
MATH 6310–COMPLEX ANALYSIS PROBLEMS AND THEOREMS

MICHAEL STRAYER

1. Quiz #1 Problems

1. Prove that the function f(z) = z is not differentiable anywhere.

Proof. Let z0 ∈ C. Then

f(z)− f(z0)

z − z0
=
z − z0
z − z0

=
z − z0
z − z0

.(1)

Now if z − z0 is real and non-zero, then (1) takes the value 1. If z − z0 = ik for k ∈ R (i.e. z − z0
is purely imaginary), then (1) takes the value −1. Thus the limit

lim
z→z0

f(z)− f(z0)

z − z0
does not exist and so f(z) is not differentiable at z0. We chose z0 arbitrarily, so f(z) is not

differentiable anywhere. �

2. Prove that the function f(z) = |z| is not analytic anywhere.

Proof. Note that f(z) =
√
x2 + y2, and so u(x, y) =

√
x2 + y2 and v(x, y) = 0. Note that

ux =
2x

2
√
x2 + y2

, vx = 0, uy =
2y

2
√
x2 + y2

and vy = 0.

Thus the Cauchy-Riemann equations can only be satisfied when x = 0 and y = 0, so f cannot be

differentiable on any ε-disc. Hence f is not analytic anywhere. �

3. Give a definition of ez, derive all its basic properties and prove that it is an entire

function.

Proof. We define ez = ex+iy = ex(cos y + i sin y). This suggests u(x, y) = ex cos y and v(x, y) =

ex sin y. Taking partial derivatives, we check that

ux = ex cos y, uy = −ex sin y, vx = ex sin y, and vy = ex cos y.

Thus ux = vy and uy = −vx, so the Cauchy-Riemann equations hold and the partial derivatives

are continuous. Note that this did not depend on choice of z, so ez is differentiable everywhere;

that is, it is entire.

Now note f ′(z) = ux + ivx, so

(ez)′ = ex cos y + iex sin y = ex(cos y + i sin y) = ez.
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Hence we have the familiar property that (ez)′ = ez.

By Taylor’s Theorem taking z0 = 0 and using the fact that ez is entire, we have

ez =
∞∑
n=0

(e0)(n)

n!
(z − 0)n =

∞∑
n=0

zn

n!
.

The last property we work toward is showing ez+w = ezew. Note that

ei(y1+y2) = cos(y1 + y2) + i sin(y1 + y2)

= cos(y1) cos(y2)− sin(y1) sin(y2) + i sin(y1) cos(y2) + i cos(y1) sin(y2)

= cos(y2)(cos(y1) + i sin(y1)) + i sin(y2)(cos(y1) + i sin(y1))

= (cos(y1) + i sin(y1))(cos(y2) + i sin(y2))

= eiy1eiy2 .

Thus we have

ez1+z2 = ex1+iy1+x2+iy2

= ex1+x2ei(y1+y2) Are we assuming what we’re trying to prove here?

= ex1ex2eiy1eiy2

= ex1+iy1ex2+iy2 And here?

= ez1ez2

Finally, note that |ez| = |ex||eiy| = |ex|, and since |ex| 6= 0 for any x ∈ R, we see that ez 6= 0 for

any z ∈ C. �

4. Give a definition of sin z, derive all its basic properties and prove that it is an

entire function.

Proof. We define

sin z =
eiz − e−iz

2i
.

The fact that sin z is entire follows from the fact that ez is entire. Now we have

(sin z)′ =
1

2i
(ieiz + ie−iz) =

1

2
(eiz + e−iz) = cos z,

where the definition of cos z is given in problem 6.

Now note that

ei(z+w) = cos(z + w) + i sin(z + w)

and

eizeiw = (cos(z) + i sin(z))(cos(w) + i sin(w))

= cos(z) cos(w)− sin(z) sin(w) + i(sin(z) cos(w) + cos(z) sin(w)).

Thus we have

cos(z + w) = cos(z) cos(w)− sin(z) sin(w) and sin(z + w) = sin(z) cos(w) + cos(z) sin(w).
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5. Give a definition of cos z, derive all its basic properties and prove that it is an

entire function.

Proof. We define

cos z =
eiz + e−iz

2
.

Once again, the fact that ez is entire guarantees that cos(z) is entire, and

(cos z)′ =
1

2
(ieiz − ie−iz) = − 1

2i
(eiz − e−iz) = sin z.

This establishes the basis properties of sin z and cos z. �

6. Prove that if f(z) is analytic in a domain D and Ref is constant, then f(z) is

constant.

Proof. The assumption states that u(x, y) is constant. Thus we have

∂u

∂x
= 0 and

∂u

∂y
= 0.

Since f is analytic in D, the Cauchy-Riemann equations hold in D. Thus we have

∂v

∂x
= −∂u

∂y
= 0 and

∂v

∂y
=
∂u

∂x
= 0.

Thus f must have constant imaginary part v(x, y), and so f must be constant in D. �

7. Prove that if f(z) is analytic in a domain D and Imf is constant, then f(z) is

constant.

Proof. The previous argument works exactly the same for this case, only this time we are assuming

from the beginning that v(x, y) is constant. �

8. Prove that if f(z) is analytic in a domain D and |f | is constant, then f(z) is

constant.

Proof. Let f = u+ iv. We are assuming that u2 + v2 = c for some constant c ≥ 0. Differentiating

this with respect to x and y, we get the equations

2u
∂u

∂x
+ 2v

∂v

∂x
= 0 and 2u

∂u

∂y
+ 2v

∂v

∂y
= 0.

Using −∂u
∂y = ∂v

∂x in the first equation and ∂v
∂y = ∂u

∂x in the second equation, we get

2u
∂u

∂x
− 2v

∂u

∂y
= 0 and 2v

∂u

∂x
+ 2u

∂u

∂y
= 0.
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We can write this as a homogeneous system of 2 equations in 2 unknowns(
u −v
v u

)(
∂u
∂x
∂u
∂y

)
=

(
0

0

)
.(2)

Note that det

∣∣∣∣∣ u −v
v u

∣∣∣∣∣ = u2 + v2 = c. Thus if c > 0, then the matrix

(
u −v
v u

)
is invertible

and hence the system (2) has a unique solution given by

∂u

∂x
= 0 and

∂u

∂y
= 0.

This implies u(x, y) is constant, so by problem 6, it follows that f is constant. Now if c = 0, then

clearly we have u = v = 0, so f = 0 in D. �

9. Prove that
∫
C p(z) dz = 0 for any polynomial p and closed contour C.

Proof. Let f(z) = zn for n ∈ N. We show that f ′(z) exists and is equal to nzn−1. Let z0 ∈ C.

Then

f(z)− f(z0)

z − z0
=
zn − zn0
z − z0

=
(z − z0)(zn−1 + zn−2z0 + zn−3z20 + · · ·+ zzn−20 + zn−10 )

z − z0
= zn−1 + zn−2z0 + zn−3z20 + · · ·+ zzn−20 + zn−10 .

Thus

f ′(z0) = lim
z→z0

zn−1 + zn−2z0 + zn−3z20 + · · ·+ zzn−20 + zn−10 = nzn−10 .

This is the standard proof that a polynomial is differentiable.

Now p(z) = anz
n+an−1z

n−1+ · · ·+a1z+a0. Consider P (z) = an
n+1z

n+1+ an−1

n zn−1+ · · ·+ a1
2 z

2+

a0z + c, where c ∈ C is some constant. The fact previously proven shows that P is differentiable

and P ′(z) = p(z). Furthermore, there was no restriction of the value z0 chosen when computing the

derivative, so P is entire. We have by the Fundamental Theorem of Calculus for complex-valued

functions that ∫
C
p(z) dz = P (z2)− P (z1).

Since we are working with a closed contour, we have z2 = z1, so this integral is 0, as desired. �

10. Evaluate the integral ∫
C

R+ z

(R− z)z
dz

where C = {z : |z| = r}, r < R.

Proof. We have by the method of partial fractions that

R+ z

(R− z)z
=

1

z
+

2

R− z
,
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so that ∫
C

R+ z

(R− z)z
dz =

∫
C

1

z
dz +

∫
C

2

R− z
dz.

Note that 2
R−z is analytic in the star domain D = {z : |z| < R}, so since C is a closed contour, we

have
∫
C

2
R−z dz = 0. Thus ∫

C

R+ z

(R− z)z
dz =

∫
C

1

z
dz = 2πi.

�

11. Let C be any countour, I(z) =
∫
C

1
ζ−z dζ, z /∈ C. Show that I(z) is continuous at

every z /∈ C.

Proof. Since z /∈ C, there is an ε > 0 such that the ε-neighborhood of z does not meet C. Suppose

h ∈ C and |h| < ε/2. Then we have

I(z + h)− I(z) =

∫
C

(
1

ζ − z − h
− 1

ζ − z

)
dζ =

∫
C

h

(ζ − z − h)(ζ − z)
dζ.

For any ζ ∈ C, we have |ζ − z| > ε and |ζ − z − h| > ε/2. Thus

1

|(ζ − z − h)||(ζ − z)|
<

2

ε2
.

Thus using the ML-inequality, we have∣∣∣∣∫
C

h

(ζ − z − h)(ζ − z)
dζ

∣∣∣∣ ≤ |h| ∫
C

1

|(ζ − z − h)||(ζ − z)|
dζ ≤ 2L|h|

ε2
,

where L is the length of C. This tends to 0 as h→ 0. �

Key Points

(1) Suppose |h| < ε/2 and form an estimate (using ML-inequality) for I(z + h)− I(z).

12. Let D be a domain which is obtained from C by deleting a half ray (from the

origin). Show that D is a star domain and there is an analytic function F (z) in D such

that F ′(z) = 1
z .

Proof. We show that the function f(z) = 1
z is analytic in D. Let z ∈ D. Then we can choose ε > 0

such that B(z, ε) does not meet `, the ray deleted from D. Choose h such that |h| < ε (which we

may freely do since we will be taking the limit as h tends to 0 anyway). Thus z + h 6= 0. Then we

have
f(z + h)− f(z)

h
=

1

h

(
1

z + h
− 1

z

)
=

1

h

(
−h

(z + h)(z)

)
=

−1

(z + h)(z)
.

Thus

lim
h→0

f(z + h)− f(z)

h
= − 1

z2
,

which shows that f ′(z) exists at z. But our choice of z was arbitrary, so it follows that f ′(z) exists

everywhere on D and hence f is analytic on D.
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We needed to delete ` so that D would be a star domain. Indeed, if ` were extended in the

opposite direction, any point on this extension would be a star center. Thus, we may use Theorem

5 below to show that there is an analytic function F (z) in D such that F ′(z) = f(z). This completes

the proof and F (z) is one possible definition of the logarithm. �

13. Let g(ζ) be a continuous function on a circle C. Show that there is an analytic

function f(z) in the disk D with boundary C such that f(z) has continuous extension

to C and f |C = g.

Proof. This is apparently a famous result with a very difficult proof. Dr. Vu used the entire class

period trying to show it today (October 9, 2013) and didn’t get all of it done. So he said this would

not appear on the test. �
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2. Theorems for Quiz #1

Theorem 1: If f(z) = u(x, y) + iv(x, y) is differentiable at z = x+ iy, then u and v satisfy

the Cauchy-Riemann equations: ux = vy, uy = −vx; moreover, f ′(z) = ux + ivx = vy − iuy.

Proof. Use the formula

lim
h→0

f(z + h)− f(z)

h
.

Let h→ 0 through real values. Then

lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h

= ux(x, y) + ivx(x, y).

By going through purely imaginary values (h ∈ R), we also have

lim
h→0

f(x, y + h)− f(x, y)

ih
= lim

h→0

u(x, y + h)− u(x, y)

ih
+ i lim

h→0

v(x, y + h)− v(x, y)

ih

= vy(x, y)− iuy(x, y).

By equating real and imaginary parts, we have ux = vy and uy = −vx. This completes the

proof. �

Theorem 2: If f(z) is a continuous function in a domain D and if there exists an

analytic function F (z) in D such that F ′(z) = f(z), then for any contour C in D with

initial point z1 and terminal point z2, we have∫
C
f(z) dz = F (z2)− F (z1).

Proof. Let ψ(t) = F (ζ(t)) where ζ : [A,B]→ C is a parametrization of C. Then by the chain rule,

ψ′(t) = F ′(ζ(t))ζ ′(t) = f(ζ(t))ζ ′(t). Thus∫
C
f(z) dz =

∫ B

A
f(ζ(t))ζ ′(t) dt

=

∫ B

A
F ′(ζ(t))ζ ′(t) dt

=

∫ B

A
ψ′(t) dt

= ψ(B)− ψ(A) (Fundamental Theorem of Calculus)

= F (ζ(B))− F (ζ(A))

= F (z2)− F (z1).

