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Second Quantized versus Classical Description
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In a classical description, or even in using an ordinary wave function in a 
quantum description, we base everything on the particle.  Particle 7 is sitting 
right in front of me; particle 23 is in the upper left hand corner, etc.   A 
degenerate quantum system is one composed of identical particles sufficiently 
squeezed so that their wave functions overlap.  To describe such a system, we 
cannot talk about the behavior of individual particles.   We can only specify how 
many particles are doing this or that.  Thus we start with a description of 
possible modes of the system and talk about their occupation.  In this kind of 
description, we would say that there are seven particles in mode 3 and none in 
mode 2.  

To discuss independent excitations in degenerate quantum theory, we use a 
formulation in which we allow the number of excitations to vary.  Hence we are 
varying the number of particles.  So instead of using exp(-βH), and keeping the 
number of particles fixed,   we use as our weight function  exp[-β(H-µN)] and we are 
allowing the number of particles to vary.  The former approach is called using the 
canonical ensemble, and is what we have done up to now.   The latter approach uses 
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Quantum Description
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To describe a degenerate quantum situation, we first specify the modes. We imagine placing 
everything in a box of side L.  One neat formulation has periodic boundary conditions.  The 
different modes of excitation are described by wave functions which are of the form (1/L)3/2 
exp(ik.r).   The wave number  k=(kx, ky, kz)  must be of the form (2 π/L)m = (2 π/L) (mx, my, 
mz) where the m’s are integers.   This gives periodic wave functions, and what is more 
important, a complete set of wave functions.  Corresponding to these k’s are momenta, p’s, 
of the form p=ħ k

In the quantum mechanics of non-interacting particles, each mode is dynamically and 
statistically independent of the others.  That is to say, the Hamiltonian is a sum of terms each 
referring to a different mode.    We have a discrete infinity of modes, labelled by the m’s. 

A sum over the independent modes in quantum theory can be  written as

Usually, but not always, many terms contribute from such a sum so that it 
can be written as an integral over wave vectors or momenta in the form  

∑

m

∑

m

→

( L

2π

)3

∫

dk =
( L

2πh̄

)3

∫

dp

This result is interpreted by saying that the quantum sum over m goes into a sum over 
phase space in discrete pieces of size h3.  Of course, there is no h3 in any sensible 
formulation of classical mechanics.  So something funny will have to be done to patch 
together classical mechanics and quantum theory. 

vi.1



Perimeter Institute statistical physics Lecture Notes part 6: Bosons and fermions Version 1.5 9/11/09   Leo Kadanoff

One mode
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In the grand canonical formulation, the only difference between bosons and 
fermions is the possible values of the excitation number of a given type, nj .  
For bosons this n can be any non-negative integer 0, 1, 2, ...     For fermions 
the excitation or mode can either be empty or occupied, corresponding to 
n=0 or 1.  In either the bose or the fermi cases, the probabilities are given by       
ρ(n)=(1/ξ) exp[-β(ε-µ)n],  

We next look to a single mode of excitation.  For the 
fermion,  the normalizing factor is ξ= 1 +exp[-β(ε-µ)]

The probability for finding the state full is

              <n> = 1/ {1 +exp[β(ε-µ)]}           vi.2a
The probability for finding the state empty is 

    1-<n> = 1/ {1 +exp[-β(ε-µ)]}                vi.2b
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Extreme Limits for fermions
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The extreme quantum limit is the one 
with large values of β μ=μ/(kT).  In that 
limit the mode is always completely full 
(empty) depending on whether (ε-μ) is 
negative  (positive).    

The extreme classical limit is the one 
with large values of -β μ.  In that limit, 
in equilibrium,  all modes have a very 
low probability of being occupied and 

<n>≈ exp[-β(ε- μ)]   

This picture gives plots of <n> versus ε/μ   for 
various values of 1/(β μ). The large numbers 
indicate highly degenerate situations, while the 
smaller ones are closer to the classical limit.  
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 the equilibrium probability distribution for occupation of the 
single mode is    ρ(n)=(1/ξ) exp[-β(ε-µ)n].      All integer 
values of n between zero and infinity are permitted.

