
Volume 44, 2014
Pages 59–74

http://topology.auburn.edu/tp/

Probabilistic Limit Groups
Under a t-Norm

by
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PROBABILISTIC LIMIT GROUPS UNDER A T-NORM

G. JÄGER AND T. M. G. AHSANULLAH

Abstract. We introduce probabilistic limit groups under a t-
norm and study their basic properties. We show that for the classes
of strict t-norms, all categories of probabilistic limit groups under
such t-norms are isomorphic. The same is true for nilpotent t-
norms. We further show that for each probabilistic limit group
under a t-norm there is a natural probabilistic uniform limit struc-
ture which has the same underlying probabilistic Cauchy structure
as the probabilistic limit group.

1. Introduction

Probabilistic limit spaces were introduced by Liviu C. Florescu [4]. He
used net convergence to describe such spaces. A formulation in terms of
filter convergence was given by G. D. Richardson and D. C. Kent [16].
Probabilistic convergence spaces extend the theory of probabilistic metric
spaces (see [12] and [17]) and probabilistic topological spaces (see [5]) by
assigning to a filter a probability to converge to a point. This was subse-
quently generalized by Harald Nusser [14], who used t-norms in various
axiom systems of probabilistic spaces.

This paper looks at a special class of probabilistic limit spaces, where
the underlying set additionally carries a group structure. The compati-
bility of the group operations with the convergence structure is usually
expressed by continuity of the group operations. However, in some ap-
plications (for example, when looking at normed vector spaces), this
compatibility—in the probabilistic case—has to be defined differently. We
give a suitable definition and study the resulting category of probabilistic
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limit groups under a t-norm. If the t-norm is given by the minimum t-
norm, then the compatibility of the group operations coincides with their
continuity. A similar approach in the realm of convergence approach
spaces can be found in [11]. We further show that each probabilistic limit
group allows a probabilistic uniformization and that for certain classes
of t-norms, the categories of probabilistic limit groups under t-norms of
these classes are isomorphic.

A t-norm ∗ : [0, 1] × [0, 1] −→ [0, 1] is a binary operation on [0, 1]
which is associative, commutative, non-decreasing in each argument, and
has 1 as the unit. A t-norm is called continuous if it is continuous as a
mapping from [0, 1]×[0, 1] −→ [0, 1]. A special class of t-norms is given by
continuous Archimedean t-norms. These are determined by continuous,
strictly decreasing additive generators S : [0, 1] −→ [0,∞] with S(1) = 0
such that for all α, β ∈ [0, 1]

α ∗ β = S(−1)(S(α) + S(β))

with the pseudo-inverse

S(−1)(u) =
∨
{x ∈ [0, 1] : S(x) > u} =

{
v if S(v) = u
0 if u > S(0)

.

Note that
∨
∅ =

∧
[0, 1] = 0 here.

We also note that the pseudo-inverse S(−1) : [0,∞] −→ [0, 1] is continu-
ous, surjective, and strictly decreasing on [0, S(0)] and that S(S(−1)(u)) =
u if u ≤ S(0) and that S(−1)(S(u)) = u for all u ∈ [0, 1]. Continuous
Archimedean t-norms can be separated into two classes.

• S(0) = ∞. These are the strict t-norms. In this case, S(−1) =
S−1. A typical example is the product t-norm α ∗ β = αβ with
additive generator S(x) = − ln(x) (and S(0) = ∞).

• S(0) < ∞. These are the nilpotent t-norms. Noting that for an
additive generator S for a continuous Archimedean t-norm and
for all a > 0, S(x) = aS(x) defines an additive generator for
the same t-norm, we can always assume for a nilpotent t-norm
that S(0) = 1. A typical example for a nilpotent t-norm is the
Lukasiewicz t-norm α∗β = (α+β−1)∨0 with additive generator
S(x) = 1− x.

An example of a non-Archimedean t-norm is the minimum t-norm α∗β =
α ∧ β. We note that α ∗ β ≤ α ∧ β for any t-norm. For further results on
t-norms, we refer the reader to [17] and [9].

We finally fix some notation. For a set X, we denote P (X) its power
set. We denote the set of all filters F,G,H, ... on the set X by F(X). We
order this set by set inclusion and we denote for x ∈ X the point filter by
[x] = {F ⊆ X : x ∈ F}. For a group (X, ·) and F,G ∈ F(X), we define
F ⊙ G as the filter generated by the sets F · G = {xy : x ∈ F, y ∈ G}
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where F ∈ F and G ∈ G. The filter F−1 is generated by the sets F−1 =
{x−1 : x ∈ F} for F ∈ F. The following properties are then not difficult
to prove.

Lemma 1.1. Let e denote the neutral element in the group (X, ·). For
F,G,H ∈ F(X) and f : X −→ Y a group homomorphism (where Y is
also a group), we have

(i) F⊙ F−1 ≤ [e] and F−1 ⊙ F ≤ [e];
(ii) [x]⊙ [x]−1 = [x]−1 ⊙ [x] = [e];
(iii) [x−1] = [x]−1;
(iv) (F⊙G)⊙H = F⊙ (G⊙H);
(v) (F−1)−1 = F;
(vi) (F⊙G)−1 = G−1 ⊙ F−1;
(vii) [e]⊙ F = F⊙ [e] = F;
(viii) (F ∧G)−1 = F−1 ∧G−1;
(ix) (F ∧G)⊙H = (F⊙H) ∧ (G⊙H);
(x) f(F⊙G) = f(F)⊙ f(G);
(xi) f(F−1) = (f(F))−1.

For a subset A of an ordered set X we write, in case of existence,
∨

A
for its supremum and

∧
A for its infimum. If A = {α, β}, then we write

α∧β =
∧
A and α∨β =

∨
A. For notions from category theory, we refer

the reader to [1].