�
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Theorem 3: If f(z) is continuous on a contour C, |f(z)| ≤M for all z ∈ C, and L is the

length of C, then ∣∣∣∣∫
C
f(z) dz

∣∣∣∣ ≤ML.

Proof. Let ζ : [A,B]→ C be the parametrization of C. We have∣∣∣∣∫
C
f(z) dz

∣∣∣∣ =

∣∣∣∣∫ B

A
f(ζ(t))ζ ′(t) dt

∣∣∣∣
≤
∫ B

A
|f(ζ(t))||ζ ′(t)| dt

≤M
∫ B

A
|ζ ′(t)| dt

= M

∫ B

A

√
(x′(t))2 + (y′(t))2 dt

= ML.

�

Theorem 4 (Cauchy Integral Theorem): If f(z) is analytic in D, T is a triangle in D

with boundary C, then
∫
C f(z) dz = 0.

Proof. Write I(T ) =
∫
C f(z) dz. Denote T into four triangular regions by joining the midpoints

of the three sides of T . Note when you divide the triangle this way, and orient each of the sub

triangles in the positive direction, we get sides canceling out so that

I(T ) = I(T1) + I(T2) + I(T3) + I(T4),

where I(Tj) =
∫
Cj
f(z) dz. Now at least one of these integrals satisfies

|I(Tj)| ≥
1

4
|I(T )|.

Let this triangle be denoted T1. We can now repeat the process with T1 to find a triangle T2 ⊂ T1
such that

|I(T2)| ≥
1

4
|I(T1)| ≥

1

16
|I(T )|.

Continuing in this fashion, we have a sequence of nested triangles

T = T0 ⊃ T1 ⊃ T2 ⊃ · · · ⊃ Tk ⊃ · · ·

such that

|I(Tk)| ≥ 4−k|I(T )|.
Now these triangles collapse to a single point, z∗ ∈ D. Let ε > 0. Since f is analytic at z∗, there

exists a δ-neighborhood ∆ of z∗ contained in D such that∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ε(3)
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whenever |z − z∗| < δ. We can also choose k large enough such that Tk ⊂ ∆.

Now since
∫
Ck
dz = 0 and

∫
Ck
z dz = 0, we have

I(Tk) =

∫
Ck

f(z) dz

=

∫
Ck

f(z) dz − f(z∗)

∫
Ck

dz − f ′(z∗)
∫
Ck

z dz + z∗f ′(z∗)

∫
Ck

dz

=

∫
Ck

(f(z)− f(z∗)− (z − z∗)f ′(z∗)) dz.

Now by (3) we have

|f(z)− f(z∗)− (z − z∗)f ′(z∗)| ≤ ε|z − z∗| ≤ εdk,
where dk = diam(Tk). By the ML-inequality, we have

|I(Tk)| ≤ εdkLk,

where Lk is the perimeter of Tk. Now we have

|I(T )| ≤ 4k|I(Tk)| ≤ 4kεdkLk = 4kε2−kd2−kL = εdL,

where d and L are the diameter and perimeter of T , respectively, and using the fact that dk = 2−kd

and Lk = 2−kL. Since ε was arbitrary, we have I(T ) = 0, as desired. �

Key Points

(1) Subdivide triangles. Let dk = diam(Tk), Lk = length of Ck. Note that dk = 1
2k
d and

Lk = 1
2k
L.

(2) Note that
⋂
Tk = z∗.

(3) I(Tk) =
∫
Ck

(f(z)− f(z∗)− (z − z8)f ′(z∗)) dz.
(4) Note |f(z)− f(z∗)− (z − z∗)f ′(z∗)| ≤ ε|z − z∗|.

Theorem 5: If f(z) is analytic in a star domain D, then there is an analytic function

F (z) in D such that F ′(z) = f(z).

Proof. Let z0 ∈ D be a star center. For each z ∈ D, define

F (z) =

∫
[z0,z]

f(ζ) dζ,

where [z1, z2] denotes the directed lien segment from z1 to z2. Since z ∈ D, there exists an ε-

neighborhood of z which is contained in D. Choose h ∈ D such that |h| < ε. Then z + h is

contained in the ε-neighborhood of z. Because D is a star domain, all three points z0, z, and z + h

lie in D, and furthermore the triangle formed by these three points is in D. By the Cauchy Integral

Theorem for triangles, we have∫
[z0,z]

f(ζ) dζ +

∫
[z,z+h]

f(ζ) dζ +

∫
[z+h.z0]

f(ζ) dζ = 0.
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We may re-write this, changing signs (orientations) as necessary to get∫
[z0,z+h]

f(ζ) dζ −
∫
[z0,z]

f(ζ) dζ =

∫
[z,z+h]

f(ζ) dζ.

It follows from how we defined F (z) that

F (z + h)− F (z) =

∫
[z,z+h]

f(ζ) dζ.

If h 6= 0 then we have

F (z + h)− F (z)

h
− f(z) =

1

h

∫
[z,z+h]

f(ζ) dζ − f(z)

=
1

h

∫
[z,z+h]

f(ζ) dζ − 1

h
f(z)

∫
[z,z+h]

dζ

=
1

h

∫
[z,z+h]

f(ζ) dζ − 1

h

∫
[z,z+h]

f(z) dζ

=
1

h

∫
[z,z+h]

(f(ζ)− f(z)) dζ.

Now since f is differentiable at z, it follows that f is continuous at z and hence, given ε > 0, there

exists a δ > 0 such that |f(ζ)−f(z)| < ε whenever |ζ−z| < δ. Thus if |h| < δ, then |f(ζ)−f(z)| < ε

holds for all ζ ∈ [z, z + h]. We now have by Theorem 3 that∣∣∣∣∣
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣ ≤ ε|h|.
Hence we have ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣∣1h
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣
=

1

|h|

∣∣∣∣∣
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣
≤ 1

|h|
ε|h|

= ε

We have successfully shown that

lim
h→0

F (z + h)− F (z)

h
= f(z),

which establishes our result. �
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Theorem 6 (Cauchy Integral Formula): If f(z) is analytic in a domain D, α ∈ D, and

C = {z : |z − α| = r}, then

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

for all z ∈ B(α, r).

Proof. Suppose γ is a circle of positive orientation and of radius ρ and centered at z. Suppose

also that ρ is small enough so that γ is in the interior of C. Then we may perform “surgery” to

construct two new contours, C+ and C−, such that C+ ∪ C− = C ∪ −γ. Furthermore, since C+

and C− are closed contours in D, and since z is not in the interior of either, we have∫
C+

f(ζ)

ζ − z
dζ = 0 and

∫
C−

f(ζ)

ζ − z
dζ = 0.

It follows that ∫
C

f(ζ)

ζ − z
dζ −

∫
γ

f(ζ)

ζ − z
dζ =

∫
C+

f(ζ)

ζ − z
dζ +

∫
C−

f(ζ)

ζ − z
dζ = 0,

so ∫
C

f(ζ)

ζ − z
dζ =

∫
γ

f(ζ)

ζ − z
dζ.

We can then write ∫
C

f(ζ)

ζ − z
dζ = f(z)

∫
γ

dζ

ζ − z
+

∫
γ

f(ζ)− f(z)

ζ − z
dζ.

Now
∫
γ

dζ
ζ−z = 2πi, so we may write∫

C

f(ζ)

ζ − z
dζ = f(z)2πi+

∫
γ

f(ζ)− f(z)

ζ − z
dζ.

We focus on the second integral in the right hand side. Since f is continuous at z, it follows that

for any ε > 0, there exists a δ > 0 such that |f(ζ)− f(z)| < ε. Thus if we choose ρ < δ, we have∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣ < ε

ρ

for every ζ ∈ γ, and so we have from Theorem 3 that∣∣∣∣∫
γ

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ ε

ρ
· 2πρ = 2πε.

Since ε was chosen arbitrarily, we have that∫
γ

f(ζ)− f(z)

ζ − z
dζ = 0,

which yields our result. �

11



Theorem 7 (Cauchy Integral Formula for Derivatives): If f(z) is analytic in D, then

f (n)(z) is analytic in D for all n ∈ N. Moreover, if B(α, r) ⊂ D and C = {z : |z − α| = r},
then

f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ.(4)

Proof. We first show that f ′ exists and is analytic in D. Note that for every z ∈ D, since D is an

open domain we see that z is inside some circle C centered at some α, where C is contained in D.

Hence by the Cauchy Integral Formula, we have

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ.

Now suppose that h ∈ C has sufficiently small hodulus so that z + h ∈ C. Then by the Cauchy

Integral Formula we have

f(z + h)− f(z)

h
=

1

2πih

∫
C

(
f(ζ)

ζ − z − h
− f(ζ)

ζ − z

)
dζ

=
1

2πi

∫
C

f(ζ)

(ζ − z − h)(ζ − z)
dζ

=
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ +

h

2πi

∫
C

f(ζ)

(ζ − z)2(ζ − z − h)
dζ.

Now since z is inside the circle C, the number

δ = inf
ζ∈C
|ζ − z| > 0,

so if |h| < δ
2 , then for every ζ ∈ C we have

|ζ − z − h| ≥ |ζ − z| − |h| > δ − δ

2
=
δ

2
.

On the other hand, the circle C is closed and bounded, so there is some real constant M such that

|f(ζ)| ≤M for every ζ ∈ C. Also, recall the circle C has radius r. It follows from the ML-inequality

that ∣∣∣∣ h2πi
∫
C

f(ζ)

(ζ − z)2(ζ − z − h)
dζ

∣∣∣∣ ≤ |h|2π

2M

δ3
2πr =

2Mr|h|
δ3

→ 0

as h→ 0. Hence f ′ exists in D and

f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ.(5)

Note that this satisfies (4) for n = 1. We then take the derivative with the same argument we just

used to show that f ′′ exists in D. Hence f ′ is analytic in D, as claimed. What we have essentially

shown in (5) is the base case for an inductive argument to establish (4). Now suppose f (n) = g is

analytic in D. What we have just shown is that g′ = (f (n))′ = f (n+1) is analytic in D. Thus the

derivative exists and is analytic for all n ∈ N by induction.

Now, to establish (4), we apply the Cauchy Integral Formula to the function f (n) to get

f (n)(z) =
1

2πi

∫
C

f (n)(ζ)

ζ − z
dζ.

12



Integrating by parts n times gives us (4). �

Theorem 8 (Liouville Theorem): If f(z) is an entire function which is bounded, then

f(z) is constant.

Proof. Since f is bounded, there exists an M > 0 such that |f(z)| ≤ M for all z ∈ C. Thus by

Cauchy’s estimate (taking n = 1), we have

|f ′(z)| ≤ M

r
,

where r is the radius of a disc centered at z contained in the domain D for which f is analytic.

But because f is entire, we have D = C, so r is unbounded. Thus

|f ′(z)| ≤ lim
r→∞

M

r
= 0,

so we must have f ′(z) = 0 for all z ∈ C. Hence f is constant. �

Theorem 9 (Taylor’s Theorem): If f(z) is analytic in {z : |z − z0| < R}, then

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

where the series converges uniformly in {z : |z − z0| < r} for every r < R. Moreover,

f(z) =
n−1∑
k=0

f (k)(z0)

k!
(z − z0)k + (z − z0)nfn(z),

where fn(z) = 1
2πi

∫
C

1
(ζ−z0)n

f(ζ)
ζ−z dζ, and C = {z : |z − z0| = ρ, r < ρ < R}.

Proof. Without loss of generality we may assume z0 = 0. To see why this is not a problem, let

g(z) = f(z+ z0). Then g(z) is analytic in {z : |z| < R} and g(n)(0) = f (n)(z0), so we are really just

needing to prove the result about g. That is, to show that

g(z) =
∞∑
n=0

g(n)(0)

n!
zn

uniformly in {z : |z| < r}. Let ρ be chosen such that r < ρ < R, and let C denote the circle

{ζ : |ζ| = ρ}, oriented positively. By the Cauchy Integral Formula, we have

g(z) =
1

2πi

∫
C

g(ζ)

ζ − z
dζ

for every z such that |z| ≤ r. Now note that

1− wn = (1− w)(wn−1 + wn−2 + · · ·+ w + 1),

which implies that

1 = (1− w)

(
wn−1 + · · ·+ w + 1 +

wn

1− w

)
,

13



or
1

1− w
= 1 + w + · · ·+ wn−1 +

wn

1− w
.

Now if we substitute w = z
ζ and divide by ζ, we get

1

ζ − z
=

1

ζ
+

z

ζ2
+
z2

ζ3
+ · · ·+ zn−1

ζn
+
zn

ζn
1

ζ − z
.

Thus we have

g(z) =
1

2πi

∫
C

g(ζ)

ζ
dζ + · · ·+ zn−1

2πi

∫
C

g(ζ)

ζn
dζ + zngn(z),(6)

where

gn(z) =
1

2πi

∫
C

g(ζ)

ζn(ζ − z)
dζ.

