
Chapter 2

Bose-Einstein condensation

Bose-Einstein condensation (BEC) has proved an astonishingly rich research

topic, with many exciting developments including atom lasers [13, 87], vor-

tices [88, 89] and vortex lattices [90], condensate collapse [14], and the ob-

servation of degeneracy in a Fermi gas [3]. Quantum degenerate mixtures of

two or more atomic species exhibit a still wider range of phenomena, some of

which have already been mentioned in the introduction to this thesis. How-

ever, the experimental potential of such systems is still largely unexplored.

This chapter is intended to give an overview of the physics of Bose-Einstein

condensation and low-temperature scattering theory, with an emphasis on

how these may be applied to the study of mixtures of two different bosonic

species.

2.1 What is a BEC?

Let us consider a system of N identical bosons with a temperature T and

chemical potential μ. For the moment, we will ignore interactions between

the bosons. The Bose-Einstein energy distribution function is:

f(ε) =
1

e(ε−μ)/kBT − 1
. (2.1)

At high temperatures, both this expression and its fermionic counterpart

(identical except for a sign change in the denominator) reduce to the Boltz-

mann distribution. For bosons, as T approaches zero, the occupation of

the lowest energy level of the system (ε = 0) can become macroscopically
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large. When this happens, the sample undergoes a phase transition: a Bose-

Einstein condensate forms. Because the particles in the BEC are all in a

single quantum state (i.e. the ground state), they can be described by a sin-

gle wavefunction. The constituent particles in a BEC can thus be likened to

a ‘superatom,’ a system in which thousands or even millions of atoms behave

like a single particle.

The phase transition can be understood in terms of the particles’ thermal

de Broglie wavelength, λdB:

λdB =

√
2π�2

mkBT
, (2.2)

where m is the mass of a particle. At high temperatures, the Heisenberg un-

certainty principle dictates that the particles are well localised. As the tem-

perature is reduced, the position uncertainty increases and the wave nature

of the particles becomes more apparent. At sufficiently low temperatures, the

de Broglie wavelength is long enough that the individual atomic wavefunc-

tions overlap, and a condensate forms (Figure 2.1). The volume occupied

by the atomic wave packets is multiplied by the peak number density of the

sample to give the phase-space density, PSD = npkλ
3
dB. The transition to

Bose-Einstein condensation occurs at a phase-space density of approximately

1.

To calculate the critical temperature Tc for the onset of BEC, we start by

noting that it must occur when all N particles in the system can be ‘just

barely’ accommodated in excited states, such that a further reduction in the

temperature (kinetic energy) of the system leads to multiple occupation of

the ground state. Under these conditions, the chemical potential is zero: any

additional particles added to the system must go into the ground state, and

the energy of the system does not change as a result of the addition1. The

total number of particles in the excited states Nex can thus be written as

Nex(Tc, μ = 0) = N =

∫ ∞

0

g(ε)
1

eε/kBTc − 1
dε, (2.3)

where g(ε) is the density of states. The form of g(ε) depends on the potential

(if any) in which the particles are confined. For our purposes, the most useful

1We have assumed that N is large enough that we can neglect the zero-point energy.
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T

Figure 2.1: De Broglie wavelength and the transition to BEC. At tempera-

tures � Tc (top), the separation d between particles is much greater than

their size, and atoms can be treated as point particles. As the sample is

cooled (middle), the wave nature of the particles becomes more apparent.

