PHYS 505

HANDOUT 1 - On time independent perturbation theory.

1. Consider a particle of mass m in a one-dimensional infinite potential well of width a :

$$
V(x)=\left\{\begin{array}{ll}
0 & 0 \leq x \leq a \\
\infty & \text { otherwise }
\end{array} .\right.
$$

The particle is subject to perturbation of the form

$$
W(x)=a \omega_{0} \delta(x-a / 2) .
$$

Calculate the changes in the energy levels of the particle in the first order of ω_{0}. (Sch)
2. Consider a particle of mass m and charge e in the central potential:

$$
V(r)=\left\{\begin{array}{cl}
-e^{2} / r, & 0<r<R \\
-e^{2} \exp [-\lambda(r-R)] / r, & R<r<\infty
\end{array}\right.
$$

The potential differs from the Coulomb potential only in the region $r>R$, where the Coulomb force is screened. The difference becomes negligible if the parameter $\lambda \rightarrow 0$. Consider this difference as a perturbation and calculate the first-order correction to the energy of the ground state.
3. A particle of mass m moves in one dimension subject to a harmonic oscillator potential $\frac{1}{2} m \omega^{2} x^{2}$. The particle oscillation is perturbed by an additional weak an-harmonic force, described by the potential $\Delta V=\lambda \sin \kappa x$. Find the corrected ground state. You may need the identity $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}$
4. A particle of mass m moves in one dimension subject to an anharmonic potential that is close to but not exactly a harmonic oscillator potential, namely

$$
V(x)=\frac{m \omega^{2} x^{2}}{2}\left(\frac{x}{a}\right)^{2 \lambda}
$$

where a is a parameter with the dimensions of length and $\lambda \ll 1$ is a dimensionless exponent. We can write this potential as

$$
V(x)=\frac{m \omega^{2} x^{2}}{2}+\Delta V
$$

with

$$
\Delta V(x)=\frac{m \omega^{2} x^{2}}{2}\left[\left(\frac{x}{a}\right)^{2 \lambda}-1\right] .
$$

Treating ΔV as a small perturbation, calculate the first-order correction to the ground state energy.
5. A particle of mass m and charge q moves in one dimensional infinite square potential well:

$$
V(x)=\left\{\begin{array}{ll}
0, & |x|<L \\
\infty, & |x|>L
\end{array} .\right.
$$

We consider a weak uniform electric field of strength E that acts on the particle given by:

$$
E=E_{0} x / L, \quad-L<x<L .
$$

Calculate the first non-trivial correction to the particle's ground state energy.
6. Apply the first order perturbation theory to calculate the first correction at the energy eigenvalues of a simple harmonic oscillator which is caused by the presence of the term $V(x)=g x^{4}$.
7. Consider a charged particle with charge q, which has a mass m and is attached to a spring of spring constant k. We apply a uniform electric field E. Calculate its energy eigenvalues.
8. A particle of mass m moves inside the potential
$U(x)=m \omega^{2} x^{2} / 2+\lambda^{2} \delta(x)$. Apply the perturbation theory of first order to find the energy spectrum. (Lag. 110)
9. The Hamiltonian of a quantum system is given by:

$$
H_{0}=E\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

We add to this the perturbative term:

$$
V=\varepsilon\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

where $(\varepsilon \ll E)$. Find: a) the first order correction to the energy, b) find the exact values for the energies of the total Hamiltonian $H=H_{0}+V$, c) show that to the first order of the small term ε the above answers agree. (Menis 404).
10. Find the energy spectrum to the first order of the parameter ε of the Hamiltonian (Menis 401):

$$
H=\left(\begin{array}{ccc}
E & E+\varepsilon & 0 \\
E+\varepsilon & E & \varepsilon \\
0 & \varepsilon & E
\end{array}\right)
$$

11. The potential of a simple harmonic oscillator gets a perturbations given by:

$$
V=\left\{\begin{array}{cc}
g x & -a \leq x \leq a \\
0 & |x|>a
\end{array} .\right.
$$

Find the first order correction in the energy spectrum (Menis 416).
12. Write the Hamiltonian of a simple harmonic (one-dimensional) at the approximation where the relativistic corrections are non-zero. What are the corrections in the ground state energy? (Hint: in the theory of SHO we have the so called creation and annihilation operators given by $a^{+}|n\rangle=\sqrt{n+1}|n+1\rangle, a|n\rangle=\sqrt{n}|n-1\rangle$. The position and momentum operator are given by: $\left.x=(\hbar / 2 m \omega)^{1 / 2}\left(a+a^{+}\right), p=i(\hbar m \omega / 2)^{1 / 2}\left(a^{+}-a\right)\right)$.
13. Discuss the method of variations in the case of a one dimensional SHO.
14. Discuss the method of variations in the case of a one dimensional potential given by $V(x)=g x^{4}$. Compare it with the real value of $0.668\left(g^{1 / 3} \hbar^{4 / 3} / \mathrm{m}^{2 / 3}\right)$ and explain the difference of your results.
15. Discuss the issue of the normalization of the perturbed wavefunction $\psi_{n}=\psi_{n}^{o}+\lambda \psi_{n}^{1}+\lambda^{2} \psi_{n}^{2}+\ldots$.
16. A system for a given energy E has two degenerate states $\psi_{1}^{(0)}, \psi_{2}^{(0)}$. We apply a perturbation V on the system represented by a matrix:

$$
V=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)
$$

Find the energy eigenstates and eigenvalues.