By the Cauchy Integral Formula for Derivatives, we have

1

2πi

∫
C

g(ζ)

ζn+1
dζ =

g(k)(0)

k!

for all k ∈ {0, . . . , n− 1}, so that (6) becomes

g(z) = g(0) + g′(0)z + · · ·+ g(n−1)(0)

(n− 1)!
zn−1 + zngn(z)

=
n−1∑
k=0

g(k)(0)

k!
zk + zngn(z).

This establishes the second part of the conclusion after we perform the reverse substitution.

To complete the proof, we need to show that

|zngn(z)| → 0

uniformly in {z : |z| ≤ r} as n → ∞. Now C = {ζ : |ζ| = ρ} is closed and bounded, and g is

continuous on C. Thus there is a positive real constant M such that |g(ζ)| ≤ M for every ζ ∈ C.

Hence, for every ζ ∈ C and every z such that |z| ≤ r, we have∣∣∣∣ g(ζ)

ζn(ζ − z)

∣∣∣∣ ≤ M

ρn(ρ− r)
.

(This is because |ζn| = ρn and |ζ − z| ≥ ρ− r. Drawing a picture helps to see this fact.) We then

have by the ML-inequality ∣∣∣∣∫
C

g(ζ)

ζn(ζ − z)
dζ

∣∣∣∣ ≤ M

ρn(ρ− r)
2πρ,

and so since |z| ≤ r, we have

|zngn(z)| ≤ rn

2π

M

ρn(ρ− r)
2πρ =

Mρ

ρ− r

(
r

ρ

)n
.

Since r < ρ, the right hand side converges to 0 as n → ∞, independently of the choice of z in

{z : |z| ≤ r}. This completes the proof after we perform the reverse substitution. �
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Theorem 10: If f(z) and g(z) are analytic in a domain D, B(z0, r) ⊂ D, and f(z) = g(z)

for all z ∈ B(z0, r), then f(z) = g(z) for all z ∈ D.

Proof. For every z ∈ D, write h(z) = f(z) − g(z). Then clearly h is analytic in D since f and g

are. Let

S1 = {z1 ∈ D : h(z) = 0 in some neighborhood of z1} and S2 = D \ S1.
We aim to show that both S1 and S2 are open. With this in mind, let z1 ∈ S1. Then there exists

ε1 > 0 such that h(z) = 0 in B(z1, ε1) = {z : |z−z1| < ε1}. Now choose z′ ∈ B(z1, ε1), which implies

|z1 − z′| < ε1. Then choose δ > 0 such that δ < ε1 − |z1 − z′|. Then we have B(z′, δ) ⊂ B(z1, ε1),

which implies h(z) = 0 in B(z′, δ) ⊂ B(z1, ε1), which in turn implies z′ ∈ S1. Thus we have shown

that B(z1, ε1) ⊂ S1, which implies that S1 is open.

Now let z2 ∈ S2. Thus (∗) there is no neighborhood V of z2 such that h(z) = 0 in V . Since

z2 ∈ D, it follows that there is an R > 0 such that the disc B(z2, R) ⊂ D, which means h is analytic

in B(z2, R). It follows from Taylor’s Theorem that the Taylor series expansion

(∗∗) h(z) =
∞∑
n=0

h(n)(z2)

n!
(z − z2)n

is valid in B(z2, r) for every r < R. Combining (∗) and (∗∗), we see that n = min{k : h(k)(z2) 6= 0}
exists. Thus h(n)(z2) 6= 0 but h(j)(z2) = 0 for all j ∈ {0, . . . , n− 1}. Now by Taylor’s formula, this

implies

h(z) =
n−1∑
k=0

h(k)(z2)

k!
(z − z2)k + hn(z)(z − z2)n = hn(z)(z − z2)n,

where hn(z) = h(n)(z2)
n! 6= 0 is analytic in B(z2, R). Now analyticity implies continuity, so since hn

is continuous on B(z2, R) it follows that there is an ε2 > 0 such that h(z) 6= 0 on the punctured

disc {z : 0 < |z − z2| < ε2}. Hence this punctured disc is contained in S2, and since z2 ∈ S2, we

have B(z2, ε2) ⊂ S2. This shows at last that S2 is open.

Now we assumed that z0 ∈ S1, so S1 6= ∅. Since D = S1 ∪ S2, S1 ∩ S2 = ∅, S1 and S2 are open,

and D is connected, it follows that S2 = ∅. In other words, D = S1, so we have h(z) = 0 for all

z ∈ D; that is, f ≡ g on D, as desired to complete the proof. �

Theorem 11: If f(z) is analytic in D, z0 ∈ D, f(z0) = 0, and f(z) 6≡ 0, then there is n ∈ N
such that

f(z) = (z − z0)ng(z),

where g(z) is analytic in D and g(z0) 6= 0.

Proof. Since f(z) 6≡ 0, it follows that f(z) 6≡ 0 in any B(z0, R) (otherwise, by the previous Theorem

10, it would follow that f(z) = g(z) on all of D, where g(z) ≡ 0, contrary to assumption). Thus

the number n = min{k : f (k)(z0) 6= 0} exists. Using the Taylor formula, we have

f(z) =

n−1∑
k=0

f (k)(z0)

k!
(z − z0)k + (z − z0)nfn(z) = (z − z0)nfn(z),

15



where fn(z0) = f (n)(z0)
n! 6= 0 is analytic in B(z0, R). Now we define

g(z) =

{
fn(z) in B(z0, R)

f(z)(z − z0)−n for all z ∈ D \B(z0, R),

which completes the proof since g(z) is analytic in D and g(z0) 6= 0. �

Theorem 12: If f(z) is analytic in D, f(z0) = 0 and f(z) 6≡ 0, then there is r > 0 such

that f(z) 6= 0 for all z with 0 < |z − z0| < r.

Proof. By Theorem 11 there is an n ∈ N such that f(z) = (z − z0)ng(z), where g(z) is analytic

in D and g(z0) 6= 0. Since analyticity implies continuity, there is an ε > 0 such that g(z) 6= 0 in

B(z0, ε). Thus f(z) 6= 0 in {z : 0 < |z − z0| < ε}, as desired. �

Theorem 13: If f(z) and g(z) are analytic in a domain D, zn ∈ D, zn → z0 ∈ D, and

f(zn) = g(zn) for all n ∈ N, then f(z) = g(z) for all z ∈ D.

Proof. Let h(z) = f(z) − g(z). Note that h is analytic in D. Since h(zn) = 0 for all n ∈ N, and

since h is continuous, we have

h(z0) = h
(

lim
n→∞

zn

)
= lim

n→∞
h(zn) = lim

n→∞
0 = 0.

Now note that h(zn) = 0 for all n ∈ N, and since zn → z0 as n→∞, we see that the zero z0 is not

isolated. Hence, by Theorem 12, we must have that h(z) ≡ 0 on D, so f(z) ≡ g(z) on D. �

Theorem 14 (The Maximum Principle): If f(z) is analytic in D, α ∈ D and |f(α)| =

max{|f(z)| : z ∈ D}, then f(z) is constant.

Proof. Suppose to the contrary that f(z) is not constant and there is an α ∈ D such that |f(α)| =
max{|f(z)| : z ∈ D}. Since D is open, we may choose an ε-neighborhood S of α which is contained

in D. Now if |f(z)| = |f(α)| for all z ∈ S, then |f(z)| is constant and hence f is constant in S by

Problem 8 from the exercise list, and hence constant in D by Theorem 10. But we assumed f was

not constant; hence, we may choose a z1 ∈ S such that |f(z1)| < |f(α)|.
Now let r = |z1 − α| and note that r < ε. Let C = {z : |α − z| = r} oriented in the positive

direction. We have by the Cauchy Integral Formula (Theorem 6) that

f(α) =
1

2πi

∫
C

f(ζ)

ζ − α
dζ.

Writing ζ = α+ reit and noting dζ = ireit dt, we have

f(α) =
1

2πi

∫ 2π

0

f(α+ reit)

(α+ reit)− α
ireit dt =

1

2π

∫ 2π

0
f(α+ reit) dt.

This implies that

|f(α)| ≤ 1

2π

∫ 2π

0
|f(α+ reit)| dt.(7)
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Note also that since |f(α)| ≥ |f(z)| for every z ∈ D, we have

|f(α)| ≥ 1

2π

∫ 2π

0
|f(α+ reit| dt.

The right hand side of this inequality can be thought of as the “average” value of |f | while inte-

grating along the circle, and so the average is going to be less than or equal to the maximum.

Now note that since z1 ∈ C, we have z1 = α+ reit1 for some t1 ∈ [0, 2π]. Since f is continuous,

there is an interval I ⊂ [0, 2π] such that |f(α+ reit)| < |f(α)| for every t ∈ I. (That is, since there

is one value that falls below the maximum, and since f is continuous, there must be an interval of

values that fall below the maximum.) Thus,

|f(α)| > 1

2π

∫ 2π

0
|f(α+ reit| dt.(8)

That is, the interval falling below the maximum guarantees the average will be below the maximum.

The inequalities (7) and (8) contradict each other, so we are done. �
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3. Quiz #2 Problems

1. Show that the function f(z) = exp
(
1
z

)
has an essential singularity at z = 0.

Proof. Suppose the Laurent Series of g(z) about z0 is given as

g(z) =
∞∑

n=−∞
an(z − z0)n.

Recall that g has an essential singularity at z0 if an only if an infinite number of coefficients an
with n < 0 are non-zero. Knowing that the exponential function is entire, we can use the Taylor

series expansion

f(z) = exp

(
1

z

)
=

∞∑
n=0

(
1
z

)n
n!

=

∞∑
n=0

z−n

n!
=

0∑
n=−∞

zn

(−n)!
=

0∑
n=−∞

1

(−n)!
(z − 0)n.

Therefore, for every n < 0, it follows that an = 1
(−n)! 6= 0. Thus exp

(
1
z

)
has an essential singularity

at z = 0. �

Note 3.1. Let f(z) be a function and let g(z) = 1
z . Suppose f is analytic in a neighborhood

of ∞ (i.e. in a domain D = {z : R < |z| < ∞} for some R > 0). Then f ◦ g is analytic in

{z : 0 < |z| < R−1}. We note that f(z) has a singularity at∞ if an only if f ◦g(z) has a singularity

at 0. Thus, to show that f(z) has a certain type of singularity at ∞, we must show that f ◦ g(z)

has a singularity of that type at 0.

2. Suppose f(z) is analytic in a neighborhood of ∞ (i.e. in a domain D = {z : R <

|z| < ∞} for some R > 0), such that limz→0 zf
(
1
z

)
= 0. Prove that f(z) has a removable

singularity at ∞.

Proof. By Note 3.1, we know that f ◦g(z) is analytic in the punctured disc {z : 0 < |z| < R−1}. We

wish to show that f ◦ g has a removable singularity at z = 0. By Riemann’s Theorem on removable

singularities, since

lim
z→0

(z − 0)(f ◦ g)(z) = lim
z→0

zf

(
1

z

)
= 0

by assumption, it follows that f ◦ g has a removable singularity at 0, and hence f has a removable

singularity at ∞. �

3. Suppose f(z) is analytic in domain D = {z : R < |z| <∞} for some R > 0, such that

|f(z)| → ∞ as |z| → ∞. Prove that f(z) has a pole at ∞, i.e., there exists n > 0 such

that f(z) = znh(z), where h(z) is analytic in domain {z : R < |z| <∞} and h(∞) 6= 0.

Proof. By Note 3.1, we note that f ◦g is analytic in a puncture disc centered at 0; we want to show

that f ◦ g has a pole at 0. By Theorem 8B in the textbook, this happens if and only if

lim
z→0
|f ◦ g(z)| =∞.
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Note that

lim
z→0
|f ◦ g(z)| = lim

z→0

∣∣∣∣f (1

z

)∣∣∣∣ = lim
|z|→∞

|f(z)| =∞,

where the last equality follows by assumption. Thus f has a pole at ∞, as desired. �

4. Suppose f(z) is analytic in domain D = {z : R < |z| <∞} for some R > 0, such that

f(z) has an essential singularity at ∞. Prove that for every ω ∈ C and real numbers

ε > 0, N > 0, there exists z such that |z| > N and |f(z)− ω| < ε.

Proof. Since f(z) is analytic in D = {z : R < |z| <∞} for some R > 0 with an essential singularity

at ∞, it follows from Note 3.1 that f ◦ g(z) is analytic in {z : 0 < |z| < R−1} and has an essential

singularity at z = 0. Thus, by Theorem 8C, for ω ∈ C and ε > 0 and 1
N > 0, there is a z in the

punctured disc satisfying 0 < |z| < 1
N and |f ◦ g(z)− ω| < ε.

