Physics 201

Problem Set (4)

Problem (1)

Decide whether each matrix below is an elementary matrix

(a) $\left[\begin{array}{rr}1 & 0 \\ -5 & 1\end{array}\right]$
(b) $\left[\begin{array}{rr}-5 & 1 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{llll}2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Solutions:
A) Elementary
B) Not Elementary
C) Not Elementary
D) Not Elementary

Problem (2)

In each part, an elementary matrix E and a matrix A are given. Write down the row operation corresponding to E and show that the product EAresults from applying the row operation to A
(a) $E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad A=\left[\begin{array}{rrrr}-1 & -2 & 5 & -1 \\ 3 & -6 & -6 & -6\end{array}\right]$
(b)

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right], \quad A=\left[\begin{array}{rrrrr}
2 & -1 & 0 & -4 & -4 \\
1 & -3 & -1 & 5 & 3 \\
2 & 0 & 1 & 3 & -1
\end{array}\right]
$$

Solution:
(a) Swap rows 1 and 2: $E A=\left[\begin{array}{rrrr}3 & -6 & -6 & -6 \\ -1 & -2 & 5 & -1\end{array}\right]$
(b)

$$
\text { Add }-3 \text { times row } 2 \text { to row } 3: E A=\left[\begin{array}{rrrrr}
2 & -1 & 0 & -4 & -4 \\
1 & -3 & -1 & 5 & 3 \\
-1 & 9 & 4 & -12 & -10
\end{array}\right]
$$

Problem (3)
Use an inverse matrix to solve the following system (Hint: use $A x=b$).

$$
\begin{aligned}
& 2 x+3 y+z=4 \\
& 3 x+3 y+z=8 \\
& 2 x+4 y+z=5
\end{aligned}
$$

Solution:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
1 \\
-7
\end{array}\right]
$$

The solution is $x=4, y=1$, and $z=-7$.

Problem (4)
Find all the minors and cofactors of the matrix A.

$$
A=\left[\begin{array}{rrr}
1 & -2 & 3 \\
6 & 7 & -1 \\
-3 & 1 & 4
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& M_{11}=29, C_{11}=29 \\
& M_{12}=21, C_{12}=-21 \\
& M_{13}=27, C_{13}=27 \\
& M_{21}=-11, C_{21}=11 \\
& M_{22}=13, C_{22}=13 \\
& M_{23}=-5, C_{23}=5 \\
& M_{31}=-19, C_{31}=-19 \\
& M_{32}=-19, C_{32}=19 \\
& M_{33}=19, C_{33}=19
\end{aligned}
$$

Problem (5)

Find the determinant of the matrix by cofactor expansion

$$
A=\left[\begin{array}{rrr}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right]
$$

Solution

$$
\begin{aligned}
\operatorname{det}(A)=\left|\begin{array}{rrr}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right| & =3\left|\begin{array}{rr}
-4 & 3 \\
4 & -2
\end{array}\right|-1\left|\begin{array}{rr}
-2 & 3 \\
5 & -2
\end{array}\right|+0\left|\begin{array}{rr}
-2 & -4 \\
5 & 4
\end{array}\right| \\
& =3(-4)-(1)(-11)+0=-1
\end{aligned}
$$

Problem (6)
Use the arrow technique to evaluate the determinant of the given matrix

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 9
\end{array}\right|=
$$

Solution