2. Probabilistic Limit Spaces, Probabilistic Cauchy
Spaces, and Probabilistic Uniform Limit Spaces

A probabilistic limit space [16] is a pair (X, q) of a set X and a non-
empty family of mappings q = (qλ : F(X) −→ P (X))λ∈[0,1] that satisfies
the following axioms.
(PL1) x ∈ qα([x]) for all α ∈ [0, 1], x ∈ X;
(PL2) qα(F) ⊆ qα(G) whenever F ≤ G;
(PL3) qβ(F) ⊆ qα(F) whenever α ≤ β;
(PL4) q0(F) = X;
(PL5) x ∈ qα∧β(F ∧ G) whenever x ∈ qα(F) and x ∈ qβ(G) for all

α, β ∈ [0, 1],F,G ∈ F(X).
If, instead of (PL5), the weaker axiom
(wPL5) x ∈ qα∗β(F ∧G) whenever x ∈ qα(F) and x ∈ qβ(G)

is satisfied, then we speak of a probabilistic limit space under a t-norm ∗
[14]. A probabilistic limit space is, therefore, a probabilistic limit space
under the minimum t-norm. It is not difficult to show that (PL5) is
equivalent to

(PL5′) x ∈ qα(F ∧G) whenever x ∈ qα(F) and x ∈ qα(G).
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Also, it is clear that (PL5) implies (wPL5). In [14], probabilistic limit
spaces are called componentwise probabilistic limit spaces.

Example 2.1. The discrete probabilistic limit space (X, qd) is defined by
x ∈ qdα(F) ⇐⇒ F = [x].

Example 2.2. The indiscrete probabilistic limit space (Xqi) is defined
by qiα(F) = X for all F ∈ F(X) and all α ∈ [0, 1].

Further examples are described in [16] and are also mentioned later in
section 3.

A mapping f : X −→ X ′ between the probabilistic limit spaces under
the t-norm ∗, (X, q) and (X ′, q′), is continuous if, for all α ∈ [0, 1] and
all F ∈ F(X), we have f(qα(F)) ⊆ q′α(f(F)). The category of all proba-
bilistic limit spaces under the t-norm ∗ with the continuous mappings as
morphisms is denoted by PLIM∗. It is shown in [14] that PLIM∗ is a
topological and extensional construct and for ∗ = ∧, PLIM∧ is Cartesian
closed.

A probabilistic Cauchy space under the t-norm ∗ [14] is a pair (X,C)
of a set X and a non-empty family of subsets of F(X), C = (Cα)α∈[0,1],
that satisfies the following axioms.
(PC1) [x] ∈ Cα for all x ∈ X and all α ∈ [0, 1];
(PC2) G ∈ Cα whenever F ∈ Cα and F ≤ G;
(PC3) Cβ ⊆ Cα whenever α ≤ β;
(PC4) C0 = F(X);
(PC5) F ∧G ∈ Cα∗β whenever F ∈ Cα, G ∈ Cβ , and F ∨G exists.

A mapping f : X −→ X ′ between two probabilistic Cauchy spaces
under the t-norm ∗, (X,C) and (X,C

′
), is called Cauchy-continuous if,

for all α ∈ [0, 1], we have f(Cα) ⊆ C ′
α. The category of probabilistic

Cauchy spaces under the t-norm ∗ and Cauchy continuous mappings is
denoted by PChy∗.

Lemma 2.3. Let (X,C) be a probabilistic Cauchy space under the t-norm
∧. Then (PC5) is equivalent to the axiom

(PC5∧) F ∧G ∈ Cα whenever F ∈ Cα, G ∈ Cα, and F ∨G exists.

Proof. If (PC5) is true, then we simply choose α = β. If (PC5∧) is true,
then, for F ∈ Cα and G ∈ Cβ , we conclude with (PC3) that F ∈ Cα∧β and
G ∈ Cα∧β . Therefore, if F∨G exists by (PC5∧), then F∧G ∈ Cα∧β . �

Therefore, probabilistic Cauchy spaces under the t-norm ∧ are compo-
nentwise probabilistic Cauchy spaces [14, Definitions 2.9(2)]. The category
PChy∗ is topological but not hereditary and quotients are not productive,
not even for ∗ = ∧. However, PChy∧ is Cartesian closed; see [14].
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Let (X,C) ∈ |PChy∗|. For α ∈ [0, 1], x ∈ X, and F ∈ F(X), we
define x ∈ qCα (F) if F ∧ [x] ∈ Cα. It is easy to see that (X, qC) is then
a probabilistic limit space under the t-norm ∗. We only show (PL5).
If x ∈ qCα (F) ∩ qCβ (G), then F ∧ [x] ∈ Cα and G ∧ [x] ∈ Cβ . Because
(F ∧ [x]) ∨ (G ∧ [x]) exists, we conclude from (PC5) that (F ∧G) ∧ [x] =
(F ∧ [x]) ∧ (G ∧ [x]) ∈ Cα∗β , and hence x ∈ qCα∗β(F ∧ G). It is also easy
to see that for a Cauchy-continuous mapping f : (X,C) −→ (X ′, C

′
), the

mapping f : (X, qC) −→ (X ′, qC′) is continuous.
A probabilistic uniform limit space under the t-norm ∗ [14] is a pair

(X,L) of a set X and a non-void family of subsets of F(X × X), L =
(Lα)α∈[0,1], that satisfies the following axioms.