Let z = 1
z , which is well-defined since |z| > 0. Then z = 1

z , and so by the previous paragraph we

have ∣∣∣∣1z
∣∣∣∣ < 1

N
and

∣∣∣∣f ◦ g(1

z

)
− ω

∣∣∣∣ < ε,

or

|z| > N and |f(z)− ω| < ε,

as desired to complete the proof. �

5. Show that the function f(z) =
ez − 1

z(z − 1)
has a removable singularity at z = 0, a

simple pole at z = 1, and an essential singularity at ∞.

Proof. First of all, the fact that f has isolated singularities at 0 and 1 is clear, but we must show

what form they are. For z1 = 0, note that

lim
z→0

zf(z) = lim
z→0

ez − 1

z − 1
=
e0 − 1

0− 1
= 0,

and so by Riemann’s Theorem on removable singularities, we see that f(z) has a removable singu-

larity at z1 = 0.

Now note that

f(z) =
ez − 1

z(z − 1)
=

g(z)

z − 1
, where g(z) =

ez − 1

z
.

Now g is analytic in any neighborhood of z2 = 1 not including the origin, and furthermore, g(1) =

e− 1 6= 0, so by definition, f(z) has a pole of order 1 (i.e. simple pole) at z2 = 1.

Note that, in the style of Note 3.1,

f ◦ g(z) =
e1/z − 1
1
z

(
1−z
z

) =
z2(e1/z − 1)

1− z
,

which clearly has a singularity at z = 0; hence, f(z) has a singularity at∞. Note that lim|z|→∞ f(z)

does not exist since

lim
x→+∞

f(x) =∞ and lim
x→−∞

f(x) = 0.
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Thus, the singularity is not removable. Now note that f has a pole of order n at infinity if and only

if f ◦ g has a pole of order n at 0, which happens if and only if 1
f◦g has a zero of order n at 0. But

1

f ◦ g(z)
=

1− z
z2(e1/z − 1)

,

which clearly has no zero of any order at 0. Hence the singularity is not a pole of any order, and

hence must be essential. �

6. Find poles and residues at the poles of the function f(z) = e2iz

1+4z2
.

Proof. Factoring the denominator, we have

f(z) =
e2iz

1 + 4z2
=

e2iz

4(z2 + 1
4)

=
e2iz

4
(
z + i

2

) (
z − i

2

) .
This tells us that there are simple poles at z1 = i

2 and z2 = − i
2 . Since these poles are simple, we

can easily calculate the residues as follows.

res(f, z1) = lim
z→ i

2

(
z − i

2

)
f(z) = lim

z→ i
2

e2iz

4
(
z + i

2

) =
e2i(i/2)

4(2i/2)
=
e−1

4i
,

and

res(f, z2) = lim
z→−i/2

(
z +

i

2

)
f(z) = lim

z→−i/2

e2iz

4(z − i/2)
=

e2i(−i/2)

4(−2i/2)
= − e

4i
.

�

7. Find poles and residues at the poles of the function f(z) = ez

z4
.

Proof. It is immediate that f(z) has a pole of order 4 at z = 0, and this is the only singularity. We

use the formula

a−1 =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)mf(z))

to find the residue of the pole of order m. Thus, for f(z) given above, we have

res(f, 0) =
1

3!
lim
z→0

d3

dz3

(
z4 · e

z

z4

)
=

1

3!
lim
z→0

ez =
1

3!
=

1

6
.

�

8. Suppose f(z) is analytic in a domain D, z0 ∈ D, f(z0) = 0 and F (z) = f(z)
z−z0 . Show

that F (z) has a removable singularity at z0.

Proof. Recall from Riemann’s Theorem for Removable Singularities that if a function g is analytic

in a punctured disc {z : 0 < |z − z0| < R} and limz→z0(z − z0)g(z) = 0, then g has a removable

singularity at z0. The result we are asked to prove follows immediately from this theorem for the

following reason. First, we note that since f(z) is analytic in D, there exists an ε > 0 such that f(z)

is analytic in B(z0, ε). It follows that F (z) is analytic in the punctured disc {z : 0 < |z − z0| < ε}.
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Furthermore,

lim
z→z0

(z − z0)F (z) = lim
z→z0

f(z) = f(z0) = 0

by assumption, so the hypotheses of Riemann’s Theorem are satisfied; hence F (z) has a removable

singularity at z0. �

9. Use the principle of argument to find the number of zeros of the function f(z) =

z4 + z3 − 2z2 + 2z + 4 in the first quadrant.

Proof. Let R > 0 and let C = C1 ∪ C2 ∪ C3 where C1 = [0, R], C2 = Reiθ for 0 ≤ θ ≤ π
2 , and

C3 = [iR, 0]. Let us consider C1 first.

On C1, we have

f(z) = f(x) = x4 + x3 − 2x2 + 2x+ 4

=

{
x4 + x3 + 4− 2x(x− 1)

x2(x+ 2)(x− 1) + 2x+ 4
≥

{
x4 + x3 + 4 if 0 ≤ x ≤ 1

2x+ 4 if x ≥ 1
> 0.

Hence on C1, we have f(z) = Re(f(z)) > 0, and so arg(f(R)) = 0 and arg(f(0)) = 0; hence,

var(arg(f(z)), C1) = arg(f(R))− arg(f(0)) = 0.

We consider C2 next. Note that

f(z) = z4
(

1 +
z3 − 2z2 + 2z + 4

z4

)
.(9)

Let ω = z3−2z2+2z+4
z4

, and note that since |z| = R we have

|ω| =
∣∣∣∣z3 − 2z2 + 2z + 4

z4

∣∣∣∣ ≤ |z|3 + 2|z|2 + 2|z|+ 4

|z|4

=
R3 + 2R2 + 2R+ 4

R4

<
2R3

R4

=
2

R

for sufficiently large R. Hence, |ω| → 0 as R→∞. Noting that z = Reit where 0 ≤ t ≤ π/2 on C2

and using (9), we have

f(z) = R4e4it(1 + ω).

Since |ω| < 2/R for sufficiently large R, it follows that |arg(1 + ω)| can be made arbitrarily small

as R→∞. Since the argument of a product is equal to the sum of the arguments, we have

arg(f(z)) = 4t+ arg(1 + ω)

and hence var(arg(f(z), C2) = 4(π/2− 0) + ε1 = 2π + ε1, where ε1 → 0 as R→∞.

We now consider C3. Note that on C3, we have z = iy for some 0 ≤ y ∈ R. Thus

f(z) = f(iy) = (iy)4 + (iy)3 − 2(iy)2 + 2(iy) + 4

= y4 − iy3 + 2y2 + 2iy + 4
21



= (y4 + 2y2 + 4) + i(2y − y3)

= (y2 + 1)2 + 3 + i(2y − y3),

from which we note that Re(f(iy)) > 0. Thus, f(iy) is either in the first or fourth quadrant. Let

θ = arg(f(z)), and note that tan θ = Im(f(z))/Re(f(z)). It follows that

tan θ =
2y − y3

y4 + 2y2 + 4
→ 0

as y (i.e. R) → ∞. Thus θ → 0 as y → ∞. Since f(0) = 4 (and hence arg(f(0)) = 0), it follows

that var(arg(f(z)), C3) = ε2 → 0 as R→∞.

Hence, we have var(arg(f(z)), C) = 2π + ε1 + ε2, where ε1, ε2 → 0 as R→∞. But C is a closed

contour, and so var(arg(f(z)), C) must be an integer multiple of 2π, and so var(arg(f(z)), C) = 2π.

By the argument principle, we have

N − P =
1

2π
var(arg(f(z)), C) = 1,

and since P = 0, it follows that N = 1. �

10. Use Rouché’s Theorem to determine the number of solutions of equation ez =

2z + 1 such that |z| < 1.

Proof. Write f(z) = −2z and g(z) = ez − 1. Note that f(z) + g(z) = ez − 2z − 1, and so to find

the number of solutions with |z| < 1 of ez = 2z + 1, it suffices to find the number of zeros of f + g

inside the unit circle C = {z : |z| = 1}. In order to use Rouché’s Theorem, we must show that f

and g are analytic in a domain D ⊃ C, and that |f(z)| > |g(z)| on C.

Clearly f and g are entire, and so they are analytic in a domain D ⊃ C. It remains to show that

|f | > |g| on C.

First of all, note that |f(z)| = | − 2z| = | − 2||z| = 2 for any z ∈ C. We calculate |g(z)| on C in

the following way. Note that

ez − 1 =

∫
[0,z]

eζ dζ =

∫ 1

0
eztz dt,

where the first equality follows from the fundamental theorem of calculus for complex functions

(Theorem 4A in Chen), and the second equality follows using the parametrization of [0, z] of ζ = zt

for 0 ≤ t ≤ 1, and hence dζ = z dt.

Now note that if z = x+ iy ∈ C, then x ≤ 1 and hence

|ezt| = |etx+ity| = etx ≤ et.

Thus we have

|g(z)| = |ez − 1| =
∣∣∣∣∫ 1

0
eztz dt

∣∣∣∣ ≤ ∫ 1

0
|eztz| dt =

∫ 1

0
|ezt||z| dt ≤

∫ 1

0
et dt = e− 1.

Thus, for every z ∈ C, we have |f(z)| = 2 > e − 1 ≥ |g(z)|, and thus can use Rouché’s Theorem

to assert that f and f + g have the same number of zeros inside C. Clearly f has one zero inside
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C; the zero z = 0. Thus f + g has one zero inside C as well, and hence the equation has one

solution. �

11. Evaluate the integral

∫ π

0

dθ

a+ cos θ
(a > 1).

Proof. Note that ∫ π

0

dθ

a+ cos θ
=

1

2

∫ 2π

0

dθ

a+ cos θ
. Needs proof.(10)

Now substitute z = eiθ = cos θ + i sin θ, so that dz = ieiθ dθ, or dθ =
dz

ieiθ
=
dz

iz
= −idz

z
. Also,

note that cos θ = 1
2(eiθ + e−iθ) = 1

2(z + z−1). Now let C be the unit circle. Thus∫ 2π

0

dθ

a+ cos θ
= −i

∫
C

dz

z(a+ 1
2(z + z−1))

= −i
∫
C

2 dz

z2 + 2az + 1
.

By the original equality (10), it follows that∫ π

0

dθ

a+ cos θ
= −i

∫
C

dz

z2 + 2az + 1
.(11)

Now note by the quadratic formula that the roots of z2 + 2az + 1 are

z =
−2a±

√
(2a)2 − 4

2
=
−2a±

√
4a2 − 4

2
= −a±

√
a2 − 1.

Let α = −a+
√
a2 − 1 and β = −a−

√
a2 − 1. Note that αβ = 1, and since |β| > 1, it follows that

|α| < 1. Hence f(z) = 1
z2+2az+1

is analytic in some domain containing C, except for a simple pole

at α inside C. Now

res(f, α) = lim
z→α

(z − α)f(z) = lim
z→α

1

z − β
=

1

α− β
=

1

2
√
a2 − 1

.

It follows from Cauchy’s Residue Theorem (Theorem 10B) that∫
C
f(z) dz = 2πi res(f, α) =

2πi

2
√
a2 − 1

,

and so by (10) and (11), we have∫ π

0

dθ

a+ cos θ
= −i

∫
C
f(z) dz =

π√
a2 − 1

,

completing the computation. �

12. Evaluate the integral

∫ ∞
−∞

x2

(x2 + a2)3
dx (a > 0).

Proof. Let f(z) =
z2

(z2 + a2)3
=

z2

(z + ia)3(z − ia)3
. Thus f has poles of order 3 at z = ±ia.

Consider the Jordan contour C = [−R,R]∪CR, where R > a and CR is the half-circle of radius R

in the upper half-plane. The only pole inside C is z = ia. By the Cauchy Residue Theorem, we
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have

2πi res(f, ia) =

∫
C
f(z) dz =

∫ R

−R
f(x) dx+

∫
CR

f(z) dz.

We now calculate (rather miserably) res(f, ia). We have

res(f, ia) =
1

2
lim
z→ia

d2

dz2

(
(z − ia)3

z2

(z2 + a2)3

)
=

1

2
lim
z→ia

d2

dz2

(
z2

(z + ia)3

)
=

1

2
lim
z→ia

d

dz

(
2z(z + ia)3 − 3z2(z + ia)2

(z + ia)6

)
=

1

2
lim
z→ia

d

dz

(
2z(z + ia)− 3z2

(z + ia)4

)
=

1

2
lim
z→ia

d

dz

(
2z

(z + ia)3
− 3z2

(z + ia)4

)
=

1

2
lim
z→ia

(
2(z + ia)3 − 6z(z + ia)2

(z + ia)6
− 6z(z + ia)4 − 12z2(z + ia)3

(z + ia)8

)
=

1

2
lim
z→ia

(
2

(z + ia)3
− 12z

(z + ia)4
+

12z2

(z + ia)5

)
=

1

2

(
2

(2ia)3
− 12ia

(2ia)4
− 12a2

(2ia)5

)
=

1

2

(
2i

8a3
− 6i

8a3
+

3i

8a3

)
= − i

16a3
.

