1 American options

Most traded stock options and futures options are of American-type while most index options are of European-type.

The central issue is when to exercise? From the holder point of view, the goal is to maximize holder's profit (Note that here the writer has no choice!)

1.1 Non arbitrage conditions for no dividend paying stock

1.1.1 The Call Option:

1. $C_0^a \ge (S_0 - K)^+$

Proof:

- i) $C_0^a \ge 0$ (optionality);
- ii) If $C_0^a < S_0 K$ (assuming $S_0 > K$): buy the option at C_0^a then, exercise immediately. This leads to profit: $S_0 K$ and the net profit: $S_0 K C_0^a > 0$ which gives rise to an arbitrage opportunity. Hence, the no-arbitrage argument yields $C_0^a \ge (S_0 K)$
 - 2. $S_0 \ge C_0^a$.

If this is not the case $S_0 < C_0^a$, buy S_0 and sell C_0^a yielding a net profit > 0 at t = 0. Because the possession of the stock can always allow the deliverance of the stock to cover the exercise if exercised, then we are guaranteed to have a positive future profit. Hence, an arbitrage opportunity.

3. $C_0^a \ge C_0^e$ with the same maturity T and strike K.

Compared with the European non-arbitrage condition we have $C_0^e \ge (S_0 - KB(0,T))^+$, where B(t,T) is the value at time t of zero coupon bond such that B(T,T) = 1, therefore

$$C_0^a \ge (S_0 - KB(0,T))^+$$

4. If the stock has no dividend payment, and the risk–free interest rate is positive, i.e., B(0,T) < 1, $\forall T > 0$, then one should never prematurely exercise the American call, i.e., $C_0^a = C_0^e$

Indeed

- (1) $C_0^a \ge C_0^e \ge (S_0 KB(0,T))^+$ i.e., the call is "alive"
- (2) If exercised now hence the profit $S_0 K$ i.e., the call is "dead"

Remark that

$$\underbrace{S_0 - KB(0,T)}_{alive} > \underbrace{S_0 - K}_{dead}$$

therefore, it is worth more "alive" than "dead"

(a) Question: Should one exercise the call if $S_0 > K$ and if he believes the stock will go down below K?

No! If exercise, $(profit)_1 = S_0 - K$

If sell the option, $(profit)_2 = C_0^a$

Since $C_0^a \ge (S_0 - K)^+$ one should sell the option rather than exercise it

- (b) With dividend, early exercise may be optimal
- (c) Intuition: consider paying K to get a stock now versus paying K to get a stock later, one gets the interest on K, therefore, the difference is $Ke^{rT} K$ if wait
- 5. For two American call options, $C_t^a(K, T_1)$ and $C_t^a(K, T_2)$, with the same strike K on the same stock but with different maturities T_1 and T_2 , then we have $C_0^a(K, T_2) \leq C_0^a(K, T_1)$ if $T_1 \leq T_2$.

1.1.2 The Put Option:

1. $P_0^a \ge (K - S_0)^+$

For the European put we have $P_0^e \ge (KB(0,T) - S_0)^+$

Indeed, if $P_0^a < K - S_0$, buy a put at the price P_0 and exercise it immediately, yielding, then, the total cash flow:

$$\underbrace{-P_0^a}_{\text{buy a put}} + \underbrace{S_0 - K}_{\text{exercise}} > 0.$$

giving rise to an arbitrage opportunity.

2.
$$P_0^a \le K$$

3. $P_0^a \ge P_0^e$

Remark that for a put, the profit is bounded by K. This fact limits the benefit from waiting to

exercise and its financial consequence is that one may exercise early if S_0 is very small.

4. Put–call parity for American options:

$$S_0 - K \le C_0^a - P_0^a \le S_0 - Ke^{-rT}$$

Put-call parity for American options on an non-dividend-paying stock:

(a)
$$P_0^a + S_0 - KB(0,T) \ge C_0^a$$
;
(b) $C_0^a \ge P_0^a + S_0 - K$

(b)
$$C_0^a \ge P_0^a + S_0 - K$$

That is

$$S_0 - K \le C_0^a - P_0^a \le S_0 - KB(0, T)$$

Proof:

(1) $P_0^a \ge P_0^e = C_0^e - S_0 + KB(0,T)$ then $C_0^e = C_0^a$ implies that

$$P_0^a \ge C_0^a - S_0 + KB(0,T)$$

(2) Consider portfolio: long one call, short one put, short the stock hold K dollars in cash that is:

$$C_0^a$$
 $-P_0^a$ $K-S_0>0$
Never exercised early Can be exercised early Exercise

