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Introduction

The connection between thermodynamics and geometry
has became a key aspect in quantum gravity. In fact, it
was shown by Jacobson [1] that Einstein equations of gen-
eral relativity (GR) can be retrieved from the second law
of thermodynamics, using Raychaudhuri equation (RE).
Along with other conceptual problems, like the problem of
time in GR. Indicating the need to study the space-time
as an ensemble of some geometric subsystems with their
own microstates. Such that GR is recovered in the statist-
ical limit.
Inspired by Jacobson’s formalism, Das [2] and followed
by Alsaleh et al [3] thought of RE as a fundamental
equation of gravity instead of Einstein equations. Later,
RE was canonically quantised. Leading to a discovery
of a new dynamical system for gravity called geometric
flows [3]. Studying quantum geometric flows lead to prov-
ing rigorously that singularities only exist as a classical
limit of the quantum space-time [4]. Moreover, an ana-
logous equation to Wheeler DeWitt equation was derived
for quantum geometric flows (known as the Schrödinger-
Raychaudhuri-Das equation), that contains a real Hamilto-
nian that generates time-evolution, solving the problem of
time.

Objectives

– Studying space-time as an ensemble of geometric
flows, making statistical mechanics as the bridge
between geometric flows and Einstein field equations.

– Studying the thermodynamic properties of quantum
Schwarzschild black hole .

– Compare the temperature and entropy obtained from
the quantum geometric flows with the results obtained
from first order quantum corrections to Schwarzschild
geometry from quantum RE.

Geometric flows

We start by Studying the congruence of test
particles moving on an n + 1 dimensional space-
time M. We can use the proper time for the
test particles λ as a dynamical foliation parameter,
such that we foliate the space-time as in figure 1.

Figure 1: The dynamic foliation of the space-time M by the flow of
geodesic congruences. The cross-sectional hypersurface σλ repres-
ent the geometric flow.

The dynamical system resembling the geometric flow is

the cross-section of the congruence σλ, and the dynam-
ical degree of freedom is the volume of this cross-section,
which is given by:

ρ = 2

∫
dnx

√
deth. (1)

With hαβ being the metric of the hypersurface σλ. We may
also define the variable χ = 2

√
ρ.

The canonically-conjugate momentum (CCM) is called $,
and it is related to the expansion parameter θ by the rela-
tion θ = $

χ . Using the CCM, we can write the Hamiltonian:
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)
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with R being the Raychaudhuri scalar and Σ is the shear
potential. We have chosen the dynamic foliation such
that the tangent vector field to the congruence ξµ is al-
ways orthogonal to σλ. Such that the rotation Ω vanishes.
Raychaudhuri equation can be recovered from Hamilton’s
equation

{ θ ,H } = −θ̇ = −
1

n
θ̂2 − R+ 2σ2. (3)

Which is the expected result, as the motion of test particles
on geodesics is generated by the dynamics of geometric
flows.

Canonical quantisation

We can now quantise the system by introducing the oper-
ators χ̂ and $̂, that obey the CCR:[

χ̂ , $̂
]
= ih̄−1/2 Î. (4)

In the χ representation, we define the geometric
flow wavefunctionals Ψ[χ; λ] that obey the Schrödinger-
Raychudhri-Das (SRD) equation:(
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∂
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Figure 2: A plot of the probability density function |Ψ|2 vs ρ = χ2

obtained by solving (5) with R = Σ = 0. The plot indicates that the
probability density function rapidly decreases as ρ → 0 and vanishes
identically at the singularity.

Statistical mechanics

We can consider geometric flows playing the role of sub-
systems in Jacobson’s formalism [1]. Therefore, the stat-
istical mechanical study of geometric flows is supposed
to reproduce the physics of space-time, in this study we
considered Schwarzschild black holes.
We can consider the event horizon of a black hole as an
ensemble of N geometric flows, each of them correspond
to a single generator, from holographic principle, there is a
bound on N, given by Bekenstein limit [6].

N ∼
A

4h̄
(6)

Since the classical Schwarzschild geometry is Ricci flat,
we may assume a time-independent quantum fluctuations
of geometry. Manifesting themselves as a constant R.
With this assumption, the SRD equation becomes similar
to a SHO with half potential, with angular frequency ω =

(R/n)1/2. The spectrum of ‘analogous’ energy is given by:

εm = h̄ω

(
m+

1

2

)
, (7)

with the modes taking only odd numbers m = 1, 3, 5, . . . .

Figure 3: A plot of the probability density function |Ψ|2 vs ρ = χ2

obtained by solving (5) with R = const. In 4 dimensional space-time.

Figure 4: A plot of the Wagner quasi-probability distributionW(ρ; θ),
over the quantum phase space. For the ground state solution m = 1

and n = 3.

The explicit solution in terms of the variable ρ is given by,

Ψm[ρ] = A exp

−

√
R

nh̄2
ρ

Lm
2√ R

nh̄2
ρ

 (8)

Thus, we may calculate the partition function of the
quantum geometric flows ensemble

Z =
e−

3
2
βNh̄ω

(1− e−βh̄ω)N
, (9)

from which we can fully characterise the statistical mech-
anics of geometric flows.

Quantum-corrected black holes

We can calculate the entropy of the horizon using (9)

S = N

(
1+ ln(
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ω
) +

ω2h̄2

24T2
+ . . .

)
, (10)

from which we can recover the Area-Entropy law S = A/4h̄
from taking the leading term of (10). Moreover, we define
the BH mass as the average energy M = 〈E 〉, that is
given by

〈E 〉 =M = N

(
2T +

ω2h̄2

6T
+ . . .

)
. (11)

By taking the leading term, we also recover the rela-
tion between the mass of BH temperature T = h̄/8πM.
Moreover by taking sub-leading terms of (11), we get to
calculating quantum correction to temperature:

T =

√
M2 − 4π2

√
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2π
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M2 − 4π2
√
Rh̄+M

)2, (12)

Figure 5: A graph of M vs T for classical (blue) and quantum (red)
black holes. We assumed area fluctuation of Plankian orderω ∼ . The
graph indicates the existence of remnant for the quantum black hole.

and to the entropy, as well

S = 2π
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M
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)
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Figure 6: Graphs of M vs T (up) and M vs S (down). For classical
(blue) and quantum (red) black holes. We assumed area fluctuation of
Plankian order ω ∼ 1. The graph indicates the existence of remnant
for the quantum black hole.

Conclusion

We can see from figures 5 and 6. That the quantum
correction to Schwarzschild geometry using the statist-
ical mechanics of geometric flows reproduces the same
quantum corrections obtained in [5], by considering the
quantum Raychaudhuri equation (QRE) [2]. Indicating that
the initial conjecture about the space-time being an en-
semble of geometric flows is true, and showing a corres-
pondence between geometric flows and QRE. Recovering
the standard formulae for BH temperature and entropy is
a great test for creditability of quantum geometric flows as
a potential approach for quantum gravity.
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