PHYSICS 404 1st HOMEWORK Dr. V. Lempesis

Hand in: Tuesday 17th of October 2017

- **1.** Show that for Dirac delta function we have $\delta(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{2n+1}{2} P_n(x)$
- **2.** Show that for the Legendre polynomials we have: $P_{n+1}^{'}(x) = (n+1)P_n(x) + xP_n^{'}(x) \ .$

$$P'_{n+1}(x) = (n+1)P_n(x) + xP'_n(x)$$
.

use the recurence relations: $P'_{n+1}(x) + P'_{n-1}(x) = 2xP'_n(x) + P_n(x)$ $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$

- **3.** Find the associated Legendre functions $P_2^1(x)$ and $P_3^1(x)$ starting from the Legendre polynomials $P_2(x)$ and $P_3(x)$.
- **4.** Using your answers from question 3, show that the functions $P_2^1(x)$ and $P_3^1(x)$ are orthogonal i.e. $\int P_2^1(x)P_3^1(x)dx = 0$.