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Problem 1.1. Show that the momentum operator is hermitian

Problem 1.2. Let L̂1,L̂2,L̂3 and M̂be linear operators. Using the definition of the commutator, prove the
following identities

(i) [L̂1L̂2, M̂ ] = [L̂1, M̂ ] L̂2 + L̂1 [L̂2, M̂ ]

(ii) [L̂1, [L̂2, L̂3]] + [L̂3, [L̂2, L̂1]] + [L̂2, [L̂1, L̂3]] = 0
(The Jacobi identity)

Problem 1.3. Find the momentum operator p̂ eigenfunctions in the x-space representation.

Problem 1.4. Given the following (normalised) wavefunctions

ψ1s(%) = A1se
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ψ2s(%) = A2s

(
1− %

2

)
e−%/2 (2)

where % = r/a a dimensionless ‘ distance’ defined over [0,∞[ with the integration measure dµ = %2d%.

(i) Show that ψ1s and ψ2s are orthogonal

(ii) Find the normalisation coefficient for ψ2s.

Hint; You may find the following integral formula useful∫ ∞
0

xν−1e−µxdx =
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You may set a = 1 in order to simplify the calculations

Problem 1.5. Let f̂ be an operator function of x̂. Show that the following commutation relation with the
momentum operator p̂ holds

[p̂, f̂ ] = −i~df̂
dx̂

Hint; You may need to use Taylor expansion of a function

Problem 1.6. (Challenging problem)

What is the p-space representation of the operator 1̂
r ? Hint; use the Fourier transform of the function 1/r
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1

2π2

∫
ei
~k·~r

k2
d3k

1


