
CHAPTER 4

Cluster expansions

The method of cluster expansions allows to write the grand-canonical thermo-
dynamic potential as a convergent perturbation series, where the small parameter
is related to the temperature (usually high), the chemical potential (usually low
— small densities), and the interactions (small). It was pioneered by Mayer in the
1930’s, and made rigorous both by Penrose and Ruelle in 1963. Subsequent works,
especially by Kotecký and Preiss, have simplified the method, allowing many gen-
eralizations.

We introduce the method in the context of the classical gas in Section 1. We
explain the combinatorics, and give the result. We ignore the problems of conver-
gence of various series, until Section 2, where a theorem is provided that rigorizes
the computations of Section 1. This theorem applies to a very broad class of physi-
cal systems, including lattice spin systems where it helps proving the occurrence of
phase transitions, and quantum systems. Assumptions involve the “Kotecký-Preiss
criterion”, a condition that has proved convenient and rather optimal in many
situations.

1. Weakly interacting classical gas

The method is very general and is actually an intriguing piece of combinatorics.
Roughly summarized, a sum over arbitrary graphs can be written as the exponential
of a sum over connected graphs. The interactions in the partition functions can be
expressed using graphs; the logarithm of the partition function involves a sum over
connected graphs.

Recall that the Hamiltonian of the classical gas is H({pi, qi}) =
∑N

i=1
p2

i

2m +∑
i<j U(|qi − qj |). We work in the grand-canonical ensemble and compute the

pressure. Notice that all momenta can be integrated independently. Introducing

λ =
(2mπ

βh2

)3/2

eβμ , (4.1)

the grand-canonical partition function is given by

Z(β, V, μ) = 1 +
∑
N�1

λN

N !

∫
D

dq1 . . .

∫
D

dqN exp
{
−β

∑
1�i<j�N

U(|qi − qj |)
}

.

We now express the interactions in terms of graphs. Let GN denote the set of graphs
with N vertices (with unoriented edges, no loops). Then

e−β
P

i<j U(|qi−qj |) =
∏
i<j

[
e−βU(|qi−qj |) − 1 + 1

]

=
∑

G∈GN

∏
(i,j)∈G

[
e−βU(|qi−qj |) − 1

]
.
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32 4. CLUSTER EXPANSIONS

The last product is over edges of the graph G. Let us use the shortcut

ζ(qi − qj) = e−βU(|qi−qj |) − 1.

We now have

Z(β, V, μ) = 1 +
∑
N�1

λN

N !

∫
D

dq1 . . .

∫
D

dqN

∑
G∈GN

∏
(i,j)∈G

ζ(qi − qj).

A graph can be decomposed into connected graphs (G1, . . . , Gk). Here, each
Gi is a connected graph with set of vertices Vi, and the Vi’s form a partition of
{1, . . . , N}: V1 ∪ · · · ∪ Vk = {1, . . . , N}, and Vi ∩ Vj = ∅ if i �= j. There are k! such
sequences for each G, since the order of the Gi’s does not matter. The sum over G
can thus be realized by first summing over k, then over partitions V1, . . . , Vk, and
then over connected graphs on the Vi’s. Namely,

∑
G∈GN

∏
(i,j)∈G

ζ(qi − qj) =
N∑

k=1

1
k!

∑
V1,...,Vk

∑
G1,...,Gk
Gi∈CVi

k∏
�=1

∏
(i,j)∈G�

ζ(qi − qj).

Here, CVi denotes the set of connected graphs with vertices Vi. We obtain

Z(β, V, μ) = 1 +
∑
N�1

λN

N !

N∑
k=1

1
k!

∑
V1,...,Vk

∑
G1,...,Gk
Gi∈CVi

k∏
�=1

[( ∏
i∈Vi

∫
D

dqi

) ∏
(i,j)∈G�

ζ(qi − qj)
]
.

The bracket depends on the cardinalities of the Vi’s, but not on their actual ele-
ments. We therefore sum over the cardinalities N1, . . . , Nk � 1 with N1+· · ·+Nk =
N . The number of partitions of N elements into k subsets with N1, . . . , Nk elements
is given by the multinomial coefficient

N !
N1! . . . Nk!