(PUL1) [x]× [x] ∈ Lα for all x ∈ X and all α ∈ [0, 1];
(PUL2) Ψ ∈ Lα whenever Φ ≤ Ψ and Φ ∈ Lα;
(PUL3) Lα ⊆ Lβ whenever β ≤ α;
(PUL4) L0 = F(X ×X);
(PUL5) Φ ∧Ψ ∈ Lα whenever Φ,Ψ ∈ Lα;
(PUL6) Φ−1 ∈ Lα whenever Φ ∈ Lα;
(PUL7) Φ ◦Ψ ∈ Lα∗β whenever Φ ∈ Lα, Ψ ∈ Lβ , and Φ ◦Ψ exists.

If instead of the axiom (PUL5), the weaker axiom
(wPUL5) Φ ∧Ψ ∈ Lα∗β whenever Φ ∈ Lα,Ψ ∈ Lβ

is satisfied, then we call (X,L) a weak probabilistic uniform limit space
under ∗.

A mapping f : X −→ X ′ between two (weak) probabilistic uniform
limit spaces (X,L) and (X ′, L

′
) is called uniformly continuous if (f × f)

(Lα) ⊆ L′
α for all α ∈ [0, 1]. The category of all probabilistic uniform

limit spaces under the t-norm ∗ with uniformly continuous mappings as
morphisms is denoted by PULIM∗. The category of weak probabilistic
uniform limit spaces under the t-norm ∗ is denoted by WPULIM ∗.

Lemma 2.4. Let (X,L) be a probabilistic uniform limit space under the
t-norm ∧. Then (PUL7) is equivalent to the axiom

(PUL7 ∧) Φ ◦Ψ ∈ Lα whenever Φ ∈ Lα, Ψ ∈ Lα, and Φ ◦Ψ exists.

Proof. Similar to the proof of Lemma 2.3. �

Therefore, probabilistic uniform limit spaces under the t-norm ∧ are
componentwise probabilistic uniform limit spaces [14, Definitions 2.4(2)].
The category PULIM∗ is topological and not hereditary and products of
quotients are quotiens. PULIM∧ is Cartesian closed [14].

For (X,L) and for α ∈ [0, 1] and F ∈ F(X), we define F ∈ CL
α if

F×F ∈ Lα. Then (X,CL) ∈ |PChy∗|. The axioms (PC1)–(PC4) are easy.
We prove (PC5). If F ∈ CL

α , G ∈ CL
β , and F ∨G exists, then F× F ∈ Lα
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and G × G ∈ Lβ . By (PUL7), then F × G = (F × F) ◦ (G × G) ∈ Lα∗β
and also G× F ∈ Lα∗β . Because α ∗ β ≤ α, β, we conclude with (PUL3)
that F× F ∈ Lα∗β and G×G ∈ Lα∗β , and hence, by (PUL5), also

(F ∧G)× (F ∧G) = (F× F) ∧ (F×G) ∧ (G× F) ∧ (G×G) ∈ Lα∗β .

But this means F ∧G ∈ CL
α∗β .

It is also not difficult to see that for a uniformly continuous mapping
f : (X,L) −→ (X ′, L

′
), the mapping f : (X,CL) −→ (X ′, CL′) is Cauchy-

continuous.
We further define for (X,L) ∈ |PULIM∗| the underlying probabilistic

limit space (X, qL) by x ∈ qLα(F) if F × [x] ∈ Lα. It is then not difficult
to show that for F ∈ F(X), qC

L

α (F) ⊆ qLα(F) ⊆ qC
L

α∗α(F). Hence, if for all
α ∈ [0, 1] we have α ∗ α = α, then qLα = qC

L

α . It is well known that this is
only the case if ∗ = ∧.

3. Probabilistic Limit Groups and
Weak Probabilistic Limit Groups

We consider now a group (X, ·). A triple (X, ·, q) is called a probabilistic
limit group under the t-norm ∗, if

(PL) (X, q) is a probabilistic limit space (under the t-norm ∧);
(PLM) xy ∈ qα∗β(F⊙G) whenever x ∈ qα(F) and y ∈ qβ(G);
(PLI) x−1 ∈ qα(F−1) whenever x ∈ qα(F).

The category of probabilistic limit groups under the t-norm ∗ with
continuous group homomorphisms as morphisms is denoted by PLG∗.

We note that in case ∗ = ∧, the axiom (PLM) is equivalent to the
axiom

(PLM′) xy ∈ qα(F⊙G) whenever x ∈ qα(F) and y ∈ qα(G).
A triple (X, ·, q) is called a weak probabilistic limit group under the

t-norm ∗ if
(PL∗) (X, q) is a probabilistic limit space under the t-norm ∗;

(PLM) xy ∈ qα∗β(F⊙G) whenever x ∈ qα(F) and y ∈ qβ(G);
(PLI) x−1 ∈ qα(F−1) whenever x ∈ qα(F).

The category of weak probabilistic limit groups under the t-norm ∗ with
continuous group homomorphisms as morphisms is denoted by WPLG∗.

Example 3.1. For a group (X, ·), the discrete space (X, ·, qd) and the
indiscrete space (X, ·, qi) are probabilistic limit groups under any t-norm.

Example 3.2. Typical examples of probabilistic limit groups under a
t-norm are given by normed vector spaces (X, ∥ · ∥). We define, for x ∈ X
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and ϵ > 0, B(x, ϵ) = {y ∈ X : ∥x− y∥ < ϵ}, and with this, we define for
0 ≤ α ≤ ∞,

Ux
α = [{B(x, ϵ) : ϵ ≥ α}] .