 The normalizing factor is 

ξ= 1 +exp[-β(ε-µ)] + +exp[-2β(ε-µ)]+ +exp[-3β(ε-µ)] 
+...

   ξ=1/{1 -exp[-β(ε-µ)]}

Note that ε-µ  must be positive.   

The average occupation is <n> = 1/ {exp[β(ε-µ)]-1}    vi.3
An extreme quantum limit is the one with very small positive 
values of β (ε-µ).  In that limit, the mode can have lots and 
lots of quanta in it.    You can even have macroscopic 
occupation of a single mode,  in which a finite fraction of the 
entire number of particles is in a single mode. This is also 
called Bose-Einstein condensation after the discoverers of 
this effect.   

For the boson

Satyendra Nath Bose

The extreme classical limit is once more a very large value of -β μ and a small 
average occupation of the state. Once more <n>≈ exp[-β(ε- μ)]  in this 
limit.
Bosons need not be conserved.  If they are not conserved,  the equilibrium situation has μ=0.
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Independent Excitations: waves 
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One example of a boson excitation is provided by a set of waves. There are two major 
examples:  light waves  and sound waves.    In these two cases, the quanta are called 
respectively photons and phonons.   In the simplest situation, the Hamiltonian for the 
system is a sum over terms corresponding to the different excitations in the system   

Here, εj is the energy of a single excitation of type j and nj is the number of excitations of 
that type.  These quanta have the property that they are not conserved.   When the basic 
objects under consideration are conserved quantities, e.g.  atoms or molecules, and they 
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a 
statistical theory in which we allow the total number of particles to vary, and use a 
probability function of the form          

H =

∑

j

εjnj vi.4

and the statistical mechanics is given by the usual formula 
ρ{n}=(1/Ξ) exp(-βH{n}) 
where the normalizer,  Ξ,  is called the grand partition function. 

ρ{n}=(1/Ξ) exp(-β[H{n}-μN{n}])      where N is the total particle number
 

N =

∑

j

nj

Here µ is called the chemical potential.  The density of particles increases as µ increases.  



Perimeter Institute statistical physics Lecture Notes part 6: Bosons and fermions Version 1.5 9/11/09   Leo Kadanoff

Waves=Special bosons
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ε=ħω, so in the classical limit the energy of a photon goes to zero.

the probability distribution for the single mode is 

ρ(n)=(1/ξ) exp[-β ε n] 

 The normalizing factor is 

ξ= 1 +exp[-β ε] + +exp[-2β ε]+ +exp[-3β ε] +... so that 

Note that ε must be positive or zero.   The average energy in the mode is  <n>ε  = ε/ 
{exp[β ε]-1}= ħω/ {exp[β ħω]-1}

Classical limit = high temperature       <n>ε=1/ β = kT      

Therefore classical physics gives kT per mode.  A cavity has an infinite number of 
electromagnetic modes.    Therefore, a cavity has infinite energy?!?

In quantum theory high frequency modes are cut off because they must have small 
average occupations numbers, <n>.  Therefore the classical result of kT per mode is 
simply wrong.  So there is no infinity.

In this way, Planck helped us get the right answer by introducing photons and starting off 
the talk about occupation numbers!

 ξ= 
___________1
1 -exp[-β ε]
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photons in Cubic Cavity
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k=(kx,ky,kz)=2π(mx,my,mz)/L where the m’s are integers describing the cavity’s  modes    
Here ω=ck       (There are two modes for each frequency)   

H =
∑

m,σ

nm,σ h̄ck(m)

< H >= 2
∑

m

nm,σ h̄ck(m)
1

exp(βh̄ck(m)) − 1

We can then find the average energy in the form

If the box is big enough, the sum over m can be converted into an integral over k.

< H >= 2
( L

2π

)3
∫

d3k h̄ck
1

exp(βh̄ck) − 1

The integration variable can then be made dimensionless

< H >=
2

β

( L

2πβh̄ck

)3
∫

d3qq
1

exp(q) − 1

< H >= 2(kT )4
( L

2πh̄ck

)3
∫

∞

0

dq 4πq3 1

exp(q) − 1

and the integral rewritten in a form which converges nicely at zero and infinity.

This calculation provides a start for the age of quantum physics.
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Conserved Fermions in Box
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Fermi, Enrico (1926). "Sulla quantizzazione del gas perfetto monoatomico" (in Italian). Rend. 
Lincei 3: 145-9. , translated as On the Quantization of the Monoatomic Ideal Gas. 
1999-12-14. doi:arXiv:cond-mat/9912229v1. 

 Dirac, Paul A. M. (1926). "On the Theory of Quantum Mechanics". Proceedings of the Royal 
Society, Series A 112: 661-77. JSTOR: 94692

Paul Dirac has a 
beautiful quantum 
mechanics book 
which I enjoyed 
reading when I was 
a grad student.

In a metal electrons act as independent quasiparticles with energy an 
momentum relation energy = εp  For modes with energy near the 
value of the chemical potential, these modes behave very much like 
non-interacting particles with a changed energy-momentum relation. 
For example they move with a velocity v=∇pεp. Only the electrons 
with energies close to the chemical potential, called in this context 
the Fermi energy, play an important role in moving heat and particles 
through the system.  The electrons near the Fermi energy are said to 
be close to the top of the Fermi sea.  For lesser energies, within that 
sea,  the electrons are mostly frozen into their momentum states 
and cannot do much 
     For some materials, like Aluminum,  εp ≈ p2/(2m).  For these the 
Fermi sea forms a ball with radius pF.   

Calculate the T=0 energy density, particle density, and pressure of these 
electrons in terms of pF. You may use the free particle energy-momentum 
relation. Harder: Calculate the entropy density as a function of T at low T.
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Conserved Bosons in Box
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At low temperatures fluid Helium4, that is bosonic helium, undergoes a 
phase transition into a superfluid state in which it can move without 
viscosity.  This is believed to arise because a finite fraction of the entire 
number of atoms falls into a single quantum mode, described by a single 
wave function.  The basic theory of how this ocurs is due to Nikolay 
Nikolaevich Bogolyubov.   

Nikolay Nikolaevich Bogolyubov

The Einstein-Bose theory of a phase 
transition in a non-interaction Bose liquid is a 
pale reflection of the real superfluid 
transition.   However, it is quite interesting 
both in its own right and also because the 
recent development of low temperature-low 
density  Bose atomic or molecular gases may 
make it possible to observe this weak-
interaction-effect.      

I shall outline the three dimensional theory.  The theory in two dimensions is more complex.
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Bose Transition
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The integration has a result that goes to zero as T3 as the temperature goes to zero.   If this 
system is to maintain a non-zero density as T goes to zero, which we believe it can, it can only 
do so by having the first term on the right become large enough so that a finite proportion 
of the entire number of particles in the system will fall into the lowest mode.   This is 
believed to be the basic source of superfluidity.

∫

    

€ 

n =
1

−L3βµ
+∫

    

€ 

1

1+ exp[β p2

2M
− βµ]      

€ 

dp
h3

n=number of particles per unit volume = 

Here the sum is over a vector of integers of length three, and the  energy is 
ε(m)=m2 ħ2 /(2ML2),  M being the mass of the particle.  For a sufficiently large box, there are 
two qualitatively different contributions to the sum.  The term in which m=0 can be 
arbitrarily large because µ can be arbitrarily small.  The remaining terms contribute to an 
integral which remains bounded as µ goes to zero.  The result is   

      

€ 

1
L3

1
1+ exp{β[ε(m) − µ]}m

∑
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Dynamics of fermions at low temperature 
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Landau described fermions at low temperature by saying that they had a free energy which 
depended upon, f(p,r,t) the occupations of the fermion modes with momentum in the 
neighborhood of p and position in the neighborhood of r at time t.   As the occupations 
changed the free energy would change by 
 

1234567890-=
θωερτψυιοπ[]∴
ασδφγηϕκλ;∏
ζξχϖβνμ,./

δF =

∫
dpdr

h3
ε(p, r, t) δf(p, r, t)

Then, using the usual Poisson bracket dynamics the distribution function would obey, as in 
equation v.13.   