It follows that ∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi

(
− i

16a3

)
=

π

8a3
.

Now suppose z ∈ CR so that |z| = R. We want to show∣∣∣∣ z2

(z2 + a2)3

∣∣∣∣ ≤ R2

(R2 − a2)3
.

Since |z2| = R2, this is equivalent to showing |z2 + a2|3 ≥ (R2 − a2)3, or that |z2 + a2| ≥ R2 − a2.
Let z = x+ iy and remember that x2 + y2 = R2. Note, then, that

|z2 + a2| = |z + ia||z − ia|
= |x+ i(y + a)||x+ i(y − a)|

=
√
x2 + (y + a)2 ·

√
x2 + (y − a)2

=
√
x2 + y2 + 2ay + a2 ·

√
x2 + y2 − 2ay + a2

=
√
R2 + 2ay + a2 ·

√
R2 − 2ay + a2

=
√
R4 + 2a2R2 − 4a2y2 + a4
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and

R2 − a2 =
√

(R2 − a2)2

=
√
R4 − 2a2R2 + a4

Thus, our problem reduces to checking that R4 − 2a2R2 + a4 ≤ R4 + 2a2R2 − 4a2y2 + a4. After

canceling common summands, we have left to check

−2a2R2
?
≤ 2a2R2 − 4a2y2 ⇒ 4a2y2

?
≤ 4a2R2.

Now since 4a2 > 0, we can cancel this factor from both sides without changing the inequality sign.

Thus our problem reduces to determining

y2
?
≤ R2.

This is clearly true, though, since x2 + y2 = R2 and x2 ≥ 0. Thus R2 − a2 ≤ |z2 + a2|, as claimed,

and hence

|f(z)| ≤ R2

(R2 − a2)3
for every z ∈ CR.

Hence, by the
∣∣∫ f ∣∣ ≤ ∫ |f | and ML-inequalities, we have∣∣∣∣∫

CR

f(z) dz

∣∣∣∣ ≤ R

(R2 − a2)3
πR→ 0

as R→∞. Hence, letting R→∞ we have∫ ∞
−∞

x2

(x2 + a2)3
dx =

∫ ∞
−∞

f(x) dx =
π

8a3
,

which completes the computation. �

13. Evaluate the integral

∫ ∞
−∞

x2 + 3

x4 + 5x2 + 4
dx.

Proof. Consider the function f(z) =
z2 + 3

z4 + 5z2 + 4
=

z2 + 3

(z2 + 1)(z2 + 4)
=

z2 + 3

(z + i)(z − i)(z + 2i)(z − 2i)
.

This function has simple poles at ±i and ±2i. Let R > 2. Consider the Jordan contour C =

[−R,R]∪CR, where CR is the upper semi-circle centered at the origin with radius R. Then by the

residue theorem, it follows that∫ R

−R
f(x) dx+

∫
CR

f(z) dz =

∫
C
f(z) dz = 2πi (res(f, i) + res(f, 2i)) .

Hence, we must calculate these residues. We have

res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

z2 + 3

(z + i)(z + 2i)(z − 2i)
=

2

(2i)(3i)(−i)
= − 2

6i3
=

1

3i

and

res(f, 2i) = lim
z→2i

(z − 2i)f(z) = lim
z→2i

z2 + 3

(z + i)(z − i)(z + 2i)
=

−1

(3i)(i)(4i)
=

1

12i
.
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Thus, we have ∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi

(
1

3i
+

1

12i

)
=

5π

6
.

Now since
∣∣∣∫CR

f(z) dz
∣∣∣→ 0 as R→∞, we have∫ ∞

−∞
f(x) dx =

5π

6
,

completing the calculation. �

14. Evaluate the integral

∫ ∞
−∞

cosx

x2 + a2
dx (a > 0).

Proof. Consider the function F (z) =
eiz

z2 + a2
=

eiz

(z + ia)(z − ia)
, which has simple poles at ±ia.

Consider the Jordan contour C = CR ∪ [−R,R], where R > a. By the residue theorem, we have∫ R

−R
F (x) dx+

∫
CR

F (z) dz =

∫
C
F (z) dz = 2πi res (f, ia) .

Note that

res(f, ia) = lim
z→ia

(z − ia)F (z) = lim
z→ia

eiz

z + ia
=
e−a

2ia
,

so that ∫ R

−R
F (x) dx+

∫
CR

F (z) dz = 2πi
e−a

2ia
=
πe−a

a
.

Now by Jordan’s Lemma, we have
∣∣∣∫CR

F (z) dz
∣∣∣→ 0 as R→∞. Thus we have∫ ∞

−∞
F (x) dx =

∫ ∞
−∞

cosx

x2 + a2
dx+ i

∫ ∞
−∞

sinx

x2 + a2
dx =

πe−a

a
;

hence, equating real parts gives us that

∫ ∞
−∞

cosx

x2 + a2
dx =

πe−a

a
. �

15. Evaluate the integral

∫ ∞
−∞

x3 sinx

(x2 + a2)(x2 + b2)
dx (a > 0, b > 0).

Proof. Consider the function F (z) =
z3eiz

(z2 + a2)(z2 + b2)
, which has simple poles at ±ia and ±ib.

Consider as usual the Jordan contour C = [−R,R] ∪ CR, where R > max{a, b}. By the residue

theorem, we have∫ R

−R
F (x) dx+

∫
CR

F (z) dz =

∫
C
F (z) dz = 2πi (res(F, ia) + res(F, ib)).

We can calculate

res(F, ia) = lim
z→ia

((z − ia)F (z)) = lim
z→ia

z3eiz

(z + ia)(z2 + b2)
=

(ia)3e−a

(2ia)(b2 − a2)
=

a2e−a

2(a2 − b2)
26



and

res(F, ib) = lim
z→ib

((z − ib)F (z)) = lim
z→ib

z3eiz

(z2 + a2)(z + ib)
=

(ib)3e−b

(a2 − b2)(2ib)
=

b2e−b

2(b2 − a2)
.

Hence we have ∫ R

−R
F (x) dx+

∫
CR

F (z) dz =

∫
C
F (z) dz = πi

(
a2e−a − b2e−b

a2 − b2

)
.

Note that by the Jordan Lemma and the fact that the degree of the polynomial part of the denom-

inator exceeds the degree of the polynomial part of the numerator, we have that
∣∣∣∫CR

F (z) dz
∣∣∣→ 0

as R→∞. Hence, we have ∫ ∞
−∞

F (x) dx =
πi(a2e−a − b2e−b)

a2 − b2
.

Equating imaginary parts gives us∫ ∞
−∞

x3 sinx

(x2 + a2)(x2 + b2)
dx =

π(a2e−a − b2e−b)
a2 − b2

,

which completes the computation. �

16. Evaluate the integral

∫ ∞
−∞

sinx

x
dx.

Proof. Consider the function F (z) =
eiz

z
. We cannot use the same technique as before since the

singularity z = 0 is on the contour. Thus we must “bend around the contour.” Consider the

contour C = [−R,−δ] ∪K(δ) ∪ [δ,R] ∪ CR, where everything is as before except for K(δ), which

is the semicircular arc in the lower half-plane centered at 0 with radius δ < R. By the residue

theorem, we have∫ −δ
−R

F (x) dx+

∫
K(δ)

F (z) dz +

∫ R

δ
F (x) dx+

∫
CR

F (z) dz =

∫
C
F (z) dz = 2πires(F, 0).

Now observe that

F (z) =
eiz

z
=

1

z

∞∑
n=0

zn

n!
=

∞∑
n=−1

zn

(n+ 1)!
,

so that res(F, 0) = 1 and F (z) = 1
z +G(z), where G(z) =

∑∞
n=0

zn

(n+1)! is an entire function.

Notice that K(δ) can be parametrized as follows. Let z = δeit for π ≤ t ≤ 2π. Then dz = iδeitdt,

and hence ∫
K(δ)

dz

z
=

∫ 2π

π

iδeit

δeit
dt = πi.

Hence, we have
∫
K(δ) F (z) dz = πi+

∫
K(δ)G(z) dz, and thus we have∫ −δ

−R
F (x) dx+

∫
K(δ)

G(z) dz +

∫ R

δ
F (x) dx+

∫
CR

F (z) dz = πi.(12)
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We also make the observation that for |z| ≤ 1, we have

|G(z)| =

∣∣∣∣∣
∞∑
n=0

zn

(n+ 1)!

∣∣∣∣∣ ≤
∞∑
n=0

∣∣∣∣ zn

(n+ 1)!

∣∣∣∣ =
∞∑
n=0

|z|n

(n+ 1)!
≤
∞∑
n=0

1

(n+ 1)!
<∞,

and so there exists some number M > 0 such that |G(z)| < M whenever |z| ≤ 1. Hence, whenever

δ < 1, we have ∣∣∣∣∣
∫
K(δ)

G(z) dz

∣∣∣∣∣ ≤Mπδ.(13)

We also have ∣∣∣∣∫
CR

F (z) dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣eizz
∣∣∣∣ |dz| ≤ 1

R

∫
CR

|eiz| |dz| < π

R
,(14)

where the last inequality follows from Jordan’s Lemma. Combining (12), (13), and (14), if δ < 1

we have∣∣∣∣∫ −δ
−R

F (x) dx+

∫ R

δ
F (x) dx− πi

∣∣∣∣ =

∣∣∣∣∣−
∫
K(δ)

G(z) dz −
∫
CR

F (z) dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫
K(δ)

G(z) dz

∣∣∣∣∣+

∣∣∣∣∫
CR

F (z) dz

∣∣∣∣ < Mπδ +
π

R
.

Hence, letting δ → 0 and R→∞, we have∫ ∞
−∞

F (x) dx = πi.

Equating imaginary parts, we have ∫ ∞
−∞

sinx

x
dx = π,

which completes the computation. �

17. Evaluate the integral

∫ ∞
−∞

cosx

a2 − x2
dx (a > 0).

Proof. Consider the function F (z) =
eiz

a2 − z2
, which has simple poles at ±a. Consider the Jordan

Contour

C = [−R,−a− δ1] ∪ J1(δ1) ∪ [−a+ δ1, a− δ2] ∪ J2(δ2) ∪ [a+ δ2, R] ∪ CR.

where R < 2a and 0 < δ1, δ2 < a. By Cauchy’s Integral Theorem, we have∫ −a−δ1
−R

+

∫
J1(δ1)

+

∫ a−δ2

−a+δ1
+

∫
J2(δ2)

+

∫ R

a+δ2

+

∫
CR

= 0.(15)

Now we have

res(F, a) = lim
z→a

(z − a)F (z) = −e
ia

2a
and

res(F,−a) = lim
z→−a

(z + a)F (z) =
e−ia

2a
.

28



Hence F (z) =
e−ia

2a(z + a)
+ G1(z) = − eia

2a(z − a)
+ G2(z), where G1 and G2 are analytic in neigh-

borhoods of −a and a, respectively. We now wish to find
∫
J1(δ1)

e−ia

2a(z+a) dz and
∫
J2(δ2)

− eia

2a(z−a) dz.

First, note that on J1(δ1), we have z = −a+ δ1e
it for t ∈ [π, 0]. Hence we have∫

J1(δ1)

e−ia

2a(z + a)
dz =

e−ia

2a

∫ 0

π
i dz = − iπe

−ia

2a
.

Likewise, we have

−
∫
J2(δ2)

eia

2a(z − a)
= −e

ia

2a

∫ 0

π
i dz =

iπeia

2a
.

Thus by (15) we have∫ −a−δ1
−R

+

∫
J1(δ1)

G1(z) dz +

∫ a−δ2

−a+δ1
+

∫
J2(δ2)

G2(z) dz +

∫ R

a+δ2

+

∫
CR

=
iπ(e−ia − eia)

2a
,

and perhaps more usefully,∫ −a−δ1
−R

+

∫ a−δ2

−a+δ1
+

∫ R

a+δ2

− iπ(e−ia − eia)
2a

= −
∫
J1(δ1)

G1(z) dz −
∫
J2(δ2)

G2(z) dz −
∫
CR

.(16)

Now the right hand side goes to 0 as δ1, δ2 → 0 and R→∞, and so we have∫ ∞
−∞

F (x) dx =
iπ(e−ia − eia)

2a
=
π

a

(eia − e−ia)
2i

=
π sin a

a
;

equating real parts, we have ∫ ∞
−∞

cosx

a2 − x2
dx =

π sin a

a
,

completing the computation. �

18. Evaluate the integral

∫ ∞
0

xα−1

1 + x
dx (0 < α < 1).

