
Photons and Blackbody Radiation

Introduction

What follows are some notes regarding the thermal physics of electromagnetic radiation,
the topic of the final lecture for our course. It is a good topic to close with, since it draws
on material we have developed in the course, and furthermore provides an appropriate
introduction to quantum physics—that fascinating topic that governs so much about how
our universe behaves.

Max Planck (1858-1947), in a paper presented on December 14, 1900 (almost exactly
101 years ago), guessed the answer to a problem, and this guess marked the very beginning
of quantum mechanics. The problem was that the observed spectrum of the radiation
emitted from a “black body” could not be explained in terms of classical electromagnetic
theory. It was not a minor problem: Classical theory predicted an infinite energy of
radiation—a disagreement so gross it was called the “ultraviolet catastrophe”. A “black
body” (nowadays usually written as a single word: “blackbody”) is one that absorbs
all radiation falling upon it. It is very well approximated by an apparatus we shall see,
namely a small hole in the side of an otherwise closed box, where any radiation entering
the hole just bounces around inside the box with only a very small chance of re-emerging
through the small hole. In addition to absorbing radiation, the small hole also emits
radiation, with a spectral distribution of frequencies that depends only on the temperature
of the walls of the box. It does not matter what the box is made of, even though this
radiation is generated by the motion of the charged electrons in the walls of the box.
The goal of the following discussion is to determine an expression for U , the energy of
the radiation in the box.

Mean energy of an oscillation mode

We imagine that electromagnetic radiation inside
our box exists as patterns of standing waves, or
modes. A single mode is like a standing wave
on a guitar string, and is characterized by a
frequency. At the right is a representation of the
three lowest oscillation amplitudes (and hence the
three lowest energies), for the lowest frequency
mode of an oscillation of the electric field in, say,
the x-dimension of our box. (We assume, without
loss of generality, that the walls of our box are
conducting, so that the electric field amplitude goes
to zero at the box walls.)
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oscillation amplitudes for the 3 lowest
energies of a mode of angular frequency
ω = πc/L, in a box of length L

Figure 1
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The energy of a mode is quantized: It was Planck’s hypothesis that
only certain energies of these oscillation modes are allowed. Thus:
En = (n+1/2)h̄ω = (n+1/2)hν, where ν is the oscillation frequency (called
f by Young & Freedman), ω = 2πν is the angular frequency, h is Planck’s
constant, with a currently accepted value of 6.626 × 10−34 Joule-seconds,
h̄ ≡ h/2π = 1.054×10−34 Joule-seconds, and n is an integer starting with 0.
Thus each oscillation mode can exist in any one of an infinite number of
energy states whose energies are equally separated by the energy h̄ω. In
the discussion that follows, we shall ignore the “1/2” in the expression for
En, as it has no effect on the results we seek. Hence we take En = nh̄ω as
the energy of the mode whose (angular) frequency is ω.

Definition of a photon: When the energy of a mode is En we say there are n photons in
the mode. Each photon has an energy equal to h̄ω.
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What is P(n)? The first question we ask is this: What is the probability P (En) that a
mode has energy En? Equivalently: What is the probability P (n) that there are n photons
in the mode of frequency ω? This is also the first question addressed by Max Planck.

P(n) for N electron spins: We have already answered a question like this when we
discussed the system of N electron spins. In that system each electron can exist in either
of only two states, one of energy ε higher than the other, so n electrons are “up”, and
N − n electrons are “down”. We found, starting from the definition of temperature
(1/T ≡ ∂S/∂U), that n/(N − n) = e−ε/kT —the Boltzmann factor.

It is equivalent to specify the probability P (E) that an electron spin has energy E:

P (E) = Ae−E/kT

where A is a normalizing factor, obtained by noting that each electron must have an
energy E that is either 0 or ε. Thus, P (0) + P (ε) = A(e0 + e−ε/kT ) = 1, so that
A = 1/(1 + e−ε/kT ). Note that n/(N − n) = P (ε)/P (0), a relation that does not require
that A be calculated, since it cancels out.

P(n) for photons: Our current problem is slightly different from the problem of the
electron spins, in that instead of just two energy levels, we now have an infinite number
of energy levels. The logic is the same: Again the probability P (En) is given by a
normalizing constant A times a Boltzmann factor:

P (En) = Ae−En/kT

To determine what A is, we again note that the sum of all the probabilities must be 1:

∞∑
n=0

P (En) = A

∞∑
n=0

e−En/kT = A

∞∑
n=0

e−nh̄ω/kT = 1

The above sum is of the form
∑

xn = 1+x+x2 + · · ·, where x ≡ e−h̄ω/kT is a number that
is less than 1. This series, which converges when x < 1, turns out to be exactly what you
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get for the binomial expansion of 1/(1 − x). It is a power series expansion whose general
form is displayed on page 672 of Young & Freedman. Hence A = 1 − x = 1 − e−h̄ω/kT , and