∂t f(p,r,t) + (∇p ε(p,r,t)) . ∇r f(p,r,t) - (∇r ε(p,r,t)) . ∇p f(p,r,t)
= collision term

The collision term will be the same as in the classical Boltzmann equation with one important 
difference:  Since fermions cannot enter an occupied state,  the probabilities of entering a final 
state will be multiplied by a factor of (1-f).   Thus, Landau proposed a “Boltzmann equation” for 
degenerate fermions of the form below, with the new terms in red

[∂t  + (∇pε) . ∇r  - (∇r ε) . ∇p] f(p) =

       -     dq  dp´ dq´ δ(p+q - p´-q´)  δ(ε(p)+ ε(q) - ε(p´)-ε(q´)) 

                    Q( p,q ➝ p´,q´ ) [f(p)  f(q)(1-f(p´)) (1-f(q´)) -  f(p´)   f(q´) (1-f(p)) (1-f(p)) ]

∫∫∫
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Landau’s equation for low temperature fermion systems:
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[∂t  + (∇pε) . ∇r  - (∇r ε) . ∇p] f(p) =

      -     dq  dp´ dq´ δ(p+q - p´-q´)  δ(ε(p)+ ε(q) - ε(p´)-ε(q´)) 

          Q( p,q ➝ p´,q´ ) [f(p)  f(q)(1-f(p´)) (1-f(q´)) -  f(p´)   f(q´) (1-f(p)) (1-f(p)) ]
∫∫∫

We can do just about everything with this equation that Boltzmann did with his more classical 
result.   For example this equation also has an H theorem with H being an integral of 
f ln f+(1-f) ln(1-f).  

An important difference is that this equation gives us a particularly low scattering rate at low 
temperatures.   Only modes with energies within kT of the fermi surface can participate in the 
scattering.   As a result, the scattering rate ends up being proportional to T2 at low 
temperatures.

Probably the most important result is that there is a local equilibrium solution of the right 
form, with f/(1-f) equal to a linear combination of exponentials of conserved quantities, i.e.
exp{-β[ε(p)-μ-p.v- v2/(2m)]}.  this gives us 
f(p)=1/ (1 + exp{β[ε(p)-μ-p.v- v2/(2m)]}.)  as we knew it should be. 

This approach gives us a piece of a theory of He3, the fermion form of helium.  To complete the 
theory one should also consider the emission and absorption of phonons, i.e. sound wave 
excitations.
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Dynamics of bosons
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Some part of the story of bosons is much the same.  A low temperature conserved boson 
system cpuld be expected to obey the same sort of equation, under circumstances in which the 
bosons were conserved, and also the emission and absorption of phonons were not too 
significant.
Specifically, the equation would look like   

[∂t  + (∇pε) . ∇r  - (∇r ε) . ∇p] f(p) =

      -     dq  dp´ dq´ δ(p+q - p´-q´)  δ(ε(p)+ ε(q) - ε(p´)-ε(q´)) 

          Q( p,q ➝ p´,q´ ) [f(p)  f(q)(1+ f(p´)) (1+ f(q´)) -  f(p´)   f(q´) (1+f(p)) (1+f(p)) ]  vi.9

∫∫∫
 

 

Once again the new feature is shown in red.     In the scattering events there are, 
for bosons, more scattering when the final single particle states are occupied than 
when they are empty.  One says that fermions are unfriendly but bosons are 
gregarious (or at least attractive to their own tribe.).  The f in the 1+f term was 
known in the 19th century in terms of the simulated emission of light, which is a 
kind of boson.   The 20th  Century brought Planck, and particularly Einstein, who 
first saw the need for the “1”  in the 1+f  term.  This extra piece was introduced to 
make the bose dynamical equation have the right local equilibrium behavior.  The 
logic used by Einstein includes the fact that for local equilibrium via equation vi.9, 
we must have f/(1+f) be, as in the fermion case, an exponential in conserved 
quantities and this result agrees with the known statistical mechanical result of 
equation vi.3.          
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