.

We then obtain

Z(β, V, μ) = 1 +
∑
N�1

λN

N !

∑
k�1

1
k!

∑
N1,...,Nk�1

N1+···+Nk=N

N !
N1! . . . Nk!

k∏
�=1

[ ∑
G�∈CN�

∫
D

dq1 . . .dqN�

∏
(i,j)∈G�

ζ(qi − qj)
]

In the next section we shall provide sufficient conditions allowing to interchange
the sums over N and over k. We then obtain

Z(β, V, μ) = 1 +
N∑

k=1

1
k!

[∑
N�1

λN

N !

∑
G∈CN

∫
D

dq1 . . .dqN

∏
(i,j)∈G

ζ(qi − qj)
]k

.
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We see that the partition function is given by the exponential of the bracket.
The pressure is then given by

p(β, μ) = lim
V →∞

1
βV

∑
N�1

λN

N !

∑
G∈CN

∫
D

dq1 . . .dqN

∏
(i,j)∈G

[
e−βU(|qi−qj |) − 1

]
.

In the case where the potential has finite range, i.e. U(|q|) = 0 for |q| bigger than
some finite number R, the contribution of positions that are too far apart is zero:
The product always vanishes when |qi − qj | > NR for some i, j. This justifies the
name “cluster expansion”, since the pressure is given in terms of integrals involving
“clusters” of particles. The behavior of potentials with fast decay at infinity (faster
than a suitable power of |q|) is similar to that of finite range potentials. We also see
that, for given N , the contribution of the integrals is of order of the volume: The
integral over q1 is of order of V , while the integrals over q2, . . . , qN are restricted
to an area around q1. Using the rigorous estimates stated in the next section, one
can show that the pressure is given by the following expression, where we have set
q1 = 0,

p(β, μ) =
1
β

∑
N�1

λN

N !

∑
G∈CN

∫
R3

dq2 . . . dqN

∏
(i,j)∈G

[
e−βU(|qi−qj |) − 1

]
. (4.2)

The expression above can be viewed as an expansion with respect to interac-
tions. The term N = 1 does not involve the potential U(|q|) and yields

p1(β, μ) =
λ

β
=

1
β

(2mπ

βh2

)3/2

eβμ .

Recall that the density is given by n = ∂p
∂μ |β . To lowest order we find n = βp, or

equivalently p = nkBT . This is the ideal gas law, as it should be!
The next term, N = 2, is especially interesting because it gives the first correc-

tions due to the interactions. There is only one connected graph with two vertices
and it contains one edge. We obtain

p2(β, μ) = −λ2

2β

∫
R3

(
1 − e−βU(|q|)

)
dq.

Standard potentials have a hard-core and a small attractive part. With r the radius
of the hard-core, we have∫

R3

(
1 − e−βU(|q|)

)
dq ≈ 2b − 2βa,

with b = 2
3πr3, and

a = 1
2β

∫
|q|>r

(
e−βU(|q|) − 1

)
dq.

Notice that a is approximately equal to a constant when β is small. Recall the
definition of the fugacity λ, Eq. (4.1); since n = ∂p

∂μ |β , we have

p ≈ p1 + p2,

n ≈ βp1 + 2βp2.

We then have βp ≈ n − βp2. Using λ ≈ n, we have βp2 ≈ −n2(b − βa). Since
β = 1/kBT , we find

p ≈ nkBT (1 + nb) − n2a.
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Let us use the variable v = 1
n . To second order, the equation above can be rewritten

as

p =
kBT

v − b
− a

v2
.

This is van der Waals equation of state for interacting gases. It generalizes
the ideal gas law, which can be recovered by taking a, b → 0. Parameters a, b are
usually determined experimentally, and they give information on the potential.

2. General cluster expansion

Cluster expansion is also useful in mathematical physics because the absolute
convergence of the series can be rigorously established. This section proposes a
general theorem, and it discusses its application to the classical gas. Further ap-
plications include the Ising model and quantum systems, to be considered in later
chapters.

