+ 3
c c
where A,, A, are the roots of 22 —ald + ¢ =0
(e) Parabolic; z = f (Z) + yg(z) + 2x?
x x
(g) Hyperbolic wherever xy # 0; z = f(xy) + xg (g) + xy log x
(i) Hyperbolic; z = f(x + y — cos x) + g(x — y + cos x)
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(k) Hyperbolic wherever x* + y? # 0; z = f(x2 + y?) + ¢ (g ) _ xy
f(x —at) + glx + at)
h—x

23 (a) Hyperbolic (c) Elliptic (e) Elliptic

(m) Hyperbolic wherever x # h; z =

24 (a) Unique solution is # = b + sin x sin ¢

(©) If f(&) is an arbitrary twice differentiable function such that f’(0) =1, then u =
flx —1) — f(0) is a solution.

t2

(e) Unique solution is u = x% + t — Y (g) No solution

2 2
(i) Unique solution is z = Xty +y—14¢"1—Xx)

2 3

(k) Unique solution is z = 4xy + z— — 2% —e

4 24,2
(m) Unique solution is z = T+

12 2
2
25 @ u=x+y—1 (©) u:%-{-Zy—Z
(e u=(Uogx+y—x)?+2(logx+ y) + x%(e* — 1) — xe¥
g Y g Y

CHAPTER 3
1 (¢ ay+aw—+a=0 () b= *fa

3 In three dimensions f(r) = a + b/r, a, b constants; two dimensions f(r) = a + blogr.
8 (a) maxu(x,y) = 1, min u(x,y) = —1; max occurs at the E_oints 1,0, (—%,\/ §/2),
(—%,—"V/3/2); min occurs at the points *,V3/2), (—1,0), },—V'3/2).

400 2. sin [(2k — 1)mx/a] sinh [2k — 1)=(b — y)/a]
17 @ u= T kgl (2k — 1) sinh [(2k — 1)wb/a]
8a2T 2. sin [(2k — 1)wx/a] sinh [(2k — 1)7(b — y)/a]

© u=-— ,Zl (Zk — 1)® sinh [(2k — 1)mb]a]
21 @ u— 2T tan~* [(sin mx/a)(sinh =y/a)]
(b) u=2Th % 1 —cos (@) oo g ne—t

r—1 &x(ah + cos? a&y)

where {&;} denotes the sequence of positive roots of the transcendental equation tan a =

—&/h.

23 u=v+w + w, where v =

cx(x — a) n dy(y — b)

2 2
o sinh [(2n — 1)m(a — x)[b] + sinh [(2n — D)=x/b] . (2n — Day
wy = > A, - sin
= sinh [(2n — 1)7a/b] b
g sinh [(2n — 1)nw(b — y)/a] + sinh [(2n — D=y/b] . (2n — Dux
Wy = B, sin

sinh [(2n — 1)7b/a] b
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where
4 = 4db? _ 4cq?
" mQ2n — 1) " C2n — 1)3

i E: sin (Unx/a) sin (U,x/b)eYnm?

n=1m=1 /unalu'm3

27 u = 64Tabh?

where

e %
=k — Dr  k=1,2,... ynm=[(%)+(%)i|

29 u:f[i‘_% E (C)"Sinn(d—0)+sinne]
2 ,\a -

n =1

r—20 22 (r)”" sin 2n6

n_ (o — ("
4n* — 1 (bla)" — (a/b)*

6 200 & (—Drf a*n r\e (b
== — — — — 1 ne
35 u=100 - + - Z \ 7 o a) + . sin u

n=1

where

nar
Ky = — n=12,...
o

oo = Jo(&i/a) sinh [E(h — 2)/a]
@ 200k§1 & sinh (&:h/a)T (Ex)

where {§;} denotes the sequence of positive zeros of Jy(§)

o0 [e o]

39 u= Ay, + z ZAMC cosh (Euhla)], (Enwrla) cos v,0 where, for each fixed n, {£,.}
n=0 k=1

is the sequence of positive zeros of J. ;(S), v, = nm/f, and

2 (o
AM:;B . Of(r,O)rdrdG
nk = r, axt/a) cos v,0r dr
* T @B(EsE — v.) cosh Euhla)], 2 Em) )y ), vniome
n=0,1,... k=1,2,... 6=2,¢e,=1ifn>1
2 2 2
41 vy =4#n(b —a) 0<r<a w=4wb—M a<r<b
r
M
Y =— r=b
’

where total mass M = 2#(b* — a%)

ab?h(u, — u,) (1 1)

