Poisson Distribution

*Poisson distribution X^{\sim} Poisson (λ) then its mf is given by

$f(x)=f(x ; \lambda)=\left\{\begin{array}{cc}\frac{e^{-\lambda} \lambda^{x}}{x!} & ; x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{array}\right.$
Parameter of the Distribution: $\lambda>0$ (The average)

Mean and Variance

If X is a discrete random variable has Poisson distribution with parameter λ then,

$$
E(X)=V(x)=\lambda .
$$

Example 3.11"from slides"

Suppose that the number of typing errors per page has a Poisson distribution with average 6 typing errors. What is the probability that
I. the number of typing errors in a page will be 7 .
II. the number of typing errors in a page will be at least 2.
III. in 2 pages there will be 10 typing errors.
IV. in a half page there will be no typing errors.

Solution

Let X represents the no. of typing errors per page. Therefore, $\lambda_{\mathrm{x}}=6 \Rightarrow$ X^{\sim} Poisson(6).
I. $\quad P(X=7)=0.1377$.
II. $P(X \geq 2)=f(2)+f(3)+\cdots=1-P(X<2)=1-f(0)-f(1)=$ 0.9826 .
III. Let Y represents the no. of typing errors in 2 pages. Therefore, $\lambda_{y}=\lambda_{\mathrm{x}} \mathrm{t}=6 \cdot 2=12 \Rightarrow Y^{\sim}$ Poisson(12).

$$
P(Y=10)=0.1048
$$

IV. Let Z represents the no. of typing errors in a half pages. Therefore, $\lambda_{\mathrm{z}}=\lambda_{\mathrm{x}} \mathrm{t}=6 \cdot 1 / 2=3 \Rightarrow Z^{\sim}$ Poisson(3).

$$
P(Z=0)=0.0498
$$

\#Now a way to solve the Poisson distribution question with the calculator type(fx-991ES)

\#steps:

- Solve $P(X=7)=0.1377$.

- Solve $P(X \geq 2)=f(2)+f(3)+\cdots=1-P(X<2)=0.9826$.

 (1) , so now click "=" to have a solution 0.9826 .
*So complete in this way with any question just change λ value and chick if it needs to write x or use summation, about the mean and variance don't needs for calculator because both of them have same λ value.

"poisson Approximation to binomial distribution"
ExamPle:
A factory produces a particular electrical component and on average 1 in 50 is faulty. in a batch of 300 components taken at random. whet is the probability of have ing at least eight faulty components?

$$
\begin{aligned}
p(x \geqslant 8)= & 1-p(x \leq 7) \\
= & 1-[p(x=0)+p(x=1)+\cdots+p(x=7)] \\
= & 1-\left[300 c_{0}\left(\frac{1}{50}\right)^{\circ}\left(\frac{49}{50}\right)^{200}+300 c_{1}\left(\frac{1}{50}\right)^{\prime}\binom{49}{50}^{299} \frac{3}{3}\right. \\
& \left.+\cdots 3 \times 7\left(\frac{1}{50}\right)^{7}\left(\frac{49}{50}\right)^{203}\right] \\
= & 1-0.74538=0.25461
\end{aligned}
$$

*

$$
\begin{aligned}
& \text { mean } \rightarrow \mu=E(x)=\lambda=n p \\
& \text { variance } \rightarrow \sigma^{2}=E(x) \\
& f(x)=\frac{e^{-(n p)}(n p)}{x!} \\
& f(x-a 91 E S: a l y \text { in }
\end{aligned}
$$

Step:

$$
\text { first click } \frac{\square}{\square} \text { then Shift } \operatorname{In} \text {, write the sample and }
$$ probability of success then eklik (and write sample and probability of success then \downarrow then cklik shift then ENG and write x.