Let (X, Σ, μ) be a measure space, where μ is a possibly complex measure. We
let |μ| denote the total variation of μ (|μ| is essentially the absolute value of μ;
in the case where dμ(x) = g(x) dν(x) with ν a positive measure, then d|μ|(x) =
|g(x)|dν(x)). Given a complex measurable symmetric function ζ on X × X, we
introduce the partition function by

Z =
∑
n�0

1
n!

∫
dμ(x1) . . .

∫
dμ(xn)

∏
1�i<j�n

(
1 + ζ(xi, xj)

)
. (4.3)

The term n = 0 of the sum is understood to be 1.
In the case of the classical gas, n represents the number of particles, X is the

domain D, dμ(x) = λdq with λ the fugacity of (4.1), dq is the Lebesgue measure
on D, and ζ(xi, xj) = e−βU(|qi−qj |) − 1.

We denote by Gn the set of all (unoriented, no loops) graphs with n vertices,
and Cn ⊂ Gn the set of connected graphs of n vertices. We introduce the following
combinatorial function on finite sequences (x1, . . . , xn) in X:

ϕ(x1, . . . , xn) =

{
1 if n = 1
1
n!

∑
G∈Cn

∏
(i,j)∈G ζ(xi, xj) if n � 2.

(4.4)

The product is over edges of G. A sequence (x1, . . . , xn) is a cluster if the graph
with n vertices and an edge between i and j whenever ζ(xi, xj) �= 0, is connected.

The cluster expansion allows to express the logarithm of the partition function
as a sum (or an integral) over clusters.
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Theorem I (Cluster expansion).
Assume that |1+ζ(x, y)| � 1 for all x, y ∈ X, and that there exists a nonnegative
function a on X such that for all x ∈ X,∫

|ζ(x, y)| ea(y) d|μ|(y) � a(x), (4.5)

and
∫

ea(x) d|μ|(x) < ∞. Then we have

Z = exp
{∑

n�1

∫
dμ(x1) . . .

∫
dμ(xn) ϕ(x1, . . . , xn)

}
.

Combined sum and integrals converge absolutely. Furthermore, we have for all
x1 ∈ X

1 +
∑
n�2

n

∫
d|μ|(x2) . . .

∫
d|μ|(xn) |ϕ(x1, . . . , xn)| � ea(x1) . (4.6)

Corollary 4.1 (Classical gas). Suppose that U(|q|) � 0, and that

λ

∫
R3

(
1 − e−βU(|q|)

)
dq � e−1 .

The pressure is then given by (4.2), where the series is absolutely convergent and
is analytic in β and μ.

Proof. Positivity of the potential ensures that |1+ζ(qi, qj)| � 1. The criterion
(4.5) holds with a(q) ≡ 1. �

Stable potentials with small attractions can also be treated, see Ruelle’s book.
The criterion (4.5) first appeared on an article by Kotecký and Preiss. It is

usually easy to guess the function a. It is translation invariant whenever the system
is translation invariant. Therefore it must be constant in the classical gas. A little
calculation shows that a(x) = 1 is the optimal choice. Another typical application
deals with “polymers”, that are represented by connected sets on Z

d. Then a must
be at least proportional to the cardinality, because of the left side in (4.5). And a
usually cannot be bigger in order for the integral to converge.

Proof of Theorem III. Another inequality turns out to be helpful. Mul-
tiplying both sides of (4.6) by |ζ(x, x1)| and integrating over x1, we find using
(4.5)

∑
n�1

∫
d|μ|(x1) . . .

∫
d|μ|(xn)

( n∑
i=1

|ζ(x, xi)|
)
|ϕ(x1, . . . , xn)| � a(x) (4.7)

for all x ∈ A.
The strategy is to show inductively that (4.5) implies (4.6). Convergence of the

cluster expansion follows and allows to prove Theorem III.
We prove that the following holds for all N ,

1 +
N∑

n=2

n

∫
d|μ|(x2) . . .

∫
d|μ|(xn)|ϕ(x1, . . . , xn)| � ea(x1) . (4.8)
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The case N = 1 is clear and we consider now any N . The left side is equal to

1 +
N∑

n=2

∫
d|μ|(x2) . . .