43 u— aoru — ) (1
L=t T —a\a 7
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47 u=1 [7 — 4(1)2 P,(cos 0)]
3 a

(4n + 1)P24(0) (V )“PM(COS 0)

49 ”_E+Tz(2n—1)(2n+2)

hmXx mmy

[e0] o0
= z Z nmsm—Sin—'b—

n=1 m=1

Aum = = —— {acl— 1[I — (=1)"] + bd(~ D"l — (1]
nmar

< Jo(&xr(a))
55 ¥ =d4q2 Y 2
“ ,El £37,(50)

where {£,} denotes the sequence of positive zeros of Jo().

CHAPTER 4

1 (d) (@) u = sin kx cos wt w = kc

(iii) u = exp [—(kx — wt)?] — exp [—(kx + wi)’]
(v) u = (k cos kx — « sin kx) cos wt w =kc

B
3 (@ u=e*coshct (c) u = Asin wx cos wct + — cos ux sin uct
cu

Ul —x+ct)—U(—1—x+ct)+ U1l —x —ct)— U(—1 —x — ct)

(e) u=

2
where U(§) is the unit step function defined by
ud)=1 &£=0 uéd)=0 £&<0
[U#2 — x + ct) — U(—7[2 — x + ct)] cos (x — ct)
® u=
2
+ [U#2 —x —ct) — U(—n[2 — x — ct)]cos (x + ct)
2
t? . h i 3
5 (a) u = sin wx cos wct + 0 (© u= cos b);smh bet + 2xt2 + tg
c

tcos (kx — wt) cos kx sin wt
w = kc

(e) usA[ —

2w 2w?
1 :

7 (@ u=1——cosxsinct 0<ct<x
c

—1 )
u——-(—) sin x cos ct 0<x<et
c

e®coshct + ¢ 0<et<x

8 (a) U= . X
—e%sinhx +- +1 0<x<ect
c
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32h < sin [(2n — 1)mx/b] cos [2n — 1)met/b]

19 (@) u=—
T =1 (2n — 1)®
24 sin wb < .
© u= — z [(—D™ 2, [(kn? — w?)] sin u,x cos unct
" 4 < sin pgn_1x COS Ugn_1Ct nm
2n—1 2n—1
T bc ngl /‘gu—l Hn = b

21 (a) For the case of nonresonance

o0} . .
4cF, W SiN Wyy_1t — Wop_ySin Wt . (2n — V)7x
= sin

u
b n=1 a)gn—l((‘o2 - wgn—l) b

If w = w,, (resonance case), m even, solution is given by the above series. If @ = wze—y,
then in the series the term involving w,,_, is replaced by the term

SIN Wgq_11 — Waq_ 11 COS Woy_y¢ . (2n — )mx
sin

3
Wye—1 b

23 u=——
7TC p=1 n

4F, % cos (n/2) sin (n/6) sin (nwx/b) sin (nwct(t)

25 (@ Ifw+#nmclbyn=1,2,...,thenu =v + w, where
v = X(x) cos wt

P hy sin [w(b — x)/c] + A, sin (wx/c) + X,(x) sin (wb/c) — sin (wx/c) X,(b)

sin (wb/c)
[¢v sin (wx/c) — w sin vx]/(c*v? — w?)
Xp(x) = —F, /
)
@
A, sin dided cos i

w = n — —

n=1 b b

b
A, = Ef [x(b — x) — X(x)] sin = dx
5Jo b

27 Let {u,} be the sequence of positive roots (in increasing order of magnitude) of the
transcendental equation

tan bu = M
K u* — hyhy

Letw, =cu,,n=1,2,.... Then

o0
u= z (A, cos w,t + B, sin w,t) sin (u,x + 0,)

n=1

1 [ T
A,,, = ; f f(X) sin (,ux,, + 6.,,) dx Bﬂ = f g(X) sin (/"x'n + e'n) dx
n JO

XnWq Jo

(un® + hyho)(hy + hz):l
(un? + B (ua® + hs?)

0, =tan"!— oc,,=1}|:b+
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X .
29 @ u= (1 —Z)hosmwt—l— w; + w,

2why ~= (—1)**1sin (nwx/b) sin (nmct/b)
Wl == z

T n=1 nw,
2 % gll — (=1)")(1 — cos wnt)
W2 = — =
T p=1 nwn2
W, Sin wt — w sin w,t| . nwx nmwe
+ hyw? sin W, = —
0 n(w? — w,)w, b " b

31 u=v+ w, where

8b2e7t o (2n — Dmx | c0S Wyp_yt + (Y/Wgp_y) SIN Wyp_qt
v= z sin .
b 2n — 1)

™ n=1

2g it . nmx
w=—= z Cn(2) sin —
T b

n=1
e "t (y sin w,t + w, cos w,t) — w,
(1) = [1 — (—1)
() =1 = (=] nwa(y* + 0,%)

22,2 Lg
w":(nz2c—y2) n:1,2,-..

35 Letu, = @2n — Dn/2b, w, = (c*u,2 — yD)¥%, n=1,2,.... Then

U= hxsinwt +v

2hw
b

v(x,t) = e—7t|: z (——1): (sin w,t sin y,x) + w:l

n=1 wmu’n

© ¢
w(x,t) = z {i f e’ sin [wa(t — &)]FA(8) dé-'} sin p,x
0

n=1 n

2
F,(t) = b [unF, sin vt + why(w sin wt — 2y cos wt)(—1)"+1]
Un

@
37 E= > AX,(x)cos wyt

n=1

where X, (x) = sin u,x and {u,} denotes the sequence of positive roots of

tan b EA
an by = —
H Mciu
b, — b 1 Mc? sin? u,b
n = blamunzsln,unb dnzz(b_—%) w,,=c,u,,;n=1,2,...
39 (a) Let w, = (n®w%c?/b? — w)*%,n=1,2,.... Thenu = v + w where
d nmwx
v(x,t) = z (A, cos w,t + B, sin w,t) sin e
n=1

4F, — [vsinw I—w sin v¢ X
wix,t) = — > |: 2l 2n-1 :| sin |:(2n -1 T:|

1 L2n — Dwgn_(v* — w3, ;)

2 [P 2 [?
An=7 fo f(x)sin%cdx B":bw,,J; g(x)sin”—zi‘dx
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41 u= z Jo(fnﬁ)(An Cos w,t + B, sin w,t)
n=1
1 b x
1 b x ,
B,=— ol & =
bwnle(é'n)fo ! (5 \/ b) g0 dx

where {,} denotes the positive zeros of Jy(§) arranged in increasing order, and w, =
cE 2V, n=1,2,....

53 (¢) u= v+ w, where

nmx . mmy

= sin — sin —=
Prm a b
16 1 — cos w,n,t
v=— —‘f (————2—) Prm(X,p)
7" n odd m odd nmo .,

Prm(X,)) COS Wppt

256 s
" Ed n odd m odd nm(n® — 4)(m* — 4)

e (- G

57 1If F(r,t) = F,sin wt, F, constant, and w # w,, all n, then

JO(‘Snr/a)
Enwn(wz - wnz)']l(‘fn)

o .
u = 2F, z I:(w sin w,t — w, sin wt)

n=1

where {£,} denotes the positive zeros of Jy(§) and w, = cé.fla,n =1,2,....

59 If w #* Wpm = Enmla, where {£,,,} is the sequence of positive zeros of Jn(§), n = 0,
1,..., then u = @(0) sin wt + w(r,0,t), where

©  w sin WOpml — Dy, sin w? (e) (&)

= 6 © (0,
"’ nzo =1 Wpm(@? — wnmz) [ox "m(pm"(r ) + a‘nmwwm(r > )]

) = B Hzf f |: w*p(0) + cp’ @ ):Iqai,i,’,(r 0)r dr db

with o) defined similarly by replacing (e) with (0) throughout,
P =T, (E"mr) cosnf @ =, (S"mr) sin nf
a a

7Ta2J72L (S'nm)
]lq)(e)llz:__"z'l—___” ez n=1,2,...;m=12,...