P (En) = Ae−En/kT = (1 − e−h̄ω/kT )e−En/kT or P (n) = (1 − e−h̄ω/kT )e−nh̄ω/kT (1)

Now that we have an expression for the probability P (n) that there are n photons in
a mode of frequency ω, we can determine 〈n〉, the mean (or average) number of photons in
a mode when the temperature of the walls of our box is T :

〈n〉 =
∞∑

n=0

nP (n) = (1 − e−h̄ω/kT )
∞∑

n=0

ne−nh̄ω/kT (2)

To calculate this last sum, we notice that it can be written in the form

∑
ne−nh̄ω/kT =

∑
ne−an where a ≡ h̄ω/kT

Thus we can write

∑
ne−an = − ∂

∂a

∑
e−an = − ∂

∂a

(
1

1 − e−a

)
=

e−a

(1 − e−a)2

Replacing a by its value and substituting into Eq. 2 we find

〈n〉 =
e−h̄ω/kT

1 − e−h̄ω/kT
=

1

eh̄ω/kT − 1

This is the thermal average number of photons in a mode whose (angular) frequency is
ω. If we multiply this number times the energy per photon, we obtain the mean thermal
energy of the mode. This relation is known as the Planck distribution function:

〈En〉 = h̄ω〈n〉 =
h̄ω

eh̄ω/kT − 1
(3)

Counting the modes in the box
Our goal is to determine the energy U of the radiation in the box. We now know the mean
thermal energy per oscillation mode of the electromagnetic field, so if we know the number
of modes in some small frequency range dω, we can multiply that by the energy per mode,
and then integrate over the values of ω to find U .

We shall assume that our box is in the form of a cube of edge length L, since this is
a simple shape to analyze, and it turns out that the shape of the box does not affect the
result: U will depend only on the overall volume of the box.
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To visualize the modes, consider first
just the x-direction. The figure at the right
shows the three lowest frequency modes for
electromagnetic standing waves polarized
perpendicular to the x-direction in our box.
(The lowest mode is like that shown in Fig. 1.)
There are an infinite number of such modes,
with frequencies ω = mxπc/L, where mx

is a positive integer. Since our box exists in
three dimensions, identical sets of modes exist
for electromagnetic standing waves polarized
perpendicular to the y- and z-directions,
corresponding to the sequences of integers my = 1, 2, 3 . . . and mz = 1, 2, 3 . . .

0 L
distance

the 3 lowest modes of the form
sin(ω t) sin(mxπx/L), with frequencies
ω = mxπc/L, where mx = 1, 2, 3

A general standing wave in our box will have components of the electric field E that
have nodes not only in the x-direction, but also in the y- and z-directions. Here is a typical
set of components oscillating at frequency ω:

Ex = Ex0 sin ωt cos(mxπx/L) sin(myπy/L) sin(mzπz/L)

Ey = Ey0 sin ωt sin(mxπx/L) cos(myπy/L) sin(mzπz/L)

Ez = Ez0 sin ωt sin(mxπx/L) sin(myπy/L) cos(mzπz/L)

(4)

where Ex0, Ey0 and Ez0 are the oscillation amplitudes of each of the components. Each
component must satisfy a wave equation of the form

1

c2

∂2Ex

∂t2
=

∂2Ex

∂x2
+

∂2Ex

∂y2
+

∂2Ex

∂z2

By substituting the expressions given by Eqs. 4 into this wave equation, we find that

ω2 =
π2c2

L2
(m2

x + m2
y + m2

z) or ω =
πc

L
(m2

x + m2
y + m2

z)
1/2 (5)

Thus for each triplet of integers (mx,my,mz) there is a mode whose frequency ω is given
by Eq. 5.

To count these modes, it is helpful to visualize them as points in m-space, that is,
in the space whose axes are labeled mx, my and mz. Each point in this space, i.e., each
triplet of positive integers (mx,my,mz), represents a mode. Actually each point represents
two modes, since there are two independent polarizations for each triplet of integers. These
points are distributed uniformly in this space, so there are two modes per unit volume of
m-space. We note that m ≡ (m2

x + m2
y + m2

z)
1/2 is the radius of a sphere in m-space.
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The figure at the right shows a spherical shell
(actually one-eighth of a spherical shell, since mx,
my and mz can take on only positive integer values)
in m-space, whose thickness is dm. The number
of m-space points inside this spherical shell, when
multiplied by 2, is equal to the number of modes
that lie between m and m + dm. Furthermore,
since the angular frequency is given by Eq. 5,
ω = (πc/L) m, and all the modes in the shell will
have frequencies lying between ω and ω + dω, where
dω = (πc/L) dm.

