
Heat capacities of solids 
 
Any theory used to calculate lattice vibration heat capacities of crystalline solids must explain two 
things: 
 

1.  Near room temperature, the heat capacity of most solids is around 3k per atom (the molar  
    heat capacity for a solid consisting of n-atom molecules is ~3nR).  This is the well-known   
    Dulong and Petit law. 
 
2.  At low temperatures, Cv decreases, becoming zero at T=0.  Heat capacities have a  
    temperature dependence of the form αT3 + γT, where the T3 term arises from lattice  
    vibrations, and the linear term from conduction electrons. 
 

Classical mechanics would predict Cv = 3R at all temperatures, in violation of both experiment and the 
third law of thermodynamics. 
 
Einstein’s theory of heat capacities 
 
Einstein treated the atoms in a crystal as N simple harmonic oscillators, all having the same frequency 
νE.  The frequency νE depends on the strength of the restoring force acting on the atom, i.e. the 
strength of the chemical bonds within the solid.   Since the equation of motion for each atom 
decomposes into three independent equations for the x, y and z components of displacement, and N-
atom solid is equivalent to 3N harmonic oscillators, each vibrating independently at frequency νE.   
Note that this treatment is a gross approximation, since in reality the lattice vibrations are very 
complicated coupled oscillations.  
 
The energy levels of the harmonic oscillators are given by 
 
   εv = hνE(v + ½),      v = 0, 1, 2… 
 
Assuming the oscillators are in thermal equilibrium at temperature T, the partition function for a 
single oscillator is 
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v=0

 ∞
exp[-βεv]  =  ∑

v=0
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exp[-βhνE(v+½)]  =  e-x/2 ∑
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1-e-x where   x = βhνE. 

 

In the above, we have used the fact that ∑
n=0

 ∞  xn  =  
1

1 - x . 

The mean energy per oscillator is then 
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The first term above, hν/2, is simply the zero point energy.  Using the fact that energy is an extensive 
property, the energy of the 3N oscillators in the N-atom solid is 
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The heat capacity at constant volume is therefore 
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θE is the ‘Einstein temperature’, which is different for each solid, and reflects the rigidity of the 
lattice.  
 
At the high temperature limit, when T >> θE (and x << 1), the Einstein heat capacity reduces to Cv = 
3Nk, the Dulong and Petit law [prove by setting ex ~ 1+x in the denominator]. 
 
At the low temperature limit, when T << θE (and x >> 1), Cv  0 as T  0, as required by the third law of 
thermodynamics.  [Prove by setting ex-1 ~ ex in the denominator for large x]. 
 
 
Debye’s theory of heat capacities 
 
Debye improved on Einstein’s theory by treating the coupled vibrations of the solid in terms of 3N 
normal modes of vibration of the whole system, each with its own frequency.  The lattice vibrations 
are therefore equivalent to 3N independent harmonic oscillators with these normal mode frequencies.  
For low frequency vibrations, defined as those for which the wavelength is much greater than the 
atomic spacing, λ >> a, the crystal may be treated as a homogeneous elastic medium.  The normal modes 
are the frequencies of the standing waves that are possible in the medium. 
 
Debye derived an expression for the number of modes with frequency between ν and ν+dν in such a 
medium. 
 

   g(ν) dν = 
4πVν2

v3  dν  =  α ν2dν  

 
where V is the crystal volume and v is the propagation velocity of the wave.  As outlined above, this 
expression applies only to low frequency vibrations in a crystal. Debye used the approximation that it 
applied to all frequencies, and introduced a maximum frequency νD (the Debye frequency) such that 
there were 3N modes in total.  i.e. ⌡⌠0

νDg(ν)dν = 3N .  The Debye frequency corresponds to λ = 2a, when 

neighbouring atoms vibrate in antiphase with each other.  With this approximation in place, Debye 
integrated over all of the frequencies to find the internal energy of the crystal, and then calculated 

the heat capacity using Cv = 



∂U

 ∂T v
 .  The resulting expression is given below. 

 

 Cv  =  3Nk 
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where x = 
hν
kT, and xD = 

hνD

kT  = 
θD

T .  The Debye heat capacity depends only on the Debye temperature θD. 

The integral cannot be evaluated analytically, but the bracketed function is tabulated.   
 
At high temperatures (T >> θD, xD << 1), we may rewrite the integrand as follows: 
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Retaining only the x2 term in the denominator gives 
 

 Cv = 3Nk 
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To determine the low temperature limit (T << θD, xD >> 1), we note that the integrand tends towards 
zero rapidly for large x.  This allows us to replace the upper limit by ∞ and turn the integral into a 
standard integral, to give 
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We see that the Debye heat capacity decreases as T3 at low temperatures, in agreement with 
experimental observation.  This is a marked improvement on Einstein’s theory. 
 