Further, let ∗ be a strict t-norm with additive generator S : [0, 1] −→
[0,∞], i.e., α ∗ β = S−1(S(α) + S(β)). Define for 0 ≤ α < 1

x ∈ qα(F) ⇐⇒ F ≥ Ux
S(α),

and q1(F) =
∩

α<1 qα(F). Then (X, q) is a probabilistic limit space, as
can easily be verified. Furthermore, the axiom (PLM) is satisfied. By the
triangular inequality for the norm, we deduce B(x, S(α)) +B(y, S(β)) ⊆
B(x + y, S(α) + S(β)) = B(x + y, S(α ∗ β)). From this it follows that
Ux

S(α)⊕Uy
S(β) ≥ Ux+y

S(α∗β). Hence, if x ∈ qα(F) and y ∈ qβ(G), then F ≥ Ux
α

and G ≥ Uy
β , and therefore F ⊕ G ≥ Ux+y

S(α∗β). But this means x + y ∈
qα∗β(F ⊕ G). The axiom (PLI) finally follows because z ∈ B(x, S(α))
implies −z ∈ B(−x, S(α)). Hence, (X,+, q) is a probabilistic limit group
under the t-norm ∗.

Example 3.3. Let λ be the Lebesgue measure on [0, 1] and let τ be the
usual topology on IR. The set X = {f : [0, 1] −→ IR : f is measurable} can
be considered as a commutative group by defining (f+g)(x) = f(x)+g(x)
and (−f)(x) = −f(x) for x ∈ [0, 1]. We define, for α ∈ [0, 1], f ∈ X and
F ∈ F(X), f ∈ qα(F) if there is A ⊆ [0, 1] with λ(A) ≤ 1 − α and
F(x) τ−→ f(x) for all x /∈ A. Then (X, q) is a probabilistic limit space
under the Lukasiewicz t-norm α ∗ β = (α + β − 1) ∨ 0. Richardson and
Kent [16] mention that (X, q) satisfies the axioms (PL1)–(PL4) and that
q1 describes convergence almost everywhere. So we need to show the
axiom (PL5). Let f ∈ qα(F) and g ∈ qβ(G). Then there are A,B ⊆ [0, 1]
such that λ(A) ≤ 1 − α and λ(B) ≤ 1 − β such that for all x /∈ A,
F(x) τ−→ f(x) and for all x /∈ B, G(x)

τ−→ f(x). Hence, for all x /∈ A∪B,
we have F(x) ∧ G(x)

τ−→ f(x) and because λ(A ∪ B) ≤ λ(A) + λ(B) ≤
(1− α) + (1− β) = 1− (α+ β − 1), we see that F ∧G ∈ qα∗β(f).

We finally show that it is also a weak probabilistic limit group under
the Lukasiewicz t-norm. Let f ∈ qα(F) and g ∈ qβ(G). Then there are
A,B ⊆ [0, 1] with λ(A) ≤ 1 − α and λ(B) ≤ 1 − β such that for all
x /∈ A, F(x) τ−→ f(x) and for all x /∈ B, G(x)

τ−→ g(x). But then for all
x /∈ A∪B, F⊕G(x)

τ−→ (f+g)(x) and because λ(A∪B) ≤ λ(A)+λ(B) ≤
1− (α ∗ β), we see that f + g ∈ qα∗β(F⊕G). Hence, the axiom (PLM) is
true. The axiom (PLI) is easy and left for the reader.

Example 3.4. Let again X = {f : [0, 1] −→ IR : f is measurable} and de-
fine the equivalence relation f ∼ g if f = g λ-almost everywhere. Richard-
son and Kent [16] define the following probabilistic limit structure on
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Y = X/∼. For α > 0, define f ∈ qα(F) if, for all a > 0 and all ϵ < α, there
is F ∈ F such that for all g ∈ F , we have λ({x ∈ [0, 1] : |f(x) − g(x)| <
a}) ≥ ϵ. Further, define q0 as the indiscrete topology on Y . Then (Y, q) is
a probabilistic limit space and Richardson and Kent [16] point out that q1
is convergence in probability. We define the following group operations.
For f, g ∈ X, we define [f ] + [g] = [f + g] and −[f ] = [−f ]. We show
that (Y,+, q) is a probabilistic limit group under the Lukasiewicz t-norm
α ∗ β = (α+ β− 1)∨ 0. In order to show the axiom (PLM), let f ∈ qα(F)
and g ∈ qβ(G). Further, let a > 0 and 0 < ϵ < α ∗ β = α + β − 1. Then
there are ϵ1 < α and ϵ2 < β with ϵ1 + ϵ2 − 1 = ϵ. There are F ∈ F and
G ∈ G such that for all h ∈ F and k ∈ G, λ({x : |h(x)−f(x)| < a

2}) ≥ ϵ1
and λ({x : |k(x) − g(x)| < a

2}) ≥ ϵ2. From |h(x) − f(x)| < a
2 and

|k(x)− g(x)| < a
2 , we conclude |(h+ k)(x)− (f + g)(x)| < a for all h ∈ F

and all k ∈ G. Hence, for all p ∈ F ⊕G, we have |p(x)− (f + g)(x)| < a.
Now for all h ∈ F , k ∈ G, and p ∈ F ⊕G, we have

{x : |h(x)− f(x)| < a

2
} ∩ {x : |k(x)− g(x)| < a

2
} ⊆

{x : |p(x)− (f + g)(x)| < a}
and hence,

λ({x : |p(x)− (f + g)(x)| < a})

≥ λ({x : |h(x)− f(x)| < a

2
}) + λ({x : |k(x)− g(x)| < a

2
})− 1

≥ ϵ1 + ϵ2 − 1 = ϵ.

Hence, f + g ∈ qα∗β(F⊕G). The axiom (PLI) is left for the reader.

Example 3.5. We finally present an example of a probabilistic limit
group under the minimum t-norm. To this end, we consider for two
probabilistic limit groups under the minimum t-norm, (X, ·X , qX) and
(Y, ·Y , qY ), the set C(X,Y ) of continuous mappings from (X, qX) to
(Y, qY ). This set carries a natural function space structure by defining
for Φ ∈ F(C(X,Y )), f ∈ C(X,Y ), and α ∈ [0, 1], f ∈ qαC(X,Y )(Φ) if, for
all µ ≤ α, we have that f(x) ∈ qµY (ev(Φ×F)) whenever x ∈ qµX(F). Here,
ev : C(X,Y ) × X −→ Y is the evaluation mapping ev(f, x) = f(x). In
fact, this function space structure is called the probabilistic limit struc-
ture of continuous convergence and makes the category PLIM∧ cartesian
closed; see [14]. We define the following group operations on C(X,Y ). For
f, g ∈ C(X,Y ), we define fg(x) = f(x)g(x) and f−1(x) = (f(x))−1. It
is not difficult to show that with these definitions, fg ∈ C(X,Y ) and
f−1 ∈ C(X,Y ), and that C(X,Y ) then becomes a group. We show
that with the probabilistic limit structure of continuous convergence,
C(X,Y ) is a probabilistic limit group under the minimum t-norm. In
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order to show the axiom (PLM′), let f ∈ qαC(X,Y )(Φ) and g ∈ qαC(X,Y )(Ψ).
Further, let x ∈ qµX(F) for µ ≤ α. Then f(x) ∈ qµY (ev(Φ × F)) and
g(x) ∈ qµY (ev(Ψ×F)). Hence, by (PLM′) for the probabilistic limit group
Y , we conclude

fg(x) = f(x)g(x) ∈ qµY (ev(Φ× F)⊙ ev(Ψ× F)).
It is not difficult to prove that ev(Φ×F)⊙ev(Ψ×F) ≤ ev((Φ⊙Ψ)×F)), and
hence the axiom (PLM′) follows. For (PLI) we note that ev(Φ−1 × F) =
(ev(Φ× F))−1 and leave the details for the reader.

It is possibly worthwhile to note that even if we restrict this construc-
tion on the set Ch(X,Y ) of continuous group homomorphisms from X to
Y , the category PLG∧ does not become cartesian closed with the proba-
bilistic limit structure of continuous convergence. This is due to the fact
that the evaluation mapping is not a group homomorphism.

Let (X, q) be a probabilistic limit space under the t-norm ∗. We define
the following structure on the product X × X. For Φ ∈ F(X × X),
α ∈ [0, 1], and (x, y) ∈ X ×X, we define

(x, y) ∈ (q ⊗ q)α(Φ) ⇐⇒
∃α1, α2 ∈ [0, 1] s.t. α1 ∗ α2 ≥ α, x ∈ qα1(pr1(Φ)), y ∈ qα2(pr2(Φ)).

It is easy to see that (X×X, q ⊗ q) is a probabilistic limit space under
the t-norm ∗. Furthermore, we have the following result.

Lemma 3.6. Let (X, q) ∈ |PLIM∗|. The following are equivalent.
(1) The axiom (PLM) is true.
(2) The multiplication m : (X ×X, q ⊗ q) −→ (X, q) is continuous.

Proof. First, let the axiom (PLM) be true and let Φ ∈ F(X × X), α ∈
[0, 1], and (x, y) ∈ (q ⊗ q)α(Φ). Then there are α1, α2 ∈ [0, 1] such that
α1 ∗ α2 ≥ α, x ∈ qα1(pr1(Φ)), and y ∈ qα2(pr2(Φ)). But then m(x, y) =
xy ∈ qα1∗α2(pr1(Φ) ⊗ pr2(Φ)) = qα1∗α2(m(pr1(Φ) × pr2(Φ)). Because
α1 ∗ α2 ≥ α and pr1(Φ) × pr2(Φ) ≤ Φ, we obtain with (PL2) and (PL3)
xy ∈ qα(m(Φ)). Hence, the multiplication is continuous. Conversely,
assume that the multiplication is continuous and let x ∈ qα(F) and y ∈
qβ(G). Then (x, y) ∈ (q ⊗ q)α∗β(F × G), and hence, by continuity of m,
xy ∈ qα∗β(m(F×G)) = qα∗β(F⊗G). �

It is further clear that the axiom (PLI) is equivalent to the continu-
ity of the mapping inv : (X, q) −→ (X, q), x 7−→ x−1. Hence, we can
characterize weak probabilistic limit groups under the t-norm ∗ as groups
with a probabilistic limit structure under the t-norm ∗ where multipli-
cation and taking inverses are continuous mappings. It is not clear how
to define suitable product structures for (non-weak) probabilistic limit
groups under the t-norm ∗. But, for the case ∗ = ∧, we note that q ⊗ q is
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the same as the product structure q × q on X ×X. Hence, probabilistic
limit groups under the minimum t-norm can be characterized as groups
with a probabilistic limit structure for which the group operations are
continuous.

Theorem 3.7. The categories PLG∗ and WPLG∗ are topological over
GRP .

Proof. Let (fj : (X, ·) −→ (Xj , ·j , qj)j∈J be a source where the mappings
fj are group homomorphisms. The initial probabilistic limit structure
(under the t-norm ∗) q on X is given in [14]:

x ∈ qα(F) ⇐⇒ ∀ j ∈ J : fj(x) ∈ qjα(fj(F)).