How many points lie in this spherical shell? It will be equal to the volume of the shell,
which is the area of the shell times the thickness of the shell, or 4πm2/8 times dm. The
number of modes within the shell is just twice this number, or πm2 dm. If we express m in
terms of ω, we find an expression for f(ω) dω, the number of modes whose frequency lies
between ω and ω + dω:

f(ω) dω = πm2 dm = π

(
L

πc

)3

ω2 dω =
L3

π2c3
ω2 dω

mz

1/8 of a spherical shell
           in m-space

mxmy

If we now multiply f(ω) dω by 〈En〉 (the mean energy per mode—see Eq. 3), and
divide by L3 (the volume of the box), we obtain u(ω) dω, the energy per unit volume lying
between ω and ω + dω:

u(ω) dω =
h̄

π2c3

ω3 dω

eh̄ω/kT − 1
(6)

u(ω) is the famous blackbody spectral distribution function. Here is a scaled plot of u(ω)
vs h̄ω/kT :
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The peak of the distribution function occurs when h̄ω/kT ≈ 2.82. Therefore it
is possible to determine the temperature of a blackbody by observing the frequency of
the maximum in the radiated intensity. This provides a method for the measurement
of the temperature of a star, the cosmic primordial background radiation, or even the
temperature of the glowing tungsten filament of an incandescent lamp.

The blackbody spectral distribution function may be expressed alternatively as a
function of the wavelength λ instead of the angular frequency ω. The resulting function,
which gives the energy per unit volume between λ and λ + dλ, has a somewhat different
shape:

u(λ) dλ =
8πhc

λ5

dλ

ehc/λkT − 1

Here is a scaled plot of u(λ) vs λkT/hc:
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This function has a maximum when λkT/hc ≈ 0.2014, which is different from the
peak of u(ω).

To find U/V , the total energy per unit volume for the radiation in the box, we
integrate Eq. 6 over all values of the frequency ω. Setting h̄ω/kT ≡ x simplifies the
integration:

U

V
=

∫ ∞

0
u(ω) dω =

(kT )4

π2h̄3c3

∫ ∞

0

x3 dx

ex − 1

The integral has the value π4/15, so we arrive at our final result:

U

V
=

π2

15h̄3c3
(kT )4 = aT 4 (7)

The result that the radiant energy density is proportional to the fourth power of the
temperature is known as the Stefan-Boltzmann law. a = 7.566 × 10−16J/m3-K4.
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Thermodynamics of the photon gas
It is of interest to look a little more closely at the photon gas, and to compare its
properties to a system with which we are more familiar, namely the ideal monatomic gas.

We know about the ideal gas. It obeys the ideal gas equation of state: pV = NkT .
Its energy U depends only on temperature: U = NkT/(γ − 1). Its entropy depends
logarithmically on two of the three variables p, V and T , for example:

S =
Nk

γ − 1
(ln V γ + ln p) + constant

from which it can be seen that an adiabatic (i.e., isentropic) process demands that pV γ

remain constant.

The internal energy U for the photon gas, as we have seen, depends on both V and T :
U = aV T 4. It is not hard to show (see Feynman, page 39-6) that the pressure exerted
by a photon gas is p = U/3V , so that the equation of state for a photon gas is given by
p = aT 4/3. Note that the volume does not enter into the equation of state for the photon
gas. The entropy of a photon gas may be deduced by considering an isochoric process, for
which dU = TdS, so that

dS =
1

T
dU = 4aV T 2 dT or, integrating: S =

4

3
a V T 3 + constant

The constant (unlike the situation for the ideal gas) is actually zero: This ensures that
the entropy vanishes at zero temperature. We did not obtain a similar result for the ideal
gas because we did not consider it quantum mechanically. Consideration of a process that
is not isochoric yields the same result, so this is a valid expression for the entropy of a
photon gas. Note that for an adiabatic (isentropic) process, V T 3 must remain constant.
As Feynman points out, this is equivalent to stating that pV γ remains constant, since
γ = 4/3 for the photon gas.

Here is a question for you that will give you some sense for radiation pressure:
Suppose you have a closed box of photons. How high must the temperature be, in kelvins,
before the pressure reaches one atmosphere (1.013×105 Newtons per square meter)? (I get
about 1.4 × 105 K, but I may be wrong.)

References
The above notes are mostly distilled from Chapter 4 of Thermal Physics by Kittel and
Kroemer, so that would be a good place to start for further explorations. Those authors
display a nice quotation from the writings of Max Planck:

[We consider] the distribution of the energy U among N oscillators of
frequency ν. If U is viewed as divisible without limit, then an infinite number of
distributions are possible. We consider however—and this is the essential point of
the whole calculation—U as made up of an entirely determined number of finite
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equal parts, and we make use of the natural constant h = 6.55 × 10−27 erg-sec.
This constant when multiplied by the common frequency ν of the oscillators give
the element of energy ε in ergs . . .

— M. Planck

— written by Peter Scott for Physics 5D on November 27, 2001