At T � Tc, the individual atomic wavefunctions overlap, and a condensate

forms (bottom). Figure adapted from [91].

potential to consider is that of a three-dimensional harmonic oscillator with

cylindrical symmetry,

V (r) =
1

2
mω2

rρ
2, (2.4)

which is approximately the potential generated by our magnetic trap. Here

ρ2 = x2 + y2 + λ2z2 and λ = ωz/ωr is the ratio between the axial and radial

trap frequencies. The solution to Eq. 2.3 for this potential is [92]:

kBTc =
�ωN1/3

ζ(3)1/3
� 0.94�ωN1/3, (2.5)

where ζ(3) is the Riemann zeta function and ω = (ω2
rωz)

1/3 is the average

harmonic oscillator frequency. The transition temperature is thus higher
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for large numbers of atoms confined in a tight trap, in accordance with the

qualitative picture of wave packet overlap provided by our discussion of the

particles’ de Broglie wavelengths. For example, in the mixture experiment

described in Chapters 4 and 5, we load Rb atoms into a trap for which

ωr/2π � 11 Hz and ωz/2π � 4 Hz. At these trap frequencies, a sample of

10,000 atoms will reach degeneracy at a temperature of 7 nK. The same num-

ber of atoms in a trap with frequencies an order of magnitude higher would

condense at 70 nK. Unfortunately, at higher densities, atoms are also more

likely to be lost from the trap due to inelastic processes, e.g. three-body colli-

sions. This is important, because as we shall see in the next section, the very

diluteness of alkali condensates is an advantage in formulating theoretical

descriptions of their behaviour.

2.2 An interacting gas

In the previous section, we considered Bose-Einstein condensation in purely

thermodynamic terms as a quantum-statistical phase transition which oc-

curs in the absence of interactions between particles. What happens if we

want to include interactions? The usual method is to make the mean-field

approximation, which allows interactions between all N particles in the gas

to be described by a single interaction term Hint in the Hamiltonian [89]. For

an interacting gas in an external potential Vext, the mean-field Hamiltonian

takes the form

H = H0 + Vext + Hint. (2.6)

The mean-field approximation is often described alongside (and is some-

times equated with) the Hartree approximation [92], which allows us to write

the wave function of an N -body system as the product of N single-particle

wave functions. For a fully condensed sample, all bosons will be in the same

single-particle state φ(r); hence we can write the condensate wave function

Φ as

Φ(r1, r2, . . . , rN) =
N∏

i=1

φ(ri), (2.7)

where the φ(ri) are e.g. the ground state wave functions of a harmonic os-

cillator, and are normalised to one. The Bogoliubov approximation assumes
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that the non-condensate fraction of the system can be treated as a pertur-

bation. This approach is used in more technical explanations of mean-field

theory [89], where the Hamiltonian is initially written in terms of second-

quantised field operators Ψ̂(r) and Ψ̂†(r), and then approximated to a form

which includes only the condensate wave function Φ.

For some condensed systems, the mean-field treatment is a very bad ap-

proximation indeed, and breaks down on one or more of the conditions listed

above. Interactions between superfluid helium atoms, for example, prevent

more than ∼10% of atoms from being the ground state even at tempera-

tures very close to absolute zero [93]. The liquid nature of the helium system

means that multi-body interactions and non-condensed fractions cannot be

ignored or treated as perturbations, making helium condensates very difficult

to describe theoretically.

In alkali gases like the mixtures of rubidium and caesium atoms which are

the primary focus of this work, the interparticle separation is much greater

than for He atoms in a superfluid. This does not mean that interparticle

interactions in alkali gases are negligible. Indeed, some of the most fascinat-

ing phenomena in cold and ultracold atomic physics arise from interactions

between particles. It is, however, often sufficient to consider only two-body

interactions, for which theoretical treatments are comparatively tractable.

For a low-energy, dilute gas, the interaction Hamiltonian Hint can be ap-

proximated by a contact potential (delta function) because the interparticle

separation is usually much greater than the range of the attractive or repul-

sive forces between atoms [92]. At very low temperatures, the interactions

between two identical bosons can be characterised by a single parameter: the

s-wave scattering length a. This quantity is discussed in more detail in the

next section. For the moment, we simply use it to write an expression for

the Hamiltonian at low energies:

H =
N∑

i=1

(
p̂2

i

2m
+ Vext(r̂i)

)
+ g

∑
i<j

δ(r̂i − r̂j), (2.8)

where the coefficient of the interaction term g is defined as [92]

g =
4π�

2a

m
. (2.9)