If x ∈ qα(F) and y ∈ qβ(G), then fj(x) ∈ qjα(fj(F)) and fj(y) ∈ qjβ(G)

for all j ∈ J . Hence, by (PLM) for the spaces (Xj , ·j , qj), fj(xy) =

fj(x)fj(y) ∈ qjα∗β(fj(F)⊙ fj(G)) = qjα∗β(fj(F⊙G)) for all j ∈ J . Hence,
xy ∈ qα∗β(F ⊙ G), and therefore the space (X, ·, q) satisfies (PLM). For
(PLI), we note that, for all j ∈ J , we have fj(x

−1) = (fj(x))
−1 and

fj(F−1) = (fj(F))−1. Hence, if x ∈ qα(F), then, for all j ∈ J , we obtain
fj(x

−1) = (fj(x))
−1 ∈ qjα((fj(F))−1) = qjα(fj(F−1)). Therefore, x−1 ∈

qα(F−1) and (PLI) is satisfied for (X, ·, q). �

Probabilistic limit groups are homogeneous in the following sense.

Lemma 3.8. Let (X, ·, q) ∈ |WPLG∗|, α ∈ [0, 1], F ∈ F(X), and x ∈ X.
Then x ∈ qα(F) if and only if e ∈ qα([x

−1] ⊙ F) if and only if e ∈
qα(F⊙ [x−1]).

Proof. Let x ∈ qα(F). By (PL1), we have x−1 ∈ q1([x
−1]), and hence,

by (PLM), e = x−1x ∈ qα∗1([x
−1] ⊙ F) = qα([x

−1] ⊙ F). Conversely, if
e ∈ qα([x

−1] ⊙ F), then because x ∈ q1([x]), we conclude with (PLM)
x = xe ∈ q1∗α([x]⊙ ([x−1]⊙ F)) = qα(F). �

We can use homogeneity and characterize a probabilistic limit group
solely in terms of convergence of filters to the unit element e.

Lemma 3.9. Let (X, ·) be a group. Then (X, ·, q) ∈ |PLG∗| if and only
if the following axioms are satisfied.
(PLH) x ∈ qα(F) if and only if e ∈ qα([x

−1] ⊙ F) if and only if e ∈
qα(F⊙ [x−1]);

(PL1e) e ∈ qα([e]) for all α ∈ [0, 1];
(PL2e) F ≤ G and e ∈ qα(F) imply e ∈ qα(G);
(PL3e) e ∈ qα(F) ∩ qα(G) implies e ∈ qα(F ∧G);

(PLMe) e ∈ qα∗β(F⊙G) whenever e ∈ qα(F) ∩ qβ(G);
(PLIe) e ∈ qα(F−1) whenever e ∈ qα(F).
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Proof. The necessity of the stated axioms is obvious. We check the suf-
ficiency. By using Lemma 1.1 and the given conditions, we can easily
show that (X, q) is a probabilistic limit space under the minimum t-norm
∧. We only show (PLM). Let x ∈ qα(F) and y ∈ qβ(G). By homogene-
ity, then e ∈ qα([x

−1] ⊙ F) and e ∈ qβ(G ⊙ [y−1]). Hence, by (PLMe),
then also e ∈ qα∗β(([x

−1] ⊙ F) ⊙ (G ⊙ [y−1])). Again, by homogene-
ity, then x ∈ qα∗β((F ⊙ G) ⊙ [y−1]) and, using homogeneity once more,
e ∈ qα∗β((F ⊙ G) ⊙ [y−1] ⊙ [x−1]) = qα∗β((F ⊙ G) ⊙ [(xy)−1]). But this
means xy ∈ qα∗β((F⊙G)). The axiom (PLI) can be shown similarly. �
Lemma 3.10. Let (X, ·) be a group. Then (X, ·, q) ∈ |WPLG∗| if and
only if the following axioms are satisfied.

(PLH) x ∈ qα(F) if and only if e ∈ qα([x
−1] ⊙ F) if and only if e ∈

qα(F⊙ [x−1]);
(PL1e) e ∈ qα([e]) for all α ∈ [0, 1];
(PL2e) F ≤ G and e ∈ qα(F) imply e ∈ qα(G);
(PL3e) e ∈ qα(F) ∩ qβ(G) implies e ∈ qα∗β(F ∧G);

(PLMe) e ∈ qα∗β(F⊙G) whenever e ∈ qα(F) ∩ qβ(G);
(PLIe) e ∈ qα(F−1) whenever e ∈ qα(F).

Proof. This is similar to that of Lemma 3.9. �

4. Isomorphy of Categories of
Probabilistic Limit Groups Under t-Norms

In order to show that for certain classes of t-norms, the categories of
probabilistic limit groups under t-norms of such a class are all isomorphic,
we adapt and generalize an idea of [2] and introduce a new category.

For ω ∈ [0,∞], an ω-limit tower group (X, ·, p) is a group (X, ·) together
with family of mappings p = (pϵ : F(X) −→ P (X))ϵ∈[0,∞] such that the
following axioms are satisfied.
(LT1) x ∈ pϵ([x]) for all ϵ ∈ [0,∞], x ∈ X;
(LT2) pϵ(F) ⊆ pϵ(G) whenever F ≤ G;
(LT3) pδ(F) ⊆ pϵ(F) whenever δ ≤ ϵ;
(LT4) pϵ(F) = X whenever ϵ ≥ ω;
(LT5) x ∈ pϵ(F ∧G) whenever x ∈ pϵ(F) and x ∈ pϵ(G);

(LTM) xy ∈ pϵ+δ(F⊙G) whenever x ∈ pϵ(F) and y ∈ pδ(G);
(LTI) x−1 ∈ pϵ(F−1) whenever x ∈ pϵ(F), for all ϵ, δ ∈ [0,∞] and F,G ∈

F(X).
If, instead of (LT5), the weaker condition

(LT5∗) x ∈ pϵ+δ(F ∧G) whenever x ∈ pϵ(F) ∩ pδ(G)

is satisfied, then (X, ·, q) is called a weak ω-limit tower group.
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If ω = ∞, then spaces (X, p), where p satisfies the axioms (LT1)–
(LT5), are called limit tower spaces (see [2]). They require additionally a
left-continuity condition.