If the put is exercised early at t^o , our position is

$$C_{t^o}^a - [K - S_{t^o}] - S_{t^o} + KB(0, t^o)^{-1} = C_{t^o}^a + K(B(0, t^o)^{-1} - 1) \ge 0$$

implies liquidated with net positive profit (note that the above inequality holds ">" strictly if $S_{t^o} > 0$ and $t^o = 0$)

If not exercised earlier, at maturity t = T, we have

(i) If $S_T \leq K$,

The profit =
$$0 - [K - S_T] - S_T + KB(0, T)^{-1} = K(B(0, T)^{-1} - 1) > 0$$

(ii) If $S_T > K$,

The profit
$$= (S_T - K) - 0 - S_T + KB(0, T)^{-1} = K(B(0, T)^{-1} - 1) > 0$$

therefore, the payoff of the portfolio is positive or zero, implies the present value of the portfolio ≥ 0 , i.e.,

$$C_0^a - P_0^a - S_0 + K \ge 0$$

Combining (1) and (2) implies

$$S_0 - K \le C_0^a - P_0^a \le S_0 - KB(0, T).$$

Which end the proof.

Notice that: If the stock is dividend-paying, for European options, we have

$$C_0^e - P_0^e = P.V.[S_T] - KB(0,T)$$

where $P.V.[S_T]$ is the present value of the stock whose price at T is S_T , e.g. If there is a dividend D_{t_1} at t_1 , then

$$P.V.[S_T] = S_0 - D_{t_1}B(0, t_1)$$

for American options, we have

$$C_0^a - P_0^a \le S_0 - KB(0, T)$$

which is unchanged by dividend, however, in general

$$P.V.[S_T] - K \le C_0^a - P_0^a \le S_0 - KB(0, T).$$

1.2 American Calls

1.2.1 Time Value

Consider American calls on no-dividend-paying stocks:

Consider the following strategy: Exercise it at maturity no matter what (obviously, suboptimal if $K > S_T$), the present value of the American call under this strategy is:

$$P.V.[S_T - K] = S_0 - KB(0, T)$$

which is equivalent to a forward.

The time value of an American call on a stock without dividends is

$$T.V.(0) = C_0^a - [S_0 - KB(0,T)]$$

Note that $T.V.(0) \ge 0$ this is because

$$C_0^a \ge C_0^e \ge (S_0 - KB(0,T))^+$$
 hence $T.V.(0) \ge 0$

If $S_0 \ll K$, then T.V. is high

If $S_0 \gg K$, then there is a high probability of expiring in–the–money, therefore, $C_0^a \gtrsim S_0 - KB(0,T)$ that is $T.V. \approx 0$.

1.2.2 Dividends

Result: Given interest rate r > 0, it is never optimal to exercise an American call between ex-dividends dates or prior to maturity.

Proof:

Strategy 1: Exercise immediately, (the value)₁ = $S_0 - K$

Strategy 2: Wait till just before the ex-dividend date, and exercise for sure (even if out-of-money) (the value)₂ = $S_t^c - K$ where S_t^c is the cum stock price just before going ex-dividend. Therefore, the present value is $S_0 - KB(0,t)$. Since B(0,t) < 1, the value of Strategy 2 is greather than the value of Strategy 1 therefore, it is best to wait.

Next question: to exercise at anytime after the ex-dividend date and prior to maturity?

The same argument leads to the same conclusion: best to wait.

Question: To exercise or not to exercise?

If exercised just prior to the ex-dividend date,

the value =
$$S_t - K = S_t^c + D_t - K$$

If not exercised, the value = C_t (based on the ex-dividend stock price)

$$C_t = S_t^c - KB(t, T) + T.V.(t)$$

where T.V.(t) is the time value at time t.

Since it should be exercised if and only if the exercised value > the value not exercised, that is

$$S_t^c + D_t - K > S_t^c - KB(t, T) + T.V.(t)$$

implies that

$$D_t > K(1 - B(t, T)) + T.V.(t) > 0 (1.1)$$

therefore, exercise is optimal at time t if and only if the dividend is greater than the interest lost on the strike price K(1 - B(t, T)) plus the time-value of the call evaluated using the ex-dividend stock price.