Using this Hamiltonian, we can write the well-known Gross-Pitaevskii equa-
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tion (GPE) which describes the time-evolution of the trapped condensate:

i�
∂

∂t
Φ(r, t) =

(−�
2

2m
∇2 + Vext(r) + g|Φ(r, t)|2

)
Φ(r, t), (2.10)

where the number density n(r) = |Φ(r, t)|2. Again using the mean-field

approximation, the condensate wave function Φ(r, t) can be expressed as the

product of a real part φ(r) and a time-dependent exponential e−iμt/�, where

φ is normalised to the total number of atoms N . After minimising the energy

of the system [92], we find the time-independent form of the GPE:

− �
2

2m
∇2φ(r) + V (r)φ(r) + g|φ(r)|2φ(r) = μφ(r), (2.11)

where μ is the chemical potential. These equations have the form of a non-

linear Schrödinger equation, with the nonlinear term proportional to the

number density and the scattering length. In the absence of interactions,

Eq. 2.11 reduces to a linear Schrödinger equation. By contrast, the Thomas-

Fermi approximation eliminates the kinetic energy term and concentrates on

condensate behaviour due to the interactions (and external potential) alone.

The conditions under which this approximation is valid are discussed in the

next section.

2.3 Scattering theory

Quantum scattering theory is a well-established field with applications to a

wide variety of physical systems. The purpose of this section is not to review

scattering theory, but to define terms and introduce equations which are

most necessary for understanding the role of scattering in cold and ultracold

mixtures of rubidium and caesium. Detailed discussions of the aspects of

scattering theory with greatest relevance for cold atomic gases may be found

in numerous textbooks [92, 94–97] and theses [98–101].

The main scattering process of relevance for cold, dilute gases is two-body

elastic scattering. Both evaporative and sympathetic cooling rely on elastic

collisions between atoms to reduce the temperature of a sample. An un-

favourable ratio of elastic (‘good’) collisions to inelastic (‘bad’) collisions has

proved a serious stumbling block in efforts to cool some species of atoms,
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notably caesium, to quantum degeneracy [68, 69]. The experimental appa-

ratus described in this thesis was designed to study the collisional properties

of a mixture of 87Rb and 133Cs, with an eye towards potentially overcoming

the difficulties presented by cooling caesium alone. An understanding of the

basic principles of elastic collisions is therefore essential.

2.3.1 Elastic scattering cross section

The Hamiltonian for the relative motion of two colliding atoms of mass m1

and m2 is

H =
p2

2M
+ V(r), (2.12)

where r = r1 − r2 and p = p1 − p2, with M = m1m2/(m1 + m2) being the

reduced mass of the system. The eigenstates of this Hamiltonian with energy

Ek = �
2k2/2M are the scattering states of the relative motion ψk(r). The

solutions to the Schrödinger equation for this Hamiltonian take the form

ψk(r) = eikz + f(k)
eikr

r
, (2.13)

where k is the wave vector of the scattered wave, f(k) is the scattering

amplitude, and we have assumed that the potential vanishes as r → ∞. The

first term in Eq. 2.13 is an incoming plane wave, while the second is the

scattered wave.

The scattering amplitude is related to the scattering cross section σ(k)

according to

σ(k) =

∫
|f(k)|2dΩ. (2.14)

If we assume that the interaction between the atoms is spherically symmetric,

we can write the scattering amplitude in terms of the scattering angle θ:

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(ei2δl − 1)Pl(cos θ). (2.15)

Here, l = 0, 1, 2, . . . denotes the contribution of s, p, d, . . . partial waves to

the total scattering amplitude, δl are the phase shifts associated with each

partial wave, and Pl(cos θ) are Legendre polynomials. The full derivation of

Eq. 2.15 can be found in Refs. [92] and [95]. Substituting this expression
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into 2.14 and performing the integral over the full solid angle 0 ≤ θ ≤ π,

