Problem Set (1)

Dr Salwa Alsaleh
PHYS 453: Quantum mechanics

September 26, 2018

Problem 1.1. Show that the momentum operator is hermitian
Problem 1.2. Let $\hat{L}_{1}, \hat{L}_{2}, \hat{L}_{3}$ and \hat{M} be linear operators. Using the definition of the commutator, prove the following identities
(i) $\left[\hat{L}_{1} \hat{L}_{2}, \hat{M}\right]=\left[\hat{L}_{1}, \hat{M}\right] \hat{L}_{2}+\hat{L}_{1}\left[\hat{L}_{2}, \hat{M}\right]$
(ii) $\left[\hat{L}_{1},\left[\hat{L}_{2}, \hat{L}_{3}\right]\right]+\left[\hat{L}_{3},\left[\hat{L}_{2}, \hat{L}_{1}\right]\right]+\left[\hat{L}_{2},\left[\hat{L}_{1}, \hat{L}_{3}\right]\right]=0$ (The Jacobi identity)

Problem 1.3. Find the momentum operator \hat{p} eigenfunctions in the x-space representation.
Problem 1.4. Given the following (normalised) wavefunctions

$$
\begin{align*}
& \psi_{1 s}(\varrho)=A_{1 s} e^{-\varrho} \tag{1}\\
& \psi_{2 s}(\varrho)=A_{2 s}\left(1-\frac{\varrho}{2}\right) e^{-\varrho / 2} \tag{2}
\end{align*}
$$

where $\varrho=r / a$ a dimensionless ' distance' defined over $\left[0, \infty\left[\right.\right.$ with the integration measure $d \mu=\varrho^{2} d \varrho$.
(i) Show that $\psi_{1 s}$ and $\psi_{2 s}$ are orthogonal
(ii) Find the normalisation coefficient for $\psi_{2 s}$.

Hint; You may find the following integral formula useful

$$
\int_{0}^{\infty} x^{\nu-1} e^{-\mu x} d x=\left(\frac{1}{\mu}\right)^{\nu} \Gamma(\nu)
$$

You may set $a=1$ in order to simplify the calculations
Problem 1.5. Let \hat{f} be an operator function of \hat{x}. Show that the following commutation relation with the momentum operator \hat{p} holds

$$
[\hat{p}, \hat{f}]=-i \hbar \frac{d \hat{f}}{d \hat{x}}
$$

Hint; You may need to use Taylor expansion of a function
Problem 1.6. (Challenging problem)
What is the p-space representation of the operator $\frac{\hat{1}}{r}$? Hint; use the Fourier transform of the function $1 / r$

$$
\mathcal{F}(1 / r)=\frac{1}{2 \pi^{2}} \int \frac{e^{i \vec{k} \cdot \vec{r}}}{k^{2}} d^{3} k
$$