Proof. Consider the substitution x = u2. Then we have∫ ∞
0

xα−1

1 + x
dx =

∫ ∞
0

u2α−2

1 + u2
2u du = 2

∫ ∞
0

u2α+1

u2 + u4
du.

Thus, consider the function

F (z) =
z2α+1

z2 + z4
=

z2α+1

z2(1 + z2)
,

which has a pole of order 2 at z = 0 and simple poles at z = ±i. Consider the Jordan contour

C = [−R,−δ] ∪ J(δ) ∪ [δ,R] ∪ CR,

where J(δ) is the (negatively oriented) upper-half circle centered at the origin with radius 0 < δ <

1 < R, and where CR is the standard curve we have been considering. By the residue theorem,∫
C
F (z) dz =

∫ δ

−R
F (z) dz +

∫
J(δ)

F (z) dz +

∫ R

δ
F (z) dz +

∫
CR

F (z) dz = 2πi res(F, i)(17)
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since i is the only singularity inside C. Computing this residue, we have

res(F, i) = lim
z→i

(z − i)F (z) =
i2α+1

i2(2i)
= −1

2
i2α = −1

2
(eiπ/2)2α = −1

2
eπiα.

It follows from (17) that∫ δ

−R
F (z) dz +

∫
J(δ)

F (z) dz +

∫ R

δ
F (z) dz +

∫
CR

F (z) dz = −πieπiα.

Now note that ∣∣∣∣∣
∫
J(δ)

F (z) dz

∣∣∣∣∣ ≤ δ2α+1

δ2 − δ4
πδ =

δ2αδ2

δ2(1− δ2)
π → 0

and ∣∣∣∣∫
CR

F (z) dz

∣∣∣∣ ≤ R2α+1

R4 −R2
πR =

R2αR2

R2(R2 − 1)
π → 0

as δ → 0 and R→∞, respectively (where the second one holds since α < 1). Hence,∫ ∞
−∞

z2α+1

z2 + z4
dz =

∫ ∞
−∞

F (z) dz = −πieπiα.

If we let f(z) = 1
z+z2

, then we have f(z2) = 1
z2+z4

, and hence∫ ∞
−∞

F (z) dz =

∫ ∞
−∞

z2α+1f(z2) dz.

We make an estimate to help with this. Note in the following computation that, going from line 1

to line 2, we made the substitution (in the second integral only) of z = −ζ and so dz = −dζ.∫ ∞
−∞

z2α+1f(z2) dz =

∫ ∞
0

z2α+1f(z2) dz +

∫ 0

−∞
z2α+1f(z2) dz

=

∫ ∞
0

z2α+1f(z2) dz −
∫ 0

∞
(−ζ)2α+1f((−ζ)2) dζ

=

∫ ∞
0

z2α+1f(z2) dz +

∫ ∞
0

(−ζ)2α+1f((−ζ)2) dζ

=

∫ ∞
0

z2α+1f(z2) dz +

∫ ∞
0

(−z)2α+1f((−z)2) dz

=

∫ ∞
0

z2α+1f(z2) dz −
∫ ∞
0

(−z)2α+1(z)f(z2) dz

=

∫ ∞
0

z2α+1f(z2) dz −
∫ ∞
0

e2πiαz2α(z)f(z2) dz

= (1− e2πiα)

∫ ∞
0

z2α+1f(z2) dz.

The sixth equality above follows from the identity (−z)2α = e2πiαz2α, which is an easy identity

since −1 = eiπ. Hence we have

(1− e2πiα)

∫ ∞
0

z2α+1

z2 + z4
dz =

∫ ∞
−∞

F (z) dz = −πieπiα,
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from which it follows from the opening substitution that

1

2

∫ ∞
0

xα−1

1 + x
dx =

∫ ∞
0

u2α+1

u2 + u4
du = − πieπiα

(1− e2πiα)
= − πi

e−πiα − eπiα
= − πi

−2 sin(πα)
=

π

2 sin(πα)
.

Thus we have ∫ ∞
0

xα−1

1 + x
dx =

π

sin(πα)
.

This completes the computation. �

19. Show that the real part of z1/2 (z 6= 0) is always positive.

Proof. We show that the real part of z1/2 is non-negative, for if z = −c for c ∈ R+, then z1/2 = i
√
c,

and hence Re(z) = 0.

This is most easily seen through polar coordinates. Let z = reiθ for θ ∈ [−π, π). (Here we

are defining the range of values θ so as to give the principal value of the square root.) Then

z1/2 = r1/2eiθ/2. Notice that θ
2 ∈

[−π
2 ,

π
2

)
, and so

Re(z) = r1/2 cos

(
θ

2

)
≥ 0,

as desired. �

20. Let D = C \ {z ∈ R : z ≤ 0}. Describe all analytic functions f(z) in D such that

z = [f(z)]n (branches of the nth root).

Proof. To have z = [f(z)]n, we must have f(z) = z1/n. Let z = rei(θ+2πk) for r > 0 and θ 6= π and

k ∈ N. Hence f(z) = z1/n = e2πk/nr1/neiθ/n. Let λk = r1/n · e2πk/n, so that f(z) = λke
iθ/n, and

note that k = 0, . . . , n− 1 gives you different values, but the values repeat after that. Hence,

f(z) = λke
iθ/n where k ∈ {0, . . . , n− 1}

describes all such functions. �

21. Prove that there is no branch of log defined in C \ {0}.

Proof. Any definition of ln(z) must be continuous. Hence, a branch of ln z defined in C \ {0} must

be continuous; that is, for any sequence {zn} ⊂ C \ {0} such that zn → z ∈ C \ {0}, we have

lim
n→∞

ln(zn) = ln(z).

But note that for z = 1, we have two sequences {sn} and {tn} given by

sn = ei(1/n) and tn = ei(2π−1/n).

We have

lim
n→∞

sn = e0 = 1 and lim
n→∞

tn = e2πi = 1.

Then note that

lim
n→∞

ln(sn) = lim
n→∞

i · 1

n
= 0
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and

lim
n→∞

ln(tn) = lim
n→∞

i ·
(

2π − 1

n

)
= 2πi

and so since these limits do not agree, it is not a continuous function. Hence, there is no branch of

log defined on C \ {0}. �
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4. Final Exam Theorems

Theorem 15 (Riemann’s Theorem on Removable Singularities): If f(z) is analytic in

{z : 0 < |z − z0| < R} and limz→z0(z − z0)f(z) = 0, then z0 is a removable singularity.

Proof. Suppose z is a point in the punctured disc {z : 0 < |z − z0| < R}. Let r1 and r2 satisfy

0 < r1 < |z− z0| < r2 < R and let C1 and C2 denote two circles, oriented positively, centered at z0
with radius r1 and r2, respectively. Let

g(ζ) =
f(ζ)− f(z)

ζ − z
,

which is clearly analytic in the punctured disc {ζ : 0 < |ζ − z0| < R}. Then, performing “surgery”

(as we did in the proof of the Cauchy Integral Theorem), we have
∫
C1
g(ζ) dζ −

∫
C2
g(ζ) dζ = 0,

and so ∫
C1

g(ζ) dζ =

∫
C2

g(ζ) dζ.

Hence, by how we defined g, we have∫
C1

f(ζ)

ζ − z
dζ︸ ︷︷ ︸

=A

− f(z)

∫
C1

dζ

ζ − z︸ ︷︷ ︸
=B

=

∫
C2

f(ζ)

ζ − z
dζ︸ ︷︷ ︸

=C

− f(z)

∫
C2

dζ

ζ − z︸ ︷︷ ︸
=D

.

We consider the pieces A,B,C, and D separately. Since C1 ⊂ G = {ζ : |ζ−z0| < |z−z0|}, it follows

that 1
ζ−z is analytic in G, and so B = 0. However, since z is in the interior of the region bounded

by C2, it follows from a simple argument (using polar coordinates, for instance) that D = f(z)2πi.

Now by the assumption made in the statement of the theorem, given any ε > 0 there exists a

δ > 0 such that |(ζ − z0)f(ζ)| < ε whenever |ζ − z0| < δ. Without loss of generality since we are

making δ arbitrarily small anyway, assume δ < 1
2 |z − z0|. Now let r1 = δ and note∣∣∣∣∫

C1

f(ζ)

ζ − z
dζ

∣∣∣∣ =

∣∣∣∣∫
C1

(ζ − z0)f(ζ)

(ζ − z0)(ζ − z)
dζ

∣∣∣∣ ≤ ε

(infζ∈C1{ζ − z0})(infζ∈C1{ζ − z})
2πδ

=
ε

δ(|z − z0| − δ)
2πδ =

2πε

|z − z0| − δ
≤ 4πε

|z − z0|
,

by the ML-inequality. Since ε > 0 was arbitrary, it follows that A = 0. Thus, combining this

information gives

f(z) =
1

2πi

∫
C2

f(ζ)

ζ − z
dζ,

which holds for every z ∈ {z : 0 < |z − z0| < r2}. Now this shows that f is analytic in every

punctured disc {z : 0 < |z − z0| < r2}. To show that z0 is a removable singularity, all we must do

is define f(z0), which we may do so as

f(z0) =
1

2πi

∫
C2

f(ζ)

ζ − z0
dζ,

which makes f analytic in the disc {z : |z − z0| < r2}. Since r2 can be chosen arbitrarily close to

R, the result follows by the definition of a removable singularity. �
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Theorem 16: Suppose f(z) is analytic in {z : 0 < |z − z0| < R}. Then z0 is a pole if

and only if limz→z0 |f(z)| =∞.

Proof. Recall that, by definition, z0 is a pole of order n if and only if we can write

f(z) =
g(z)

(z − z0)n
,

where n ∈ N and g is analytic in some neighborhood of z0 and where g(z0) 6= 0. Thus, by the

definition of z0 being a pole implies that

lim
z→z0

|f(z)| = lim
z→z0

∣∣∣∣ g(z)

(z − z0)n

∣∣∣∣ =∞

since g(z0) 6= 0 (i.e. so we don’t have to worry about an indeterminate case 0/0).

Now suppose limz→z0 |f(z)| = ∞. This implies that f(z) 6= 0 is some punctured disc {z :

0 < |z − z0| < r}, where r ≤ R. This implies that the function F (z) = 1
f(z) is analytic in

{z : z < |z − z0| < r}, and has an isolated singularity at z0. Now by assumption we have

lim
z→z0

(z − z0)F (z) =
0

∞
= 0,

and so by Riemann’s Theorem on Removable Singularities, we have shown that F has a removable

singularity at z0. Hence, we define F (z0) = 0 to make F analytic in the disc {z : |z − z0| < r}.
Now F 6≡ 0 in {z : |z − z0| < r}, and so by one of the uniqueness theorems (7F) that

F (z) = (z − z0)nh(z),

where h is analytic in {z : |z − z0| < r} and where h(z0) 6= 0. Now we define

g(z) =
1

h(z)
.

Since h(z0) 6= 0 and since h is continuous, there is some neighborhood D of z0 for which h(z) 6= 0

for all z ∈ D. Hence, g is analytic in D. Furthermore, g(z0) = 1
h(z0)

6= 0. This all combines to tell

us that

f(z) =
1

F (z)
=

1

(z − z0)nh(z)
=

g(z)

(z − z0)n
where g(z0) 6= 0, which implies that z0 is a pole of order n by the definition of a pole. �

Theorem 17 (Casorati-Weierstrass): Suppose f(z) is analytic in {z : 0 < |z − z0| < R}
and z0 is an essential singularity. Then for all ω ∈ C and for all ε > 0 and δ > 0, there

exists a z ∈ C such that 0 < |z − z0| < δ and |f(z)− ω| < ε.

Proof. Suppose to the contrary that the theorem does not hold. Then there exists an ω ∈ C and

some real numbers ε > 0 and δ > 0 such that for all z ∈ C, we have |f(z) − ω| ≥ ε whenever

0 < |z − z0| < δ. Consider the function

g(z) =
1

f(z)− ω
.

34



Since |f(z)−ω| ≥ ε whenever z ∈ {z : 0 < |z− z0| < δ}, it follows that on this punctured disc g(z)

is bounded and also analytic. Furthermore,

lim
z→z0

(z − z0)g(z) = 0,

and hence by Riemann’s Theorem on Removable Singularities, it follows that g has a removable

singularity at z0. Hence, we may define g(z0) appropriately to make g analytic in the disc {z :

|z − z0| < δ}, and note that g 6≡ 0 in this disc. By simple algebra we have

f(z) = ω +
1

g(z)
,

and this makes sense since g 6≡ 0 on the disc {z : |z−z0| < δ}. If g(z0) 6= 0, then f is analytic at z0,

and if g(z0) = 0, then limz→z0 |f(z)| = ∞, and hence f has a pole at z0 by the previous theorem.

Either case contradicts that z0 is an essential singularity, completing the proof. �

Theorem 18: Suppose f(z) is analytic in {z : 0 < |z − z0| < R} with an isolated

singularity at z0. Then there exist unique functions f1(z) and f2(z) such that

(a) f(z) = f1(z) + f2(z) in {z : 0 < |z − z0| < R},
(b) f1 is analytic in C \ {z0},
(c) f1(z)→ 0 as |z| → ∞, and

(d) f2 is analytic in the disc D = {z : |z − z0| < R}.

Proof. Let us consider the same setup as in Theorem 15 (Riemann’s Theorem on Removable Sin-

gularities). Since B = 0 and D = f(z)2πi, it follows that

f(z) =
1

2πi

∫
C2

f(ζ)

ζ − z
dζ − 1

2πi

∫
C1

f(ζ)

ζ − z
dζ.

Let

f1(z) = − 1

2πi

∫
C1

f(ζ)

ζ − z
dζ and f2(z) =

1

2πi

∫
C2

f(ζ)

ζ − z
dζ.

Thus f(z) = f1(z) + f2(z), as required for part (a). For part (d), note that f2 represents the same

function given in Riemann’s Theorem on Removable Singularities, which we showed was analytic.

Now f1 is analytic in every annulus {z : |z − z0| > r1}, and since r1 > 0 can be made arbitrarily

small, (b) follows as a result. By part (a), since f2 and f are independent of the choice of r1, it

follows that f1 is independent of the choice of r1. Similarly, f2 is independent of the choice of r2.

Since f is continuous on the punctured disc centered at z0, and since C1 is a compact subset of the

punctured disc, it follows that f is bounded on C1. Thus

lim
|z|→∞
ζ∈C1

f(ζ)

ζ − z
= 0,

and hence

lim
|z|→∞

∫
C1

f(ζ)

ζ − z
dζ = 0,

which establishes (c).

We now argue uniqueness. Suppose g1 and g2 are two function satisfying the same conclusions

as f1 and f2. Then f1 + f2 = g1 + g2, which implies f1 − g1 = g2 − f2 in the punctured disc
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{z : 0 < |z − z0| < R}. Let

F (z) =

{
g2(z)− f2(z) if |z − z0| < R,

f1(z)− g1(z) if |z − z0| > 0.

(This is an odd way to define a function, seeing as how the domains overlap, possibly resulting in

different outputs for a given input. However, by the previous comment, that is, f1 − g1 = g2 − f2,
we see this definition works. We are just emphasizing that since f1 = g1 might not be analytic at

z0, then at that point we will simply use g2 − f2.) This makes F entire. Furthermore, we can use

the bottom “piece” along with part (c) to show lim|z|→∞ F (z) = 0. It follows that F is bounded.

By Liouville’s Theorem, it follows that F is constant on C, and so we must have F (z) = 0 for all

z ∈ C. This completes the proof. �

Theorem 19: Suppose f(z) is analytic in {z : 0 < |z−z0| < R} and let C = {z : |z−z0| = r}
for some 0 < r < R, where z0 is an isolated singularity. Let

an =
1

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ.(18)

Then the series
∑∞

n=−∞ an(z− z0)n converges to f(z) uniformly in each annulus {z : r1 <

|z − z0| < r2} where 0 < r1 < r2 < R.

Proof. First, suppose
∑∞

n=−∞ an(z − z0)n does converge to f(z) uniformly in the circe C centered

at z0 and of radius r, where 0 < r < R. We show the coefficients must be the ones given in (18).

Let n ∈ Z be chosen and fixed, and we show that an is as it is in (18). Since we are assuming the

uniform convergence of
∑∞

n=−∞ an(z − z0)n, for any ε > 0 we can choose N1, N2 ∈ N so large so

that −N1 ≤ n ≤ N2 and ∣∣∣∣∣∣f(z)−
N2∑

j=−N1

aj(z − z0)j
∣∣∣∣∣∣ < ε

for every z ∈ C. It follows from the ML-inequality that∣∣∣∣∣∣ 1

2πi

∫
C

f(z)−
N2∑

j=−N1

aj(z − z0)j
 dz

(z − z0)n+1

∣∣∣∣∣∣ ≤ ε

2π

∫
C

∣∣∣∣ 1

(z − z0)n+1

∣∣∣∣ dz(19)

=
ε

2π

∫
C

1

|z − z0|n+1
dz

≤ ε

2πrn+1
2πr

=
ε

rn

Now since
∫
C(z − z0)k dz = 2πi if k = 1 and 0 otherwise, it follows that

1

2πi

∫
C

(z − z0)k dz =

{
1 if k = −1

0 otherwise
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from whence we have

1

2πi

∫
C

 N2∑
j=−N1

aj(z − z0)j
 dz

(z − z0)n+1
=

N2∑
j=−N1

1

2πi

∫
C

(
aj(z − z0)j

dz

(z − z0)n+1

)

=
1

2πi

∫
C
an

dz

(z − z0)
= an.

This allows us to simplify (19) as follows:∣∣∣∣∣∣ 1

2πi

∫
C

f(z)−
N2∑

j=−N1

aj(z − z0)j
 dz

(z − z0)n+1

∣∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
C

f(z)

(z − z0)n+1
dz − an

∣∣∣∣ ≤ ε

rn
.

Letting ε→ 0, we have

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz,

as required.

Now we must only show that f(z) can be written as
∑∞

n=−∞ an(z−z0)n in {z : 0 < |z−z0| < R},
and that the convergence is uniform in each annulus {z : r1 < |z−z0| < r2} where 0 < r1 < r2 < R.

Suppose 0 < r1 < r < r2 < R; by Theorem 18, we can write f(z) = f1(z) + f2(z), where f1
and f2 are unique and satisfy conditions (b)-(d) of Theorem 18. Since f2 is analytic in the disc

{z : |z − z0| < R} it follows from Taylor’s Theorem that

f2(z) =
∞∑
n=0

An(z − z0)n(20)

converges in the disc {z : |z − z0| < R} and uniformly in the closed disc {z : |z − z0| ≤ r2}. Let us

consider the function f1 now, which is analytic in C \ {z0}. Let

w =
1

z − z0
so that z =

1

w
+ z0.

Note that w 6= 0 and also that 1
w 6= 0; it follows that

f1(z) = f1

(
1

w
+ z0

)
,

which is analytic in C; that is, entire. Thus, by Taylor’s Theorem we can write

f

(
1

w
+ z0

)
=

∞∑
m=1

Bmw
m,(21)

which converges in C and hence uniformly on the closed disc {w : |w| ≤ 1/r1}. The term B0 is

missing because this corresponds to when w = 0, or equivalently when z = ∞, and in view of

Theorem 18(c), this function value is 0. However, (21) is equivalent to saying

f1(z) =
∞∑
m=1

Bm(z − z0)−m(22)

converges in C \ {0}, uniformly in {z : |z − z0| ≥ r1}. Putting (20) and (22) together yields our

result. �
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Note 4.1. Dr. Vu said he may state a question (referencing Theorem 19) similarly to the following:

State and prove the theorem for exapansion into Laurent series (for functions analytic in {z : 0 <

|z − z0| < R}.)

Theorem 20: Suppose f(z) is analytic in {z : 0 < |z − z0| < R} and
∑∞

n=−∞ an(z − z0)n

is its Laurent series. Then

(a) z0 is a removable singularity if and only if an = 0 for all n < 0,

(b) z0 is a pole if and only if there exists an m ∈ N such that an = 0 for all n < −m, and

(c) z0 is an essential singularity if neither (a) nor (b) holds.

Proof. First of all, f has a removable singularity at z0 if and only if we can choose f(z0) to make f

analytic in {z : |z − z0| < R}, and f is analytic in this disc if and only if it equals it’s Taylor series

in this disc. Note that a Laurent series with no principal part is a Taylor series. This establishes

(a).

For (b), note that the “only if” conditions happen if and only if

f(z) =
∞∑

n=−m
an(z − z0)n,

which happens if and only if

f(z) =
1

(z − z0)m
(
an + an−1(z − z0) + an−2(z − z0)2 + · · ·

)
=

g(z)

(z − z0)m
,

where g is analytic in some neighborhood of z0 and g(z0) = a−m 6= 0, which happens if and only if

f has a pole of order m at z0. This establishes (b). By the definition of essential singularity, (i.e.

z0 is an essential singularity if and only if it is neither removable nor a pole), it follows that z0 is

an essential singularity. �

Theorem 21: If f(z) is analytic in a simply connected domain D and C is a simple

closed polygon contour in D, then
∫
C f(z) dz = 0.

Proof. Every closed polygonal contour can be triangulated. Suppose C = C1 ∪ C2 ∪ · · · ∪ Ck for

triangular regions Ci (technically we are adding many sides on the interior of C, but these sides

will all cancel out during the integration). It follows that∫
C
f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz + · · ·+
∫
Ck

f(z) dz = 0,

where the last equality follows from k applications of the triangular version of the Cauchy Integral

Theorem. �

Theorem 22: If f(z) is analytic in a simply connected domain D, then there is an

analytic function F (z) such that F ′(z) = f(z).
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Proof. Let z0 ∈ D be fixed. Let z be any other point in D and let C1 and C2 be two different

polygonal contours lying entirely in D. We wish to show that∫
C1

f(z) dz =

∫
C2

f(z) dz,(23)

which will establish that the integral is independent of the choice of polygonal contour. Let C =

C1 ∪ −C2. Showing
∫
C f(z) dz = 0 will establish (23). Now if C self-intersects, then it really just

divides into smaller polygonal contours, still oriented correctly. Suppose C self-intersects k times.

Then we can write C = B1∪· · ·∪Bk where each Bi is a closed simple polygonal contour. It follows

that
∫
C f(z) dz = 0 by k applications of Theorem 21. Hence, the integral is independent of choice

of polygonal curve.

Knowing this, define

F (z) =

∫ z

z0

f(ζ) dζ.

where the integral is taken over any polygonal curve from z0 to z. Now we can choose h ∈ C such

that |h| is small enough that [z, z + h] is entirely in D. It follows that

F (z + h)− F (z) =

∫ z+h

z0

f(ζ) dζ −
∫ z

z0

f(ζ) dζ =

∫ z+h

z0

f(ζ) dζ +

∫ z0

z
f(ζ) dζ =

∫
[z,z+h]

f(ζ) dζ.

If h 6= 0 then we have

F (z + h)− F (z)

h
− f(z) =

1

h

∫
[z,z+h]

f(ζ) dζ − f(z)

=
1

h

∫
[z,z+h]

f(ζ) dζ − 1

h
f(z)

∫
[z,z+h]

dζ

=
1

h

∫
[z,z+h]

f(ζ) dζ − 1

h

∫
[z,z+h]

f(z) dζ

=
1

h

∫
[z,z+h]

(f(ζ)− f(z)) dζ.

Now since f is differentiable at z, it follows that f is continuous at z and hence, given ε > 0, there

exists a δ > 0 such that |f(ζ)−f(z)| < ε whenever |ζ−z| < δ. Thus if |h| < δ, then |f(ζ)−f(z)| < ε

holds for all ζ ∈ [z, z + h]. We now have by Theorem 3 that∣∣∣∣∣
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣ ≤ ε|h|.
Hence we have ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣∣1h
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣
=

1

|h|

∣∣∣∣∣
∫
[z,z+h]

(f(ζ)− f(z)) dζ

∣∣∣∣∣
≤ 1

|h|
ε|h|

= ε
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We have successfully shown that

lim
h→0

F (z + h)− F (z)

h
= f(z),

which establishes our result. �

Theorem 23: (Cauchy Integral Theorem): If f(z) is analytic in a simply connected

domain D and C is a simple closed contour in D, then
∫
C f(z) dz = 0.

Proof. By Theorem 22, it follows that there is a function, analytic in D, such that F ′ = f . By the

Fundamental Theorem of Calculus for Complex Valued Functions (Theorem 2 above), it follows

that ∫
C
f(z) dz = F (z2)− F (z1),

where z1 and z2 are the initial point and terminal points of C, respectively. But since C is closed,

z1 = z2 and hence
∫
C f(z) dz = 0, as desired. �

Theorem 24 (Cauchy Integral Formula): If f(z) is analytic in a simply connected

domain D and C is a closed contour in D where z /∈ C, then

1

2πi

∫
C

f(ζ)

ζ − z
dζ = n(C, z)f(z),

where n(C, z) is the number of times C winds around z.

Proof. Consider the function

g(ζ) =
f(ζ)− f(z)

ζ − z
,

which is analytic in D apart from a singularity at z. Now this singularity is removable because

lim
ζ→z

(ζ − z)g(ζ) = lim
ζ→z

[f(ζ)− f(z)] = 0

and so Theorem 15 applies. Now this singularity is removed by defining g(z) = limζ→z
f(ζ)−f(z)

ζ−z =

f ′(z). Hence the function

g(ζ) =

{
f(ζ)−f(z)

ζ−z if ζ 6= z

f ′(z) if ζ = z

is an analytic function in D. It now follows from Theorem 23 that
∫
C g(ζ) dζ = 0. Since we are

assuming that z /∈ C, this gives us∫
C

f(ζ)− f(z)

ζ − z
dζ = 0 and so

∫
C

f(ζ)

ζ − z
dζ = f(z)

∫
C

dζ

ζ − z
.

We now consider that
1

2πi

∫
C

dζ

ζ − z
= n(C, z)

represents the number of times that C winds around z, acknowledging the possibility that this

number could be 0 if z lies outside C. (Think of this as the variation of the argument of ζ − z as

ζ follows C. We have done similar things before; e.g. if C is a circle centered at the origin and we

are asked to find
∫
C

1
z dz, we use polar coordinates and note that z = reiθ for 0 ≤ θ ≤ 2pik for
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some integer k that represents the number of times C winds around the origin. Then
∫
C

1
z dz =

i
∫
C dz = 2πik. Returning, since C is closed, this must be an integer multiple of 2πi, and so when

we divide by 2πi out front, this gives the number of times C winds around z.) It follows that∫
C

f(ζ)

ζ − z
dζ = 2πif(z)n(C, z),

which finishes the proof. �

Theorem 25: If f(z) is analytic in a simlpy connected domain D except an isolated

singularity at z0 and f1(z) is the principal part of f(z) at z0, and C is a simple closed

contour in D with z0 /∈ C, then

1

2πi

∫
C
f1(z) dz =

{
a−1 if z0 is inside C

0 if z0 is outside C
.(24)

Proof. First consider when z0 is outside C. Since C is a simple closed contour, we can form a

simple polygonal contour ` with initial point z0 and terminal point ∞ such that C ∩ ` = ∅. Then

take D0 = D \ `, which is a simply connected domain containing C, and furthermore, f is assumed

to be analytic in D0, and since f2 is analytic in D0, it follows that f1 = f − f2 is analytic in D0.

By Cauchy’s Integral Theorem, ∫
C
f1(z) dz = 0,

as desired for the second part of (24).

Now suppose z0 is inside C. We perform a similar trick as in the proof of the Cauchy Integral

Formula (Theorem 6). Since z0 is in the interior of C, there exists a r > 0 such that B(z0, r) is in

the interior of C. Let γ = {z : |z − z0| = r} be oriented positively. Furthermore, as in Theorem

6, let C− and C+ denote the two pieces of C after performing “surgery.” (A picture is worth a

thousand words here.) As in Theorem 6, we have∫
C−

f(z) dz −
∫
γ
f(z) dz =

∫
C1

f(z) dz +

∫
C1

f(z) dz.(25)

Now since z0 is not in the interior of either C− or C+ and since f is analytic in D except at z0, it

follows that the right hand side of (25) is equal to 0. Thus,∫
C
f(z) dz =

∫
γ
f(z) dz,(26)

similarly to the proof of Theorem 6. Recall from Theorem 19 that

a−1 =
1

2πi

∫
γ
f(z) dz,

and so by (26) we have

a−1 =
1

2πi

∫
C
f(z) dz =

1

2πi

∫
C
f1(z) dz +

1

2πi

∫
C
f2(z) dz.
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Since f2 is analytic in D, the right integral is equal to 0 by the Cauchy Integral Theorem and so

we have
1

2πi

∫
C
f1(z) dz = a−1,

as desired to finish the proof. �

Theorem 26: If f(z) is analytic in a simply connected domain D except at isolated

singularities zi where 1 ≤ i ≤ k, and if C is a simple closed contour in D which does

not contain the singularites, then

1

2πi

∫
C
f(z) dz =

k∑
j=1

zj inside C

res(f, zj).

Proof. For each j ∈ {1, . . . , k}, let fj(z) denote the principal part of f(z) at zj . By Theorem 18

above, it follows that fj is analytic in C \ {zj}. Now consider the function

g(z) = f(z)−
k∑
j=1

fj(z).

Then we claim g is analytic in D. Clearly g is analytic everywhere in D except for the possibility

of zi for some i ∈ {1, . . . , k}. But note that

g(zi) = f(zi)− fi(zi)−
k∑
j=1
j 6=i

fj(zi) = f
(2)
i (zi)−

k∑
j=1
j 6=i

fj(zi),

where f
(2)
i is the non-principal (and analytic) part of f at zi. This shows g is analytic in D. Thus,∫

C
g(z) dz = 0 and so

∫
C
f(z) dz =

∫
C

k∑
j=1

fj(z) dz = 2πi
k∑
j=1

1

2πi

∫
C
fj(z) dz.

Using Theorem 25, we have

1

2πi

∫
C
f(z) dz =

k∑
j=1

zj inside C

res(f, zj),

as desired to finish the proof. �

Theorem 27: If f(z) has a pole of order m at z0, then

res(f(z), z0) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)] .

Proof. Since f has a pole of order m at z0, we can write

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1
+ · · ·+ a−1

z − z0
+ g(z),

42



where g(z) is analytic at z0. Hence,

(z − z0)mf(z) = a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 + (z − z0)mg(z).

Differentiating with respect to z a total of m− 1 times gives us

dm−1

dzm−1
[(z − z0)mf(z)] = a−1(m− 1)! +

dm−1

dzm−1
[(z − z0)mg(z)]︸ ︷︷ ︸
→0 as z → z0

.

Hence we have

a−1 =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)mf(z)] ,

as desired to finish the proof. �

Theorem 28: The following hold.

(1) If f(z) is analytic in a neighborhood of z0 and z0 is a zero of order m, then

f ′(z)/f(z) is analytic in a punctured neighborhood of z0, has a simple pole at z0
and res(f ′/f, z0) = m.

(2) If f(z) is analytic in a punctured neighborhood of z0 and z0 is a pole of order m,

then f ′(z)/f(z) is analytic in a punctured neighborhood of z0, has a simple pole

at z0, and res(f ′/f, z0) = −m.

Proof. (1) Since f is analytic in a neighborhood of z0 and since z0 is a zero of order m, it follows

that f(z) = (z − z0)mg(z), where g is analytic in a neighborhood of z0 and g(z0) 6= 0. Thus we

have
f ′(z)

f(z)
=
m(z − z0)m−1g(z) + (z − z0)mg′(z)

(z − z0)mg(z)
=

m

z − z0
+
g′(z)

g(z)
.

Now since g(z0) 6= 0, it follows that g′/g is analytic in a neighborhood of z0. Thus z0 is a simple

pole of f ′/f and the residue is m, as desired. �

(2) Since f has a pole of order m at z0, we can write

f(z) =
g(z)

(z − z0)m

where g is analytic in some neighborhood of z0 and g(z0) 6= 0. Hence we have

f ′(z)

f(z)
=

(z − z0)m

g(z)
· (z − z0)mg′(z)−m(z − z0)m−1g(z)

(z − z0)2m
=
g′(z)

g(z)
+
−m
z − z0

.

Similarly to part (1), the function g′/g is analytic in a neighborhood of z0 since g(z0) 6= 0. Thus

f ′/f is analytic in a punctured neighborhood of z0 and has a simple pole at z0 with residue −m. �

Theorem 29 (The Principle of Argument): If f(z) is meromorphic in a simply con-

nected domain D, C is a (positively oriented) Jordan contour in D which does not

contain zeros of poles of f(z), then

1

2πi

∫
C

f ′(z)

f(z)
dz = N − P,
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where N(P ) is the number of zeros (poles) of f(z) inside C, counted with multiplicities

(orders).

Proof. By Theorem 28, the poles of f ′/f are precisely that zeros and poles of f , and these are the

only singularities of f ′/f . Thus, by Theorem 26, we have∫
C

f ′(z)

f(z)
dz =

k∑
j=1

zj inside C

res

(
f ′

f
, zj

)
=

∑
α zero of f
α inside C

res

(
f ′

f
, α

)
+

∑
β pole of f
β inside C

res

(
f ′

f
, β

)
= N − P,

where the last equality follows because zeros of f of multiplicity m yield residues of f ′/f of m and

poles of order m of f yield residues of f ′/f of −m by Theorem 28. �

Theorem 30 (Rouché): If f(z) and g(z) are analytic in a simply connected domain

D, C is a Jordan contour in D and |g(z)| < |f(z)| for all z ∈ C, then f and f + g have the

same number of zeros inside C.

Proof. Consider the function

F (z) =
f(z) + g(z)

f(z)
.

Since |f(z)| > |g(z)|, it follows that f and f + g have no zeros on C. Also, note that for every

z ∈ C, we have

|F (z)− 1| =
∣∣∣∣ g(z)

f(z)

∣∣∣∣ < 1,(27)

also using the condition that |g(z)| < |f(z)| on C. Using the substitution w = F (z), we have

1

2πi

∫
C

F ′(z)

F (z)
dz =

1

2πi

∫
F (C)

dw

w
= n(F (C), 0),(28)

the number of windings of F (C) around 0. Now by (27), it follows that F (C) ⊂ {w : |w − 1| <
1} = D1. Now 0 /∈ D1, and so n(F (C), 0) = 0. Hence, by the Principle of Argument and combining

n(F (C), 0) and (28), we have

N − P =
1

2πi

∫
C

F ′(z)

F (z)
dz = 0,

where N and P are as in the Principle of Argument applied to the function F . Hence N = P , and

so Chen states that it follows that F has the same number of zeros and poles inside C. (But N

and P are counted with multiplicities, so wouldn’t this only hold if we knew the multiplicities were

the same also?) The poles of F are precisely the zeros of f , and the zeros of F are precisely the

zeros of f + g. �

The remaining items are not theorems, but are rather methods to evaluate integrals using the

method of residue.

Evaluate
∫ 2π
0 f(cos θ, sin θ) dθ, where f(x, y) is a rational function with real coefficients.
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Method. Use the substitution

z = eiθ = cos θ + i sin θ and dz = ieiθ dθ.

Then
1

z
= e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ and dθ = −idz

z
.

Putting these two lines together gives us

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
.

Thus using this substitution, we have∫ 2π

0
f(cos θ, sin θ) dθ = −i

∫
C
f

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
dz

z
,

where C is the unit circle {z : |z| = 1} oriented positively. �

Show that
∫∞
−∞ f(x) dx = 2πi

∑
Imα>0 res(f, α), where f(x) = p(x)/q(x) is a rational func-

tion (with real coefficients), deg(p) + 2 ≤ deg(q), and q(x) 6= 0 on R.

Method. Consider the integral ∫ R

−R
f(x) dx where R > 0.

We extend the function to the complex plane and also consider the integral∫
CR

f(z) dz,

where CR is best shown by a picture (the upper half-circle centered at the origin of radius R). Now

consider the Jordan contour C = [−R,R] ∪ CR. By the residue theorem, we have∫
C
f(z) dz =

∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi
∑

zi inside C

res(f, zi)

where the sum is taken over all poles inside C. It is easily shown that∫
CR

f(z) dz → 0

as R → 0 since the degree of the denominator exceeds the degree of the numerator by at least 2.

Hence, letting R→∞, we have∫ ∞
−∞

f(x) dx = 2πi
∑

Im(zi)>0

res(f, zi),

where this sum is taken over all poles of f in the upper-half plane. �

Show
∫∞
−∞ f(x)eix dx = 2πi

∑
Imα>0 res(f(z)eiz, α), where f(x) = p(x)/q(x) is a rational

function (with real coefficients), and where deg(p) + 2 ≤ deg(q), where q(x) 6= 0 on R.
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Method. Note that we can write∫ ∞
−∞

f(x)eix dx =

∫ ∞
−∞

f(x) cosx dx+ i

∫ ∞
−∞

f(x) sinx dx.

Now consider the integral extended to the complex plane∫
C
f(z)eiz dz =

∫ R

−R
f(x)eix dx+

∫
CR

f(z)eiz dz,

where C = [−R,R] ∪ CR is broken up in the usual way. By the residue theorem, we have∫ R

−R
f(x)eix dx+

∫
CR

f(z)eiz dz = 2πi
∑

zi inside C

res(f(z)eiz, zi),(29)

where the sum is taken over all the poles of f(z)eiz inside C.

Lemma 4.2 (Jordan’s Lemma). Suppose that R > 0 and CR is the semi-circular arc given by

z = Reit for t ∈ [0, π]. Then ∫
CR

|eiz||dz| < π.

Using Jordan’s Lemma, it follows that∣∣∣∣∫
CR

f(z)eiz dz

∣∣∣∣ ≤ ∫
CR

∣∣f(z)eiz dz
∣∣→ 0

as R→∞ since the degree of the denominator exceeds the degree of the numerator by at least 2.

Hence, letting R→∞, we have from (29)∫ ∞
−∞

f(x)eix dx = 2πi
∑

Imα>0

res(f(z)eiz, α).

�
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