Physics 201

Problem Set (5)

Problem (1)

Find the determinant of the following matrix using Arrow Method

$$
\left|\begin{array}{ccc}
1 & 1 & 2 \\
2 & 0 & -1 \\
3 & 0 & 1
\end{array}\right|
$$

Solution

$$
\begin{aligned}
& \left\lvert\, \begin{array}{ccc|cl}
1 & 1 & 2 & 1 & 1 \\
2 & 0 & -1 & 2 & 0= \\
3 & 0 & 1 & 3 & 0
\end{array} \quad \begin{array}{c}
-2 \cdot 0 \cdot 1+1 \cdot(-1) \cdot 3+2-1 \cdot(-1) \cdot 0-1 \cdot 2 \cdot 1
\end{array}\right. \\
& =0-3+0-0-0-2=-5
\end{aligned}
$$

Problem (2)

Find the determinant of following matrix using Cofactor Expansion

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 0 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

Solution

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31} \\
& =(-1)^{1+1}\left|\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right|+(-1)^{2+1} 2\left|\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right|+0 \\
& =-1+(-2)=-3
\end{aligned}
$$

Problem (3)

Evaluate the determinant of following matrix using Cofactor Expansion

$$
\left|\begin{array}{cccc}
1 & 2 & -3 & 4 \\
-4 & 2 & 1 & 3 \\
3 & 0 & 0 & 0 \\
2 & 0 & -2 & 3
\end{array}\right| .
$$

Solution

Solution. For cofactor expansion, we select the row or the column with maximal number of zeros. Expanding about the third row, we obtain

$$
\left|\begin{array}{cccc}
1 & 2 & -3 & 4 \\
-4 & 2 & 1 & 3 \\
3 & 0 & 0 & 0 \\
2 & 0 & -2 & 3
\end{array}\right|=(-1)^{3+1} 3\left|\begin{array}{ccc}
2 & -3 & 4 \\
2 & 1 & 3 \\
0 & -2 & 3
\end{array}\right|
$$

Expanding about the first column,

$$
=3\left((-1)^{1+1} 2\left|\begin{array}{cc}
1 & 3 \\
-2 & 3
\end{array}\right|+(-1)^{2+1} 2\left|\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right|\right)=3(2 \cdot 9+(-1) \cdot 2 \cdot(-1))=60
$$

Remark. The determinant

$$
\left|\begin{array}{ccc}
2 & -3 & 4 \\
2 & 1 & 3 \\
0 & -2 & 3
\end{array}\right|
$$

can also be computed using the formula for 3×3 determinant.

Problem (4)

Using properties of determinants, compute the determinants of the following matrices

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -3
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 2 & -2 \\
3 & 4 & 0 \\
1 & 2 & -2
\end{array}\right], \quad C=\left[\begin{array}{ccc}
-1 & 12 & 0 \\
3 & 4 & 0 \\
5 & 5 & 0
\end{array}\right] .
$$

Solution
A is a diagonal matrix, so

$$
\operatorname{det}(A)=1 \cdot(-4) \cdot(-3)=12 .
$$

B has two equal rows, so

$$
\operatorname{det}(B)=0 .
$$

C has a zero column, so

$$
\operatorname{det}(C)=0 .
$$

Problem (5)

Using properties of determinants, Evaluate the determinant of following matrix

$$
\left|\begin{array}{lll}
3 & 3 & 3 \\
5 & 1 & 1 \\
3 & 4 & 3
\end{array}\right|
$$

Solution

Solution.

$$
\left|\begin{array}{lll}
3 & 3 & 3 \\
5 & 1 & 1 \\
3 & 4 & 3
\end{array}\right|=3\left|\begin{array}{lll}
1 & 1 & 1 \\
5 & 1 & 1 \\
3 & 4 & 3
\end{array}\right|
$$

Row $_{2}-$ Row $_{1}$

$$
=3\left|\begin{array}{lll}
1 & 1 & 1 \\
4 & 0 & 0 \\
3 & 4 & 3
\end{array}\right|
$$

expansion about the second row

$$
=3(-1)^{2+1} 4\left|\begin{array}{ll}
1 & 1 \\
4 & 3
\end{array}\right|=3(-4)(-1)=12
$$

Problem (6)

Suppose the determinant of matrix A equals 5,

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
x & y & z \\
1 & 2 & 3
\end{array}\right]
$$

Suppose that we know

$$
\operatorname{det}(A)=5 .
$$

Compute the following determinants

a) $\left|\begin{array}{lll}x & y & z \\ 1 & 0 & 0 \\ 1 & 2 & 3\end{array}\right|$,
b) $\left|\begin{array}{ccc}1 & 0 & 0 \\ x & y & z \\ 5 & 10 & 15\end{array}\right|$,
c)

Solution

Solution. a) The determinant is obtained from $\operatorname{det}(A)$ by interchanging two rows, so

$$
\left|\begin{array}{lll}
x & y & z \\
1 & 0 & 0 \\
1 & 2 & 3
\end{array}\right|=-\operatorname{det}(A)=-5 .
$$

b) The determinant is obtained from $\operatorname{det}(A)$ by multiplying the third ro 5 and therefore

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
x & y & z \\
5 & 10 & 15
\end{array}\right|=5 \operatorname{det}(A)=25 .
$$

b) The determinant is obtained from $\operatorname{det}(A)$ by adding $R o w, ~ t o ~ R o w ~ w, ~$

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
x+1 & y+2 & z+3 \\
1 & 2 & 3
\end{array}\right|=\operatorname{det}(A)=5
$$