Free electron model of metals 
 
Up to this point, we have only considered contributions to the heat capacity from vibrations within the 
solid.  In metals, the free conduction electrons also contribute to the heat capacity.  In the free 
electron model of metals, the conduction electrons are treated as a perfect gas obeying Fermi-Dirac 
statistics.  Interactions of the electrons with the positively charged atomic ions and with the other 
electrons are neglected.  This is not such a bad approximation as it may appear at first:  the ions 
provide a positively charged background that partly screens the electrons from each other; and the 
residual collisions are often relatively unimportant - the energetically accessible final states are often 
already occupied, making any collisional excitation process forbidden by the Pauli exclusion principle.  
 
The first step in deriving the heat capacity is to determine the density of states.  We will first do this 
in momentum space, and then transform the result into an expression describing the density of states 
per unit energy. 
 
The 3-dimensional Schrodinger equation for the translational motion of the electrons has the solutions 
 

 φn1n2n3(r) = A sin



n1π x

L  sin



n2π y

L  sin



n3π z

L   

 

with  k = 



πn1

L  , 
πn2

L  , 
πn3

L  and  k2 = 
π2

L2 (n1
2 + n2

2 + n3
2). 

 
The allowed values of k therefore form a cubic point lattice in k-space, with spacing π/L and volume 
per point (π/L)3.  Finding the number of normal modes of the standing wave wavefunctions with k 
between k and k+dk is equivalent to finding the number of lattice points between two spherical shells 
of radii k and k+dk in the positive octant of k-space.  The number of k-vectors of magnitude ≤ k is 
 

 nk = 
Volume of region
 Volume per point  =  

(1/8) (4/3)πk3

(π/L)3   =  
Vk3

6π2     where V = L3. 

 
The number f(k) within an interval dk is found by differentiating this expression, giving 



  f(k) dk  =  
dnk

dk dk  =  
Vk2 dk

2π2   

 
Since k = 2πp/h (and therefore dk = (2π/h)dp), the density of states in momentum space is 
 

  f(p) dp = 
8πVp2 dp

h3   

 
where an extra factor of two has been added to account for the two possible spin states of the 
electrons.  This expression may be converted to an energy density of states by substituting ε = p2/2m 
(and so dε = (p/m)dp), to give 
 

  f(ε) dε = 
4πV
h3  (2m)3/2 ε1/2 dε  

 
To determine the number of electrons with energies between ε and ε+dε, we need to multiply the above 
expression, which gives the density of  states at energy ε, with the probability n(ε) of finding an 
electron in a given state with energy ε.   Electrons are Fermions, and obey Fermi-Dirac statistics, so 
n(ε) is given by the Fermi-Dirac distribution (Note: the Fermi-Dirac distribution is an analogue of the 
Boltzmann distribution for systems in which spin must be taken into account)  
 

  n(ε) = 
1

exp[β(ε-µ)] + 1  where µ is the chemical potential and β=1/kT 

 
The number of electrons with energy between ε and ε+dε is then 
 

  dN(ε)  =  n(ε)f(ε)dε  =  
1

exp[β(ε-µ)]+1 
4πV
h3  (2m)3/2 ε1/2 dε  

 
Integrating from zero to infinity gives the total number of electrons in the gas.  The Fermi energy εF 
is the value of µ when T=0 i.e. εF = µ(0), and may also be written εF = kTF, where TF is the Fermi 
temperature.   
 
Now we will look at the energy level occupations n(e) and the overall energy distribution N(ε) as the 
temperature is increased from zero. 
 
At T=0, the Fermi-Dirac distribution becomes 
   

  n(ε) = 
1

exp[β(ε-εF)] + 1  

 
and since β=∞ at T=0, this is equal to 0 if ε > εF and 1 if ε < εF.  The two distributions n(ε) and N(ε) are 
shown below. 
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At higher temperatures, the two distributions change slightly from their behaviour at T=0, due to 
electrons lying below the Fermi level being excited to states lying above the Fermi level.  This is shown 
below. 
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Now we will consider the consequences of these distributions for the heat capacity.  Classical 
mechanics would predict a contribution ½ kT per electron to the heat capacity, in addition to the heat 
capacity arising from the lattice vibrations.  This is a much larger contribution than is observed 
experimentally.  The answer lies in the Fermionic nature of the electrons.  In the classical model, a 
change in temperature ∆T would lead to an energy increase of around k∆T per electron.  However, we 
have seen that apart from electrons with energies very close to the Fermi energy εF, the states to 
which the electrons would be promoted by an energy increase of this magnitude are already occupied.  
Hence, only a very small fraction of electrons, those lying within ~k∆T of the Fermi level, are able to 
absorb the energy and contribute to the heat capacity. 
 
The heat capacity per electron turns out to be 
 

  CV = 
π2

2  k 
T
TF

  

 
At room temperature this is a very small contribution to the overall heat capacity (on the order of a 
few percent).  However, at very low temperatures the electronic heat capacity dominates, since it is 
linear in temperature while the lattice heat capacity is proportional to T3. 