A mapping f : X −→ X ′ between two (weak) ω-limit tower groups
(X, ·, q) and (X ′, ·′, q′) is called continuous if f(pϵ(F)) ⊆ p′ϵ(f(F)) for
all ϵ ∈ [0,∞] and all F ∈ F(X). The category whose objects are the ω-
limit tower groups and continuous group homomorphisms as morphisms is
denoted by LTGω; the category whose objects are the weak ω-limit tower
groups and continuous group homomorphisms as morphisms is denoted
by WLTGω.

We consider now an Archimedean t-norm with continuous, strictly de-
creasing additive generator S : [0, 1] −→ [0,∞] with S(1) = 0, such that
α ∗ β = S(−1)(S(α) + S(β)) with the pseudo-inverse

S(−1)(u) =

{
v if S(v) = u
0 if u > S(0)

.

We define for (X, ·, q) and for the t-norm ∗ the S(0)-limit tower group
(X, ·,ΨS(q)) by ΨS(q)ϵ(F) = qS(−1)(ϵ)(F).

Lemma 4.1. For (X, ·, q) ∈ |PLG∗|, we have (X, ·,ΨS(q)) ∈ |LTGS(0)|.

Proof. The axioms (LT1), (LT2), (LT3), and (LT5) are easy; see [2].
(LT4) follows because, from ϵ ≥ S(0), we conclude S(−1)(ϵ) = 0. We prove
(LTM). Let x ∈ ΨS(q)ϵ(F) and y ∈ ΨS(q)δ(G). Then x ∈ qS(−1)(ϵ)(F) and
y ∈ qS(−1)(δ)(G), and hence, by (PLM), xy ∈ qS(−1)(ϵ)∗S(−1)(δ)(F ⊙ G). If
ϵ+δ ≥ S(0), then S(−1)(ϵ+δ) = 0, and therefore xy ∈ qS(−1)(ϵ+δ)(F⊙G) =

ΨS(q)ϵ+δ(F⊙G). If ϵ+δ < S(0), then both ϵ, δ < S(0) and then S(−1)(ϵ)∗
S(−1)(δ) = S(−1)(ϵ + δ), and therefore also xy ∈ qS(−1)(ϵ+δ)(F ⊙ G) =

ΨS(q)ϵ+δ(F⊙G). The axiom (LTI) is easy and left for the reader. �

Lemma 4.2. We have (X, ·,ΨS(q)) ∈ |WLTGS(0)| for (X, ·, q) ∈ |WPLG∗|.

Proof. We need to check the axiom (LT5∗), but this is similar to the proof
of (LTM) above. �

It follows easily from this that ΨS : PLG∗ −→ LTGS(0), (X, ·, q) 7−→
(X, ·,ΨS(q)), f 7−→ f is a functor; see [2].

For an S(0)-limit tower group (X, ·, p), we define now a probabilistic
limit group under the t-norm ∗, (X, ·,ΦS(p)) by ΦS(p)α(F) = pS(α)(F).

Lemma 4.3. For (X, ·, p) ∈ |LTGS(0)|, we have (X, ·,ΦS(p)) ∈ |PLG∗|.

Proof. We only prove the axiom (PLM) and leave the others to the reader.
Let x ∈ ΦS(p)α(F) and y ∈ ΦS(p)β(G). Then x ∈ pS(α)(F) and y ∈
pS(β)(G) and by (LTM), then xy ∈ pS(α)+S(β)(F ⊙ G). By definition of
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the t-norm, we have S(α ∗ β) = S(S(−1)(S(α)+S(β))). If S(α)+S(β) ≤
S(0), then S(α ∗ β) = S(α) + S(β), and hence xy ∈ pS(α∗β)(F ⊙ G) =
ΦS(p)α∗β(F ⊙ G). If S(α) + S(β) > S(0), then S(α ∗ β) = S(0) and
ΦS(p)α∗β(F ⊙ G) = pS(0)(F ⊙ G) = X, and hence, also in this case,
xy ∈ ΦS(p)α∗β(F⊙G). �
Lemma 4.4. For (X, ·, p) ∈ |WLTGS(0)|, we have (X, ·,ΦS(p)) ∈
|WPLG∗|.

It is again not difficult to show that ΦS : LTGS(0) −→ PLG∗, (X, ·, p)
7−→ (X, ·,ΦS(p)), f 7−→ f is a functor.

Now we note that (ΦS ◦ ΨSq)α = qS(−1)(S(α)) = qα. If ϵ ≤ S(0), then
S(S(−1)(ϵ)) = ϵ, and hence (ΨS ◦ ΦSp)ϵ = pS(S(−1)(ϵ)) = pϵ. If ϵ > S(0),
then trivially (ΨS ◦ ΦSp)ϵ = X = pϵ. Hence, both functors, ΨS and ΦS ,
are isomorphism functors and we can state the following result.

Theorem 4.5. The categories PLG∗ and LTGS(0) are isomorphic and
the categories WPLG∗ and WLTGS(0) are isomorphic.

Now we note that, for any strict t-norm, there is an additive generator S
and S(0) = ∞. For any nilpotent t-norm, there is an additive generator
S and we may assume S(0) = 1. Hence, we can deduce the following
theorem.

Theorem 4.6. (1) For strict t-norms, all categories PLG∗ are isomor-
phic.

(2) For strict t-norms, all categories WPLG∗ are isomorphic.
(3) For nilpotent t-norms, all categories PLG∗ are isomorphic.
(4) For nilpotent t-norms, all categories WPLG∗ are isomorphic.