@22 = ma2),2(Em) m=1,2,..
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62 Eigenvalues 4., = §..%/a?, where {Enm} denotes the positive zeros of J,, /ﬂ(&‘); cor-
responding real-valued eigenfunctions are

Epmt\ . nmb
‘an=Jm,/ﬁ T sm—ﬁ— n=0,1,...;m-——1,2,...

[J’mr /p+1(£nm)]2
4

”(;vnm”2 = azﬁ

Solution is ¥ = v + w, where

cEam
a

WDpm =

0 [c o]
= z z Prm(7,0)(A pm COS Wpmt + By SIN Wyt )

n=0 m=1

1 [alP
Apm = TV f(",e)(}?nm(r,e)r dr db
@nmll® Jy Jo

1 a 8
nm = ———— E(r,0)Pnm(r,0)r dr do
ey ) N

o0 e ] 1
v-3 Sl-
n=0

=]

¢
J‘ an(s) Sin [wnm(t - ’5)] dE ‘an("ye)
0

1 faP
Fam(t) = —— F(r,0,0)@nm(r,.0)r dr db
[ownl® ), ),

<an(r 6)(pnm(r0360) Sll'l [wnm(t - 7')]

G(r,6,t;r,, ,'r) = —
o ,E,, ,E D ([P [
63 Eigenvalues A,,, = &,,2, where, foreachn =0,1,..., {£,,} denotes the sequence of

positive roots of the equation

In(ad) Yn(b€) — Ju(bE) Yo(al) = 0

Corresponding real-valued eigenfunctions are

Prn = [a(nm?) YalEnm@) — JulEnm@) Yo(Enmr) cOsnd 1 =0,1,...
o = To(Enmn) Yalenm®) — JaEm@®) YalEann)]sinnd  m=1,2,...

an(snma) - an(énmb)

[@amll® = 2€n 7Enm 2T 2 (Enmb)

where ¢, = 2, ¢, = 1, n > 1. Characteristic frequencies w,,, = ¢£,,, normal modes

[Anm(p(e)(r 6) + Bnm(p:g,i(r 6)] COS Wumt + [Cmn(p(e)(r 0) + Dnmgvigri(r 9)] sin WDyl

where it is understood that ¢4l = 0,m = 1,2,.... The formal series solution is identical
in form to the solution obtained in Example 4-2 w1th the @,., defined above and the region
of integration the annulus a <r < 5,0 < 6 < 2m.
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A
69 (@ u=-+ Bt
r

75 G=0if t < 7, and if t > 7, then

3(t - T) ® Yo, m(r 9)1/)27: m("o,eo) sin [wzk m(t - 7)]

+ z z ok, m (Ve m|?

k=0 m=1

G(r56’t;r0960:7)

where

Szk,mr

Yokym =jzk,m( )Pmc(cos 6) k=0,1,...;m=1,2,...

” “2 _ a’[l — 2kQ2k + 1)/§§k,m]j2k2(£2k,m)
w2k.m - 2(4k + 1)

and, foreachk =0, 1, .. ., {{,n} denotes the positive zeros of j,,(£), Wer,m = cEyi,m/a are
the characteristic frequencies. If F(r,0,t) = F,sin wt, f(r,6) = h(r) cos wt, g =0, then
the solution is

F,
=— (ot — sinwt) + v
wz

e o]
z Asie,m¥2r,m(r,0) COS W, mt

IIMS

3 a
— 2
Ay = Z—aaj; r2h(r) dr

_ Py(0) a 9 . Senymr
Avem = (2k — 1)(2k + 2) szk,mll‘*fo ’ h(r)'hk( a ) dr

1-3-5---2k—1)

= = (—1)* >
PO =1 Pu0)=(-1) PRpes k>1
79 u = V(r,z)cos pb cos wt + W(r,z,t) cos pb

5
V(r,z) = z And, cosh pn,z
m=1
Sm qmz
W(r,z,t) = z Z B,.J, COS —— COS Wyqt _
m=1 ¢=0 h

where {£,,} denotes the positive zeros of J,(£) arranged in order of increasing magnitude,
= (£n*la® — 0*[c®)E, Omg = c(En’la* + g*n? (%),