0 ≤ φ ≤ 2π (φ being the azimuthal angle) yields

σ(k, δl) =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2.16)

Up to this point, we have said very little about the properties of the par-

ticles being scattered, and have in fact assumed implicitly that they are

distinguishable. If the particles are indistinguishable bosons (fermions), the

ψk must be (anti)symmetric under interchange of the coordinates of the two

particles, i.e. r → −r, θ → π − θ, φ → π + φ. Taking into account the

symmetries of the particles and the potential, Eq. 2.13 becomes

ψk = eikz ± e−ikz + (f(θ) ± f(π − θ))
eikr

r
, (2.17)

where the plus sign applies to bosons and the minus sign to fermions. To find

the scattering cross section for indistinguishable particles, we must change

the limits of the integral in 2.14 to half the full solid angle to avoid double-

counting. The result is a cross-section with twice the amplitude for classical

particles,

σ(k, δl) =
8π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2.18)

Finally, it is worth noting that due to the (−1)l parity of the Legendre poly-

nomials, the requirement that ψk be symmetric for identical bosons means

that only even-l partial waves can contribute to the total scattering cross

section. For fermions the reverse is true, and the suppression of s-wave scat-

tering makes it impossible to achieve quantum degeneracy in single-species

fermi gases. As discussed in the introduction, adding a second species rein-

troduces s-wave collisions to the system, and degeneracy of the target species

is reached via sympathetic cooling with the second. A similar line of rea-

soning shows that although p-wave scattering is suppressed for single-species

bosonic gases, this is not true for mixtures of two different bosonic species

except at low temperatures. The next two subsections examine scattering in

the limits of interest for our Rb-Cs system.
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2.3.2 Low-energy elastic scattering

At low energies, the scattering cross section for bosons is dominated by the

l = 0 term. This is because particles with nonzero angular momentum

experience a centrifugal barrier in addition to the bare atom-atom interaction

potential V (r) [95]. If their relative kinetic energy is less than the barrier

they never achieve interparticle separations where V (r) is non-negligible, and

scattering does not take place. For simplicity we will continue to approximate

V (r) as the contact interaction; for a discussion of scattering from other

potentials, see e.g. Ref. [101]. In the l = 0 limit, Eq. 2.18 reduces to

σ =
8π

k2
sin2 δ. (2.19)

It is often useful to express the phase shift in terms of an s-wave scattering

length a. The relation between the two is [94]:

k cot δ = −1

a
+

1

2
reffk2 + O(k4), (2.20)

where the first-order correction term reff is known as the effective range.

Setting this to zero for the moment, we can combine Eqs. 2.19 and 2.20 to

write the scattering cross-section in terms of a:

σ =
8πa2

1 + k2a2
. (2.21)

This relation has two important limits. For ka 	 1, the scattering cross-

section is 8πa2, equivalent to scattering from a hard sphere of radius a, and

is independent of energy. When the modulus of the scattering length is much

larger than the de Broglie wavelength of the scattered particles, i.e. ka � 1,

the scattering cross-section reaches the unitarity limit, where

σ =
8π

k2
. (2.22)

In this regime, the scattering cross-section is independent of the scattering

length. This state of affairs is associated with a phenomenon known as a zero-

energy resonance. These resonances occur when the inter-atomic potential

V (r) is deep enough to support bound molecular states, and the energy of

the last molecular bound state is close to the energy of the scattering state.

When the depth of the potential is just less than the threshold for a new
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bound state to appear, the scattering length is large and negative. If the

potential depth is just higher than the threshold, the scattering length is

large and positive [102]. The resonance occurs at the threshold, where a

diverges.

