Physics 201

Problem Set (7)

Problem (1)

Provided that $\mathbf{u} = (-1, 0, 1)$ and $\mathbf{v} = (2, -1, 5)$ in \mathbb{R}^3 , find each vector. (a) $\mathbf{u} + \mathbf{v}$ (b) $2\mathbf{u}$ (c) $\mathbf{v} - 2\mathbf{u}$

Solution

(a) To add two vectors, add their corresponding components, as follows.

 $\mathbf{u} + \mathbf{v} = (-1, 0, 1) + (2, -1, 5) = (1, -1, 6)$

(b) To multiply a vector by a scalar, multiply each component by the scalar, as follows.

 $2\mathbf{u} = 2(-1, 0, 1) = (-2, 0, 2)$

(c) Using the result of part (b), you have

 $\mathbf{v} - 2\mathbf{u} = (2, -1, 5) - (-2, 0, 2) = (4, -1, 3).$

Problem (2)

Consider the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that w' = (4, -1, 8) is *not* a linear combination of \mathbf{u} and \mathbf{v} .

Solution

Solution In order for w to be a linear combination of **u** and **v**, there must be scalars k_1 and k_2 such that $\mathbf{w} = k_1 \mathbf{u} + k_2 \mathbf{v}$; that is,

$$(9, 2, 7) = k_1(1, 2, -1) + k_2(6, 4, 2)$$

or

$$(9, 2, 7) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$$

Equating corresponding components gives

$$k_1 + 6k_2 = 9$$

$$2k_1 + 4k_2 = 2$$

$$-k_1 + 2k_2 = 7$$

Solving this system using Gaussian elimination yields $k_1 = -3, k_2 = 2$, so

$$\mathbf{w} = -3\mathbf{u} + 2\mathbf{v}$$

Similarly, for w' to be a linear combination of u and v, there must be scalars k_1 and k_2 such that $w' = k_1 u + k_2 v$; that is,

$$(4, -1, 8) = k_1(1, 2, -l) + k_2(6, 4, 2)$$

or

$$(4, -1, 8) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$$

Equating corresponding components gives

$$k_1 + 6k_2 = 4 2k_1 + 4k_2 = -1 -k_1 + 2k_2 = 8$$

This system of equations is inconsistent (verify), so no such scalars k_1 and k_2 exist. Consequently, w' is not a linear combination of **u** and **v**.

Problem (3)

Determine whether the set, together with the indicated operations, is a vector space. If it is not, identify at least one of the ten vector space axioms that fails.

1)

The set of all third-degree polynomials with the standard operations

2)

The set $\{(x, y): x \ge 0, y \text{ is a real number}\}$ with the standard operations in \mathbb{R}^2

3)

The set $\{(x, x): x \text{ is a real number}\}$ with the standard operations

4)

The set of all 2×2 singular matrices with the standard operations

5)

The set of all 2×2 diagonal matrices with the standard operations

Solution

1)

The set is not a vector space. Axiom 1 fails because $x^3 + (-x^3 + 1) = 1$, which is not a third-degree polynomial. (Axioms 4, 5, and 6 also fail.)

2)

The set is not a vector space. Axiom 6 fails because (-1)(x, y) = (-x, -y), which is not in the set when $x \neq 0$.

3)

The set is a vector space.

4)

The set is not a vector space. Axiom 1 fails because

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

which is not singular.

5)

The set is a vector space.