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In his recent popular book The Universe in a
Nutshell, Steven Hawking gives expressions for
the entropy1 and temperature (often referred to

as the “Hawking temperature”2) of a black hole:3
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where A is the area of the event horizon, M is the 

mass,k is Boltzmann’s constant, � = �
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Planck’s constant), c is the speed of light, and G is
the universal gravitational constant.  These expres-
sions can be used as starting points for some interest-
ing approximations on the thermodynamics of a
Schwarzschild black hole, of mass M, which by defi-
nition is nonrotating and spherical with an event
horizon of radius 
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�. 4,5

Hawking has theorized that during pair produc-
tion occurring just outside the event horizon, a black
hole slowly loses mass or evaporates as particles are
radiated away.  This, now known as “Hawking radia-
tion,” was initially described to many in his first
popular book A Brief History of Time.  In this
process, anti-particles with negative energy fall into
the black hole actually causing the mass to decrease.6

Using the expression for the Schwarzschild radius,
the entropy of a black hole of event-horizon area 
A = �R2 can be written in terms of its mass using 

Eq. (1) as S = �
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Multiplying by both sides of Eq. (2) gives Tds =
c 2dm.  Integrating from the greater initial mass M to
a lesser final mass M � yields Q = (M� – M)c2 =
�Mc2, which is the heat energy lost when the black
hole radiates away a mass �M = M�– M.  Note that
�M is intrinsically a negative quantity.   

The heat lost during a temperature change can
also be written as dQ = mCdT, which allows the spe-
cific heat (at constant pressure) of a black hole C to
be determined.  Substituting dQ = c2dm and from 

Eq. (2) dT = – �
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The negative sign is not a surprise, since it can be
clearly seen from Eq. (2) and the above temperature
change that as a black hole loses mass and therefore
energy, its temperature increases. 

Note that integrating Tds over the entire mass M
of a black hole would give Q = –Mc 2, which suggests
that its total energy would eventually be radiated
away as heat.  Therefore, by the first law of thermo-
dynamics, �E = Q – W, there is no work being done
on the event horizon as the volume decreases.  This
suggests that the pressure on the event horizon is
negligible and verifies that the specific heat is indeed
at constant pressure. 

The temperature increase with loss of mass shown
in Eq. (2) suggests that over time, the rate at which
the energy is radiated from the black hole should
also increase.  The proportionality between specific
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heat and mass seen above supports the assertion as
well. 

The rate of energy loss can be approximated with 

the Stephan-Boltzmann radiation law, J = �
dU
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constant.7 Rearranging the radiation equation and
substituting the area of the event horizon gives
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the Schwarzschild radius, and the Hawking tempera-
ture gives, after further rearranging, a rate of mass 

loss �
d

d

m

t
� = �

1536

�

0

c4

�G 2
� �

M

1
2

�, which will indeed 

increase as mass and energy are lost.8,9

Solving for dt in the last expression and integrat-

ing yields t = �
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� M3 = 10-16 M3, the lifetime 

of a black hole once it begins to evaporate.10,11 The
Hawking temperature of a black hole can be approx-
imated from the values of the constants as 

T � �
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023
�; this is only about 10-7 K12 above 

absolute zero even for the smallest stellar black holes
(approximately 3 solar masses).13 Since the average
temperature of the universe is about 2.7 K, most
black holes are absorbing more energy than they
emit and will not begin to evaporate for some time,
until the universe has expanded and cooled below
their temperature.14 Even once evaporation begins,
by the above equation, a 3-solar-mass black hole
would last 1075 s or 1068 yr!  However, primordial,
mini-black holes, theorized by Hawking to have
been created during the big bang, 15 with masses of
about 1012 kg would have been much hotter and
would evaporate in about 1020 s or 1013 yr.  These
may not have evaporated yet either, but they should
much sooner than their stellar cousins. 

What actually happens when a black hole finally
radiates away the last of its mass is not clear, but at
such a high temperature a huge burst of x-rays or
gamma rays is likely.  Nothing of this nature of the
expected magnitude has even been observed.16

The above expression for the change in the
entropy of a black hole shows that as a black hole
loses mass through evaporation its entropy will
decrease.  However, the second law of thermody-

namics states that the entropy of a closed system
must increase.17 If a black hole is in a reservoir of
volume V and temperature T, and total energy 

E = aVT 4, where a = �
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the Stephan-Boltzmann Law,18 it can be shown with
the first law of thermodynamics that the entropy of 
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the black hole and reservoir system E = mc2+ aVT 4

remains constant and total entropy of the system 
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By conservation of energy, dE = 0 = c2dm + aT 4
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Multiplying the entropy change by the temperature
T and subtracting the energy equation, then dividing 

the temperature back out gives dS = �
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temperature in the second term (physically appropri-
ate as it was from the energy of the black hole)
shows that it is equivalent to the first term.  The first 

two terms therefore cancel and leave dS = �
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�aT 3 dV.  

Since the volume of the reservoir increases by the
same amount that the event horizon’s volume
decreases, this surprisingly simple expression for dS is
indeed a positive quantity and therefore shows an
overall increase in the entropy of the system. 

Substituting the value a = �
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the volume of the reservoir, which is the opposite of
the decrease in the event horizon’s volume, 
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few cancellations, that once the system reaches equi-
librium (when the reservoir reaches the Hawking
temperature), the expression for the entropy change 

simplifies to dS = – �
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Again, since the initial mass M is greater than the
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final mass M�, the result is a positive quantity show-
ing an increase in entropy. 

Note that the entropy depends only on the mass
of the black hole.  Entropy is defined as the loga-
rithm of the number of states accessible to a sys-
tem20 and in the case of a Schwarzschild black hole,
mass is the only “state variable.”21,22

Despite the fact that these approximations apply
only to the simplest of black holes (the Schwarzs-
child black hole), the results are still informative and
intriguing, perhaps especially for those who wish to
begin investigating some of the fascinating properties
of black holes23 in a bit more detail than Hawking
and others can go into in popular books, but with-
out necessarily having to delve into the details of
general relativity and quantum mechanics.24,25

Appendix
If the energy of the reservoir is E = aVT 4, a change
in the energy dE = dQ – dW can also be written as 
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