The sign of the scattering length has important implications for the stabil-

ity of Bose-Einstein condensates. For a < 0, the interaction between atoms

is attractive, while for a > 0 it is repulsive. Attractive interactions lead to an

increase in density at the centre of the condensed cloud, and for atom num-

bers above a critical value Ncr the kinetic energy of the atoms is no longer

sufficient to prevent the condensate from collapsing [42]. In the case of repul-

sive interactions, the condensate is stable. In the limit that Na/aho � 1 (aho

is the harmonic oscillator length (�/mω)1/2), we can make the Thomas-Fermi

approximation, under which the interaction term in the GPE is assumed to

dominate the condensate behaviour and the kinetic energy term is neglected.

This greatly simplifies the form of the solutions to the GPE, which is espe-

cially important for mixed-species BECs [44, 45]. The implications of positive

and negative scattering lengths for a mixture will be discussed later in this

chapter.

What happens if we include the effective range correction? If we substitute

Eq. 2.20 into Eq. 2.19, we find

σ =
8πa2

k2a2 +
(

1
2
k2rea − 1

)2 . (2.23)

The value of this approximation is that it is accurate even for large magni-

tudes of the scattering length, as discussed in Ref. [103] and shown graph-

ically in Ref. [98]. This is particularly important for Cs, which in the

F = 3, mF = ±3 state has a scattering length with a magnitude of almost

3000 times the Bohr radius a0 at zero magnetic field [74].

2.3.3 Higher partial waves

If the scattered atoms have a relative kinetic energy higher than the cen-

trifugal potential barrier, the approximation that only s-wave collisions con-

tribute to the total scattering cross-section is no longer valid. The form of
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the centrifugal potential is [41, 94]

Vrep =
�

2l (l + 1)

2Mr2
. (2.24)

Hence, the minimum energy required for higher-l partial waves to contribute

is given by

El =
�

2l (l + 1)

2M(Rmin)2
− C6

(Rmin)6
, (2.25)

where C6 is the van der Waals coefficient2, M is the reduced mass and Rmin

is the radius at which the effective potential �
2l(l+1)/(2Mr)−C6/r

6 reaches

its maximum value, given by

(Rmin)
2 =

(
6MC6

�2l(l + 1)

)1/2

. (2.26)

Figure 2.2 shows the van der Waals potential −C6/r
6 and Vrep for l = 1 (solid

blue line) and l = 2 (solid red line). The physical meaning of El and Rmin is

apparent from the sums of the two potentials (dashed lines).

For Rb-Rb and Cs-Cs scattering, the next allowed partial wave in the

expansion is l = 2. Using the C6 values found in Ref. [104], we see from

Eq. 2.25 that the energy threshold at which d-wave scattering begins to

contribute is approximately 420 μK for 87Rb and 180 μK for Cs. To put

these values into an experimental context, typical temperatures for Rb and

Cs atoms in a well-optimised magneto-optical trap (MOT) are below 100

μK, while Tc for the alkali metals is typically measured in tens of nK. We

will therefore treat the d-wave contribution to the scattering cross-section as

negligible.

The threshold for p-wave scattering is lower, and for mixtures of two dif-

ferent bosonic species we have already noted that p-wave collisions are not

suppressed as they are for a pure sample of Rb or Cs. Taking the value of the

Rb-Cs C6 from Ref. [105], we find that the threshold for p-wave scattering

is approximately 56 μK — still well above the threshold for condensation,

but cold enough to contribute in the MOT and during evaporative cooling in

the magnetic trap. Table 2.1 contains a list of C6 coefficients and scattering

thresholds relevant to the Rb-Cs system.

2Literature values of the van der Waals coefficient are often given in atomic units. To

convert into units appropriate for Eq. 2.25, one must multiply by a6
0 and the Hartree

energy Eh = �
2/(mea

2
0), where me is the electron rest mass and a0 is the Bohr radius.
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Figure 2.2: Scattering potentials for Rb-Cs. The solid black line indicates the

van der Waals potential −C6/r
6. Solid blue (red) lines show the potential

barriers for p-wave (d-wave) scattering. Dashed lines indicate the sum of

repulsive and attractive terms for p-wave (blue) and d-wave (red) scattering.