∫
d|μ|(xn)

1
(n − 1)!

∣∣∣ ∑
G∈Cn

∏
(i,j)∈G

ζ(xi, xj)
∣∣∣. (4.9)

Let us focus on the sum over connected graphs G. Removing all edges of G with
one endpoint on 1 yields a possibly disconnected graph G′. Let (G1, . . . , Gk) be
a sequence of connected graphs where Gi has set of vertices Vi, V1 ∪ · · · ∪ Vk =
{2, . . . , n}, and Vi ∩ Vj = ∅ if i �= j. Each sequence determines a graph G′, and to
each G′ corresponds k! such sequences. See Fig. 4.1 for an illustration. Therefore
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Figure 4.1. Illustration for G, G′, and (G1, . . . , Gk).

∣∣∣ ∑
G∈Cn

∏
(i,j)∈G

ζ(xi, xj)
∣∣∣ �

∑
k�1

1
k!

∣∣∣ ∑
(G1,...,Gk)

k∏
�=1

{ ∏
(i,j)∈G�

ζ(xi, xj)
∑
G′

�

∏
(i,j)∈G′

�

ζ(xi, xj)
}∣∣∣.

(4.10)
The sum over G′

� runs over nonempty sets of edges with one endpoint on 1 and one
endpoint in V� (i = 1 in the last product). We have

∑
G′

�

∏
(i,j)∈G′

�

ζ(xi, xj) =
∏
i∈V�

(
1 + ζ(x1, xi)

) − 1

=
∑
i∈V�

ζ(x1, xi)
∏
j∈V�
j �=i

(
1 + ζ(x1, xj)

)
.

This shows that the absolute value of the left side is bounded by
∑

i∈V�
|ζ(x1, xi)|.

The sum over sequences (G1, . . . , Gk) can be done by first choosing the respec-
tive numbers of vertices m1, . . . , mk whose sum is n − 1, then by summing over
partitions of {2, . . . , n} in sets V1, . . . , Vk with |Vi| = mi, and finally by choosing
connected graphs for each set of vertices. The number of partitions is (n−1)!

m1!...mk! .
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Then (4.9) can be bounded by

1 +
N∑

n=2

∑
k�1

1
k!

∑
m1,...,mk�1

m1+···+mk=n−1

k∏
�=1

[∫
d|μ|(y1) . . .

∫
d|μ|(ym�

)

|ϕ(y1, . . . , ym�
)|

m�∑
i=1

|ζ(x1, yi)|
]
.

We can sum over n; the constraint m1 + · · · + mk � N − 1 can be relaxed into
m� � N − 1 for all �. Using (4.7) with n � N − 1, we obtain the bound

1 +
∑
k�1

1
k!

[a(x1)]k = ea(x1) . (4.11)

This proves inequality (4.6). Absolute convergence of the cluster expansion follows
from (4.6) and summability of ea(x) .

We now use this bound to prove that the partition function is given by the
exponential of the sum of connected graphs. The product in (4.3) is less than one,
so the sum over N is absolutely convergent. Retracing the developments of Section
1, we obtain

Z = 1 + lim
N→∞

N∑
n=1

∑
k�1

1
k!

∑
m1,...,mk�1

m1+···+mk=n

1
m1! . . . mk!

k∏
�=1

{∫
dμ(x1) . . .

∫
dμ(xm�

)
∑

G∈Cm�

∏
(i,j)∈G

ζ(xi, xj)
}

(4.12)

This expression has the structure limN→∞
∑

k AN (k), and we need to take the limit
under the sum. By the estimate of the theorem, we have that

|AN (k)| � 1
k!

[∑
n�1

∫
d|μ|(x1) . . .

∫
d|μ|(xn) |ϕ(x1, . . . , xn)|

]k

for all N . The bracket is less than
∫

ea(x1) dμ(x1) by (4.6), and this is finite by
assumption. This allows to use the dominated convergence theorem. As N → ∞,
we obtain the exponential stated in the theorem. �


