Titration curve of polyprotic acids

Dissociation of polyprotic acids

- A polyprotic acid has more than one proton per molecule, thus it ionizes in successive steps.
- Example: $\mathrm{H}_{2} \mathrm{~A}$ a "polyprotic acid", diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A} \stackrel{\mathrm{~K}_{\mathrm{al}}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{HA}^{-} \stackrel{\mathrm{K}_{\mathrm{a}}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{A}^{-2}
$$

$\mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}$
$\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-2}\right]}{\left[\mathrm{HA}^{-}\right]}$

Dissociation of polyprotic acids cont'ed

- $\mathrm{K}_{\mathrm{a} 1}$ is larger than the $\mathrm{K}_{\mathrm{a} 2}$ The pH of $\mathrm{H}_{2} \mathrm{~A}$ solution is mainly dependant on the first ionization step.

Titration curve of $\mathrm{H}_{3} \mathrm{PO}_{4}$ a poly protic acid

Equivalents of $\mathrm{OH}^{-} /$moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$

Titration curve of $\mathrm{H}_{3} \mathrm{PO}_{4}$ a poly protic acid cont'ed

$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{\mathrm{~K}_{1}}{\longleftrightarrow} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \stackrel{\mathrm{K}_{2}}{\longleftrightarrow} \mathrm{H}^{+}+\mathrm{HPO}_{4}^{-2}$
$\mathrm{HPO}_{4}^{-2} \stackrel{\mathrm{~K}_{3}}{\longrightarrow} \mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$
$\mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
$\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}$
$\mathrm{K}_{\mathrm{a} 3}=\frac{\left.\left[\mathrm{H}^{+}\right] \mathrm{PO}_{4}^{-3}\right]}{\left[\mathrm{HPO}_{4}^{-2}\right]}$

Titration curve of $\mathrm{H}_{3} \mathrm{PO}_{4}$

 a poly protic acid cont'ed$$
\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}
$$

- Example

How many ml of 0.1 M NaOH are required to titrate 100 ml of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

No. of moles of $\mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{V} \times \mathrm{M}=0.1 \times 0.1=$ 0.01 mole
$>$ No. of moles of $\mathrm{H}^{+}=\mathrm{V} \times \mathrm{M}=0.01 \times 3=0.03$ mole

Titration curve of $\mathrm{H}_{3} \mathrm{PO}_{4}$ a polyprotic acid cont'ed

Thus: we need 0.03 moles of NaOH to titrate the acid
$\mathrm{M}=$ no. of moles / V
$\mathrm{V}=$ no. of moles $/ \mathrm{M}$
$V=0.03 / 0.1$
$\mathrm{V}=0.3 \mathrm{~L}=300 \mathrm{ml}$

Example 1

- 1.025 g of anhydrous sodium acetate is dissolved in 100 ml of 0.25 M acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$. Calculate:
- A) The pH of the final solution.
- B) The molarity of the final solution (resulting buffer)
Mwt of anhydrous sodium acetate $=82 ; \mathrm{pK}_{\mathrm{a}}=4.7$
- A) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
no. of moles of A^{-}in buffer $=\mathrm{wt} / \mathrm{Mwt}$

$$
\begin{aligned}
& =1.025 / 82 \\
& =0.0125 \text { moles }
\end{aligned}
$$

Molarity $=$ no. of moles $/ \mathrm{v}$ in L

$$
\begin{aligned}
& =0.0125 / 0.1 \\
& =0.125 \mathrm{M}
\end{aligned}
$$

no. of moles of HA in buffer $=M \times V$

$$
\begin{aligned}
& =0.25 \times 0.1 \\
& =0.025 \text { moles }
\end{aligned}
$$

Molarity $=$ no. of moles $/ \mathrm{v}$ in L

$$
\begin{aligned}
& =0.025 / 0.1 \\
& =0.25 \mathrm{M}
\end{aligned}
$$

```
\(\mathrm{pH}=4.7+\log (0.125 / 0.25)\)
\(\mathrm{pH}=4.39\)
```

- B) The molarity of the buffer = the molarity of HA + the molarity of A^{-}
Buffer molarity $=0.25+0.125=0.375 \mathrm{M}$
OR
No. of moles of buffer $=$ no. of moles of $\mathrm{HA}+$ the no. of moles of A^{-}
No. of moles of buffer $=0.025+0.0125=$
0.0375 moles

Molarity of buffer $=$ no. of moles $/ \mathrm{V}$ in L
Molarity of buffer $=0.0375 / 0.1=0.375 \mathrm{M}$

Example 2

- 5 L of 0.1 M phosphate buffer with a $\mathrm{pH}=$ 12.32 was prepared from $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.
Calculate the weight in grams of each component which was used to prepare the buffer, $\mathrm{pK}_{\mathrm{a}}=12$.
- SELF SOLVE!

Titration Curve of amino acids

Titration curves

- It is a curve that monitors the pH of a solution as amounts of alkali or acid is added.
- Amino acids are simple weak polyprotic acids.
- Neutral amino acids (as alanine, glycine) are treated as diprotic acids.
- Acidic amino acids (as aspartic or glutamic acid) and Basic amino acids (as lysine or histidine) are treated as triprotic acids.

Titration curve of alanine

- At point a:

- Before titration
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CHRCOOH}$
- The net charge $=+1$

At point b:

- $\mathrm{Pk}_{1}{ }^{`}=\mathrm{pH}$
- Here it has buffering capacity
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CHRCOOH}=$ $\mathrm{NH}^{+}{ }_{3} \mathrm{CHRCOO}^{-}$
\circ The net charge $=+0.5$

Titration curve of alanine cont'ed

- At point c:
- Isoelectric point
- $\mathrm{pl}=\mathrm{pH}$; to calculate pl : from the plot or $\mathrm{pl}=$ $\left(\mathrm{pK}_{1}{ }^{`}+\mathrm{pK}_{2}{ }^{`}\right) \backslash 2$
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CHRCOO}^{-}$a zwitter ion
- The net charge $=0$
- At point d:
- $\mathrm{Pk}_{2}{ }^{`}=\mathrm{pH}$
- Here it has buffering capacity
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CHRCOO}^{-}=\mathrm{NH}_{2} \mathrm{CHRCOO}^{-}$
\circ The net charge $=-0.5$

Titration curve of alanine cont'ed

- At point e:
- End of titration
- $\mathrm{NH}_{2} \mathrm{CHRCOO}^{-}$
- The net charge $=-1$
- This curve has two flat zones, at point b and d; meaning it has two ionized groups.