Notice that:

- 1. If $D_t = 0$ (i.e., no dividend), the equation (1.1) does not hold. Hence, never exercise early.
- 2. Exercise is optimal if and only if the dividend is large enough (> interest loss +T.V.), therefore, if the dividend is small, time–to–maturity is large, it is unlikely to exercise early.

1.3 American Puts

1.3.1 Time Value (if no dividend)

T.V.(0)		P_0^a	_	$\underbrace{KB(0,T) - S_0}_{} \ge 0$				
				the present value of exercising				
				the American put for sure at maturity				
$P_0^a \ge P_0^e \ge (KB(0,T) - S_0)^+.$								

If $S_0 \gg K$, then T.V. is large, best to wait

If $S_0 \ll K$, then T.V. is small

1.3.2 Dividend:

Suppose D_t is the dividend per share at time t. The present value of exercising the American put for sure at maturity is

$$P.V.[K - S_T] = KB(0,T) - [S_0 - D_tB(0,t)]$$

Note that the dividend leads to a stock price drop, hence, added value for the put. The time-value of the put is

$$T.V.(0) = P_0^a - [KB(0,T) - (S_0 - D_tB(0,t))]$$

To exercise or not to exercise?

- 1. if exercise: the value is $K S_0$
- 2. if not exercise,

$$P_0^a = KB(0,T) - [S_0 - D_tB(0,t)] + T.V.(0)$$

It is optimal to exercise if and only if $K - S_0 > P_0^a$ i.e.

$$K - S_0 > KB(0,T) - [S_0 - D_tB(0,t)] + T.V.(0)$$

or

$\underbrace{K(1-B(0,T))}_{}$		$\underbrace{D_t B(0,t)}$	+	T.V.(0)	(1.2)
Interest earned due to early exercise		Dividend lost due to exercise			

Results:

1. It may be optimal to exercise prematurely even if the stock pays no dividends.

Proof: If $D_t = 0$, the equation (1.2) becomes K(1 - B(0,T)) > T.V.(0), if T.V.(0) is small, then, early exercise.

2. Dividends tend to delay early exercise.

Proof: As D_t increases, $K(1 - B(0,T)) > D_t B(0,t) + T.V.(0)$ may not hold. Hence, to wait.

3. It never pays to exercise just prior to an ex-dividend date.

Proof: Consider the following two strategies:

a. Strategy 1: Exercise just before the ex-dividend date,

$$(value)_1 = K - [S_t^c + D_t]$$

b. Strategy 2: Exercise just after the ex-dividend date

$$(value)_2 = K - S_t^c$$

Since $(value)_2 > (value)_1$, one should exercise after the ex-dividend date.

1.4 Valuation Using a Binomial Tree

Consider an American option with payoff $f(S_T)$. in the framework of a binomial model with growth parameters u and d chosen as follows $u = e^{(r - \frac{\sigma^2}{2})h + \sigma\sqrt{h}}$ and $d = e^{(r - \frac{\sigma^2}{2})h - \sigma\sqrt{h}}$. (This choice will be explained later)

At the S_0u -node,

The option is worth
$$\begin{cases} \text{ exercised at } t = h & f(S_0 u) & \text{dead} \\ \text{not exercised at } t = h & e^{-rh}(qf(S_0 u^2) + (1 - q)f(S_0 ud)), & \text{alive} \end{cases}$$

Compare these two values, choose the larger one, that is the value is

$$V_1^u = \max \left(f(S_0 u); e^{-rh} (qf(S_0 u^2) + (1 - q)f(S_0 ud)) \right)$$

Similarly, at the S_0d -node,

$$V_1^d = \max \left(f(S_0 d); e^{-rh} \left(q f(S_0 du) + (1 - q) f(S_0 d^2) \right) \right)$$

At t = 0,

The option is worth
$$\begin{cases} \text{ exercised at } t = 0 & f(S_0) & \text{dead} \\ \text{not exercised at } t = 0 & e^{-rh} \left(qV_1^u + (1-q)V_1^d \right), & \text{alive} \end{cases}$$

that is

$$V_0 = \max (f(S_0); e^{-rh} (qV_1^u + (1-q)V_1^d))$$

Note that, for an American call,

1. If no dividend,

$$C_0^a = C_0^e$$

2. If there are dividends,

3. Computational complexity:

The adaptive mesh methods: a high resolution (small $\Delta t = h$) tree is grafted onto a low resolution (large Δt) tree. This yields numerical efficiency over regular binomial or trinomial trees. In particular, for American options, there is a need for high resolution close to strike price and to maturity.