Physics 201

## Problem Set (6)

## Problem (1)

## Find the determinant of the following matrix using Cofactor Expansion

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 3 & 1 & 1 \\
-1 & 0 & 3 & 1 \\
3 & 1 & 2 & 0
\end{array}\right)
$$

Solution

$$
\operatorname{det} A=a_{14} C_{14}+a_{24} C_{24}+a_{34} C_{34}+a_{44} C_{44}
$$

As $a_{14}$ and $a_{44}$ are zero, it is useless to find $C_{14}$ and $C_{44}$. The cofactors $C_{24}$ and $C_{34}$ will be necessary...

$$
\begin{gathered}
C_{24}=(-1)^{2+4} M_{24}=1\left|\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 0 & 3 \\
3 & 1 & 2
\end{array}\right| \\
C_{34}=(-1)^{3+4} M_{34}=-1\left|\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 1 \\
3 & 1 & 2
\end{array}\right|
\end{gathered}
$$

We let the reader verify that $C_{24}=18$ et $C_{34}=-2$. Consequently, the determinant of $A$ is

$$
\begin{gathered}
\operatorname{det} A=a_{14} C_{14}+a_{24} C_{24}+a_{34} C_{34}+a_{44} C_{44} \\
\operatorname{det} A=0 \times C_{14}+1 \times 18+1 \times(-2)+0 \times C_{44}=16
\end{gathered}
$$

## Problem (2)

Solve the following linear system using Cramer's Rule

$$
\left\{\begin{array}{rr}
4 x-y+z= & -5 \\
2 x+2 y+3 z= & 10 \\
5 x-2 y+6 z= & 1
\end{array}\right.
$$

Solution

$$
\left.\begin{aligned}
& \text { 7. }\left\{\begin{array}{l}
4 x-y+z=-5 \\
2 x+2 y+3 z=10, \\
5 x-2 y+6 z=1
\end{array} \quad D=\left|\begin{array}{rrr}
4 & -1 & 1 \\
2 & 2 & 3 \\
5 & -2 & 6
\end{array}\right|=55\right. \\
& \left.x=\frac{\mid r r r}{-5}-1 \begin{array}{rr}
1 \\
10 & 2
\end{array} \right\rvert\, \\
& 1-2 \\
& 55
\end{aligned} \right\rvert\,=\frac{-55}{55}=-1, y=\frac{\left|\begin{array}{rrr}
4 & -5 & 1 \\
2 & 10 & 3 \\
5 & 1 & 6
\end{array}\right|}{55}=\frac{165}{55}=3, z=\frac{\left|\begin{array}{rrr}
4 & -1 & -5 \\
2 & 2 & 10 \\
5 & -2 & 1
\end{array}\right|}{55}=\frac{110}{55}=2, ~ l
$$

Solution: $(-1,3,2)$

## Problem (3)

## Find the eigenvalues and eigenvectors of the following matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right]
$$

## Solution

First we compute $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ via a cofactor expansion along the second column:

$$
\begin{aligned}
\left|\begin{array}{ccc}
7-\lambda & 0 & -3 \\
-9 & -2-\lambda & 3 \\
18 & 0 & -8-\lambda
\end{array}\right| & =(-2-\lambda)(-1)^{4}\left|\begin{array}{cc}
7-\lambda & -3 \\
18 & -8-\lambda
\end{array}\right| \\
& =-(2+\lambda)[(7-\lambda)(-8-\lambda)+54] \\
& =-(\lambda+2)\left(\lambda^{2}+\lambda-2\right) \\
& =-(\lambda+2)^{2}(\lambda-1)
\end{aligned}
$$

Thus $\mathbf{A}$ has two distinct eigenvalues, $\lambda_{1}=-2$ and $\lambda_{3}=1$. (Note that we might say $\lambda_{2}=-2$, since, as a root, -2 has multiplicity two. This is why we labelled the eigenvalue 1 as $\lambda_{3}$.)

Now, to find the associated eigenvectors, we solve the equation $\left(\mathbf{A}-\lambda_{j} \mathbf{I}\right) \mathbf{x}=\mathbf{0}$ for $j=1,2,3$. Using the eigenvalue $\lambda_{3}=1$, we have

$$
\begin{aligned}
(\mathbf{A}-\mathbf{I}) \mathbf{x} & =\left[\begin{array}{c}
6 x_{1}-3 x_{3} \\
-9 x_{1}-3 x_{2}+3 x_{3} \\
18 x_{1}-9 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow x_{3}=2 x_{1} \quad \text { and } \quad
\end{aligned} x_{2}=x_{3}-3 x_{1} .
$$

So the eigenvectors associated with $\lambda_{3}=1$ are all scalar multiples of

$$
\mathbf{u}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

Now, to find eigenvectors associated with $\lambda_{1}=-2$ we solve $(\mathbf{A}+2 \mathbf{I}) \mathbf{x}=\mathbf{0}$. We have

$$
\begin{aligned}
(\mathbf{A}+2 \mathbf{I}) \mathbf{x} & =\left[\begin{array}{c}
9 x_{1}-3 x_{3} \\
-9 x_{1}+3 x_{3} \\
18 x_{1}-6 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow x_{3}=3 x_{1}
\end{aligned}
$$

Something different happened here in that we acquired no information about $x_{2}$. In fact, we have found that $x_{2}$ can be chosen arbitrarily, and independently of $x_{1}$ and $x_{3}$ (whereas $x_{3}$ cannot be chosen independently of $x_{1}$ ). This allows us to choose two linearly independent eigenvectors associated with the eigenvalue $\lambda=-2$, such as $\mathbf{u}_{1}=(1,0,3)$ and $\mathbf{u}_{2}=(1,1,3)$. It is a fact that all other eigenvectors associated with $\lambda_{2}=-2$ are in the span of these two; that is, all others can be written as linear combinations $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}$ using an appropriate choices of the constants $c_{1}$ and $c_{2}$.

## Problem (4)

## Consider the following matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

## 1) Find the adjoint matrix

2) Use the adjoint to find the inverse $A^{-1}$

## Solution

To find the adjoint, we first find the cofactor matrix

$$
C=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Then we take the transpose of the cofactor matrix to find the adjoint

$$
\operatorname{ad} A=C^{\prime}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Then we find the determinant of matrix A to find the inverse

$$
\operatorname{det}(A)=2
$$

Now, using the determinant and the adjoint, we can find the inverse by using the following Rule

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