Hence, it is sufficient to study probabilistic limit groups under Archi-
medean t-norms only for “prototype” t-norms, e.g., for the product t-norm
in the strict case and for the Lukasiewicz t-norm in the nilpotent case.
We would like to point out that the examples in section 3 dealt with
the “prototype t-norms” minimum t-norm, Lukasiewicz t-norm, and strict
t-norms (where we could have chosen the product t-norm).

5. Probabilistic Uniformization of
Probabilistic Limit Groups

Let (X, ·, q) be a probabilistic limit group under the t-norm ∗. We
further define the mapping ωl : X × X −→ X, (x, y) 7−→ x−1y. The
following lemma is not difficult to prove.

Lemma 5.1. Let (X, ·) and (X ′, ·′) be groups with unit elements e and
e′, respectively. Then for x ∈ X; F,G ∈ F(X); Φ,Ψ ∈ F(X ×X); and a
group homomorphism f : X −→ X ′, we have
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(1) ωl([x]× [x]) = [e];
(2) ωl(F×G) = F−1 ⊙G;
(3) ωl(Φ

−1) = ωl(Φ
−1);

(4) ωl(Φ)⊙ ωl(Ψ) ≤ ωl(Φ ◦Ψ);
(5) f(ωl(Φ)) = ωl((f × f)(Φ)).

We define Lq by Φ ∈ Lq
α if e ∈ qα(ωl(Φ)).

Lemma 5.2. (1) If (X, ·, q) ∈ |PLG∗|, then (X,Lq) ∈ |PULIM∗|.
(2) If (X, ·, q) ∈ |WPLG∗|, then (X,Lq) ∈ |WPULIM∗|.

Proof. (1) We have by Lemma 5.1(1) that e ∈ qα(ωl([x]× [x])), and hence
[x] × [x] ∈ Lq

α and (PUL1) is true. (PUL2), (PUL3), and (PUL4) are
easy and left for the reader. For (PUL5), let Φ,Ψ ∈ Lq

α. Then e ∈
qα(ωl(Φ))∩ qα(ωl(Ψ)), and hence e ∈ qα(ωl(Φ)∧ωl(Ψ)) = qα(ωl(Φ∧Ψ)).
Therefore, we conclude that Φ ∧ Ψ ∈ Lq

α. (PUL6) follows directly from
Lemma 5.1(3) and, for (PUL7), we use Lemma 5.1(4).

(2) We only need to prove the axiom (wPUL5). If Φ ∈ Lq
α and Ψ ∈ Lq

β ,
then by (wPL5) e ∈ qα∗β(ωl(Φ ∧Ψ)), and hence Φ ∧Ψ ∈ Lq

α∗β . �

Lemma 5.3. Let (X, ·, q), (X ′, ·′, q′) ∈ |WPLG∗| and let f : X −→ X ′

be a group homomorphism. The following are equivalent.
(1) f : (X, q) −→ (X ′, q′) is continuous.
(2) f : (X,Lq) −→ (X ′, Lq′) is uniformly continuous.

Proof. First, let f : (X, q) −→ (X ′, q′) be continuous. If Φ ∈ Lq
α, then

e ∈ qα(ωl(Φ)), and hence e′ = f(e) ∈ q′α(f(ωl(Φ))) = q′α(ωl((f × f)(Φ))).
Hence, (f × f)(Φ) ∈ Lq′

α , and therefore f : (X,Lq) −→ (X ′, Lq′) is uni-
formly continuous. Conversely, assume that f : (X,Lq) −→ (X ′, Lq′)
is uniformly continuous. If x ∈ qLα(F), then F × [x] ∈ Lα, and hence
f(F) × [f(x)] = f(F) × f([x]) = (f × f)(F × F) ∈ L′

α. But this means
f(x) ∈ qL

′

α (f(F)), and hence f is continuous. �

Lemma 5.4. Let (X, ·, q) ∈ |WPLG∗|. Then qLq = q.

Proof. We have x ∈ qL
q

α (F) if and only if F × [x] ∈ Lq
α if and only if

[x]× F ∈ Lq
α if and only if e ∈ qα(ωl([x]× F)) = qα([x

−1]⊙ F) if and only
if x ∈ qα(F). �

For a probabilistic limit group (X, ·, q), we further define the probabilis-
tic Cauchy space (X,Cq) by F ∈ Cq

α if e ∈ qα(F−1 ⊙ F). This definition
generalizes in an obvious way the corresponding definition in the category
of limit groups; see [3], [7]. By Lemma 5.1(2), we immediately see that
F ∈ Cq

α if and only if F× F ∈ Lq
α if and only if F ∈ CLq

α (F). In this sense,
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the Cauchy filters of the probabilistic limit group and of its probabilistic
uniformization are the same. We obtain from this the following result.

Lemma 5.5. Let (X, ·, q) ∈ |LPG∗|. Then, for all α ∈ [0, 1], Cq
α = CLq

α ,
and hence (X,Cq) ∈ |PChy∗|.

6. Conclusions

We defined probabilistic limit groups under t-norms, gave examples
of such spaces, and studied their basic properties. We showed that a
probabilistic limit group allows a natural probabilistic uniformization.
We further showed that it is sufficient to study probabilistic limit groups
under prototype t-norms in the strict and in the nilpotent cases. It is
known that probabilistic limit spaces under Archimedean t-norms can
be identified with certain limit tower spaces (see [2] and [15]). These
latter spaces have a close connection to approach spaces (see [2] and [10]).
Hence, the study of probabilistic limit groups under t-norms may lead
to further insight into the theory of approach (limit) groups that was
initiated in [11].
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