The height of the potential barriers indicate that d-wave scattering will only

occur at temperatures ≥ 290μK, while the threshold for p-wave scattering is

approximately 56 μK.

From Eq. 2.16, we find that the cross-section for s and p waves is:

σs,p =
4π

k2

(
sin2 δ0 + 3 sin2 δ1

)
. (2.27)

We can generalise our expression in Eq. 2.20 to account for higher partial

waves, with the result that the scattering length for the lth partial wave is

related to the scattering cross-section by

k2l+1 cot δl = − 1

al

+
1

2
rlk

2 + O(k4) (2.28)

where we have substituted an l-dependent effective range for the earlier l = 0

value. Combining equations as before, we find that the cross-section for p-

wave scattering is

σp =
12πa2

1k
4

1 + a2
1k

6
. (2.29)

Note that this cross-section vanishes as k → 0, as required.
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Rb-Rb Cs-Cs Rb-Cs

C6 4691 6851 5284

p-wave N/A N/A 56 μK

d-wave 410 μK 180 μK 290 μK

Table 2.1: C6 values (in atomic units) and scattering thresholds for the Rb-

Cs system. Single-species C6 values are taken from Ref. [104]; the Rb-Cs

value is from Ref. [105].

2.4 Feshbach resonances

So far, we have treated atoms as structureless particles, for which only elastic

collisions are possible. Inelastic collisions are more complicated, because

the scattered atoms can be in different internal states – or, in the language

of scattering theory, the incident and outgoing scattering channels are no

longer the same, and multiple channels may contribute to the total scattering

potential. Chapters 3 and 5 discuss inelastic collisions in the context of a

two-species MOT, but for the moment, we will consider only one phenomenon

associated with inelastic scattering: Feshbach resonances3.

As with zero-energy resonances, the change in scattering length near a

Feshbach resonance occurs due to a coupling between the scattering state

and the last bound state of the potential. For inelastic Feshbach resonances,

the coupling occurs between the last bound state and different incoming and

outgoing channels. For ground state atoms, these two channels are provided

by different atomic hyperfine states. The energy of these states exhibits a

magnetic field dependence via the Zeeman effect. By changing the magnetic

field, a bound state supported by one scattering channel (closed channel)

can be shifted into degeneracy with the scattering state of a second (lower

energy) channel. This is illustrated in Figure 2.3. The result is that in the

vicinity of a Feshbach resonance, the magnitude (and the sign) of the atoms’

scattering length can be tuned over a wide range simply by changing the

external magnetic field. The behaviour of the scattering length as a function

3Elastic Feshbach resonances are also possible, e.g. in the |F = 3,mF = +3〉 state

of Cs. For the purposes of this thesis and the related work described in Ref [84], we are

primarily interested in inelastic resonances.
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of the magnetic field B is given by

a(B) = abkgd

(
1 − ΔB

B − Bres

)
, (2.30)

where abkgd is the scattering length far from resonance, ΔB is the width of

the resonance and Bres is its position. The width of the resonance depends on

the magnetic moment of the bound state and the coupling strength between

the bound and scattering states.

  

 

Incident channel

Inelastic channel

Bound state
Closed channel

Tune

Internuclear separation r

V(r)

Figure 2.3: Illustration of scattering near an inelastic Feshbach resonance.

Changing the magnetic field tunes the bound state supported by the closed

channel into resonance with the incident channel, inducing a coupling to a

lower-energy inelastic channel. Figure adapted from [98] and [106].

As the Gross-Pitaevskii equation (2.11) shows, changing the scattering

length changes the strength of the interactions between the atoms. The im-

portance of this tunability can hardly be overstated; indeed, Feshbach reso-

nances have been compared to a ‘magic dial’ which would allow experimenters

to alter the force of gravity at will! The tuneability of atomic interactions in

the vicinity of a Feshbach resonance has been exploited experimentally for a

number of purposes, including the creation of cold molecules [23] and solitons



Chapter 2. Bose-Einstein condensation 31

[17, 18], the study of collapsing Bose-Einstein condensates [42], and inves-

tigations of the BEC-BCS crossover in fermionic systems [107–110]. They

are also the subject of a rich theoretical literature (see, for example, Refs.