26,2
@(En® — PPt sinh (o) ,2Em) ), ( )‘p(’)’ a

2Am('_ I)Q+1,um sinh (/’tmh)
h(pn® + q*m*[h?)
A, sinh u,h

B, = — —m> " m? —1,2,...:9=1,2,...
° him ” 7

By, =
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CHAPTER 5
3 u = (u1 — uz) erf 61 + Uy eI‘f 62

X
5 @ u=uyerf— (© u=u + (uy — uy) erf ——
0 \/4” ‘ 1 2 1 \/4’“
X
7 u = ue ™ erf ——
’ V 4t
4L 2 (—1)k+1 sin k — Dmx o 1)22,0s/10
11 e—1)272xt/L2
@ u= 2 2k — 1" ¢

© u=u + (u — ul)z + v(x)

°° —1)ruy — .
v(x) = 2 I:Bn +2 (=1 ul:l sin idad g nimiKt/L?

— nw L

2 (L
B, = EL ) sin?:‘—xdx

sin (2” — I)W'x —(@n—1)272xt/4L2

Ay
©® u= + E 5T
—4Lg, . (2n — Dmx
n=—— 1t — —d
Ko — 1) + Lf f(x) sin oI X
= A _
13 w=A[l + h(L x)]1+hL+v( 1)
U(X,t) = Z [Cn(t) + By] sin KX
n=1
where {u,} denotes the positive roots of tan uL = —pu/h, and

Fysin ppx
Cn(t) = [_O—IL"O ( Iu”n cosS wt _|_ w Sln wt — Klu 2e—Kﬂﬂ t)

nt T+
— Ac, (Kin? COS 0,1t + , sin Wt — ku,2e” ¥ | [ || X,|[2
Bn(KPpn® + ;%) " n n
L  cos®u,L 1 L .
[ Xall2 == + ——— B, = Zf f(x) sin p,x dx
2" T AR

15 u=si 3 F e

where {£,} denotes the positive zeros of Jy(£).

(2q — 1)77'2
2b

eXqt

o]
17 u=u, + ZAqsin
¢=1

[ 'nmqw;,en))q(r 6 Z) + Bnma"l’;(;,),q(r 0,2)]8—K;‘nmqt
1

Ms

+3

n=0

L

Q
I

1
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where

(2g — 1)2n° _ um (2q — 1)
4p? g2 4p2

>

A, = n=0,1,...;m=12,...;

g=1,2,...

and, for each n, {{,.} denotes the sequence of positive zeros of J(5),

—4 1
A, = a7 ll;jrzaz wazbf f ff(r 6,2) sm i rdrdfdz

1 a (*27
Apmg = ——— f(r@z)zpne)(rﬁz)rdrdﬂdz n=0,1,...;m=1,2,...;
el R

g=12,...
1 a (*2r (b
Bpmg = T fr0,2p8 (r0,2)rdrdddz n=1,2,...;m=1,2,...;
g=1,2,.
nm 2g —1
Yimg = Jn(éa r) cos nf sm (qz—b)wz
nm . . 2 - 1
Yima = (Ea r) sin nf sm(—qT)ﬂZ
”"/’(e) |2 = “%mq||2 = 45 ('fmn — 1)J 2 (Enm) n=12,...
2b n’m
[ Womall? = 5 Jo*(Som) m=12,...;9=12,...

1w .
21 u == Z A sin (ur)e=¥4n*t where {u,} denotes the sequence of positive roots of
n=1

tan au = ap/(1 — ah) and

a’u, + (ah — 1) 3h — au,® .
a*u,? + ah(ah — 1) Hat 31_11 @Hn

qoa2 bh—1 1
23 u= K ( b2h - ; + W(r,t)

[e 0]
W(r,t) =D Appm(r)erén’

m=1

where {£,} denotes the sequence of positive roots of the equation
Eljo(a®)yo(bE) — yo(ad)js(b&)] + hljo(ad)yo(bé) — yo(ad)jo(bd] = 0
<Pm(") =ﬁ>(§m")}’;(§m0) —j(;(é-ma)yo(émr)

1 b goa® [0 (bh —1 1
T e— 2 — — —
Am - [uo f Ym(r)r® dr — =2 f ( 5 r)wm(r)rz dr}
a a
SR , 7 ™
O = ; Ym (r)r® dr ]o(x) = E-’%(x) yo(x) = Zc Y%(x)