[111–113]). The next section discusses their potential uses in a two-species

mixture.

2.5 Two-species quantum degeneracy

To describe the behaviour of a two-species quantum degenerate gas using

the mean-field approach, a second nonlinear term must be added to the

Gross-Pitaevskii equations for the ground state of each species. The new

term is proportional to the interspecies scattering length a12, and represents

interactions between the two species. The coupled equations are [44, 114]:[
− �

2

2m1

+ V1(r) + g11|ψ1|2 + g12|ψ2|2
]

ψ1 = μ1ψ1 (2.31)[
− �

2

2m2

+ V2(r) + g12|ψ1|2 + g22|ψ2|2
]

ψ2 = μ2ψ2,

where the coupling constants are defined as

g11 =
4π�

2a11

m1

> 0

g22 =
4π�

2a22

m1

> 0 (2.32)

g12 = 2π�
2a12

(
m1 + m2

m1m2

)
.

The solutions to these coupled equations are discussed in many theoretical

works; see, for example, Refs. [19, 44, 45, 114–116] and references therein.

A number of factors dictate the form of the solutions. Firstly, there is the

question of the relative separation of the two species, which is proportional to

their trap frequencies and the gravitational acceleration g. If the two species

have different masses (and, for magnetically-trapped mixtures, different mag-

netic moments), it is possible for the two condensates not to overlap at all,

in which case the equations in 2.32 are no longer coupled.

Less trivial interaction regimes can be studied by examining the effects

of different magnitudes and signs of each of the coupling constants on the
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solutions. A useful parameter is the relative strength of the interactions Δ,

which we define here as

Δ =
g12√
g11g22

� a12√
a11a22

. (2.33)

Note that a11 and a22 are assumed to be positive, for convenience [44].

2.5.1 Interaction regimes

The behaviour of the two-species quantum degenerate mixture for different

values of Δ is illustrated in Figure 2.4. There are three distinct regimes of

interest.

0
g12

Stable & Miscible

“Interpenetrating Superfluids”

Stable & Immiscible

“Phase Separation”
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Figure 2.4: Behaviour of a two-species quantum degenerate gas at different

relative interaction strengths.

Collapse

For Δ < −1, the interspecies scattering length a12 is both negative and

greater in magnitude than the geometric mean of the two single-species scat-

tering lengths. In this case, the attractive interspecies interactions will domi-

nate condensate behaviour, and lead to a collapse [19, 114]. Mathematically,

the two BECs will only ‘overlap’ if there is a ‘hole’ in the condensate where

both single-species wavefunctions vanish. This is not overlap in any physi-

cally meaningful sense.



Chapter 2. Bose-Einstein condensation 33

Interpenetrating superfluids

For |Δ| < 1, the interspecies scattering length may be either positive or neg-

ative, but its magnitude smaller than
√

a11a22. In this regime, the two con-

densates will be both stable and miscible. This is true even if the interspecies

scattering length is negative, provided the restriction on the magnitude of

|Δ| is not violated.

Phase separation

A final scenario occurs if Δ > 1. In this case, a strong mutual repulsion

leads to a phase separation between the two condensates. The 41K-87Rb

condensate first reported in Ref. [6] fell into this category.

2.5.2 Towards a tuneable mixture

In the previous section, we saw that Feshbach resonances allow the scattering

length of a single-species cold gas to be tuned to a range of values simply

by changing the magnetic field. For mixtures, one can perform experiments

in which Feshbach resonances in one or both components of the two-species

quantum degenerate gas allow Δ to be tuned between two or more regimes,

facilitating the creation of heteronuclear cold molecules [23]. Interspecies

Feshbach resonances, such as those described in Refs. [46–50] should allow

even greater flexibility in tuning the value of Δ.


