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In the Standard Model, the weak and electromagnetic forces are two aspects of something called
the ‘electroweak force’, which is described by the group SU(2)× U(1). Curiously, it turns out that
the familiar concept of ‘electric charge’ is less fundamental than the concepts of ‘weak isospin’ and
‘hypercharge’. The weak isospin of a particle describes how it transforms under SU(2), while its
hypercharge describes how it transforms under U(1). The electric charge is computed in a funny
way from these two!

In the following problems, you will examine how this works. The full symmetry group of the
Standard Model is

ISpin(3, 1)× SU(3)× SU(2)×U(1),

but we will focus on the electroweak force, so we’ll ignore ISpin(3, 1) and SU(3) and only think of
particles as irreps of SU(2) × U(1). You can read these irreps off the elementary particle chart at
the end of this handout.

We begin by introducing bases for su(2) and u(1):

• The Lie algebra su(2) consists of traceless skew-adjoint 2 × 2 complex matrices, so it has a
basis consisting of the matrices i

2σj , where

σ1 =
(

0 1
1 0

)

σ2 =
(

0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

• The Lie algebra u(1) consists of skew-adjoint 1 × 1 complex matrices, which are the same as
imaginary numbers. For these we choose the basis vector i

3 .

In quantum theory, observables correspond to self-adjoint operators. Given any unitary represen-
tation ρ of SU(2) on some Hilbert space, the above basis of su(2) gets mapped by dρ to skew-adjoint
operators on that Hilbert space. Dividing these by i we get self-adjoint operators called the three
components of weak isospin: I1, I2 and I3. In short:

Ij = dρ( 1
2σj)

where we have cancelled some factors of i in a slightly underhanded manner.
Similarly, given any unitary representation ρ of U(1) on some Hilbert space, the above basis of

U(1) gets mapped by dρ to a skew-adjoint operator. Dividing this by i we get a self-adjoint operator
called hypercharge, Y . In short:

Y = dρ(
1
3

).

Digression on History and Terminology

The following stuff is not strictly necessary for doing the homework. But if you want to under-
stand the terms ‘isospin’ and ‘hypercharge’ and that weird factor of 1

3 , read this!



The group SU(2) first showed up in physics because it is the double cover of the rotation group
SO(3). The matrices i

2σj serve as a convenient basis for the Lie algebra su(2) because they satisfy
the commutation relations

[ i2σ1,
i
2σ2] = i

2σ3 and cyclic permutations thereof,

which show that su(2) is isomorphic to R3 with its usual cross product:

i× j = k and cyclic permutations thereof.

While the matrices i
2σj are skew-adjoint, the matrices 1

2σj are self-adjoint, so they correspond to
observables of any quantum system with SU(2) symmetry. When SU(2) is used to describe the
rotation symmetries of some system, the observables corresponding to the matrices 1

2σj are called
the components of its angular momentum. The angular momentum intrinsic to an elementary
particle is called its spin. The matrices σj are called Pauli matrices because they were introduced
by Pauli in his explanation of the spin of the electron.

Later, Heisenberg proposed SU(2) as a symmetry group for the strong nuclear force. His idea
was that this group would explain a symmetry between protons and neutrons: both these particles
would really be two states of a single particle called the nucleon, which would transform under the
spin- 1

2 representation of SU(2). The proton would be the spin-up state:

p =
(

1
0

)
∈ C2,

while the neutron would be the spin-down state:

n =
(

0
1

)
∈ C2.

However, the ‘spin’ in question here has nothing to do with angular momentum — we’re just reusing
that word because the same group SU(2) was used to describe rotation symmetries. To avoid
confusion, Heisenberg needed another name for this new sort of ‘spin’. Since different isotopes of an
element differ in how many neutrons they have in their nucleus, he coined the term ‘isotopic spin’.
Later this got shortened to ‘isospin’. So, we call the observables corresponding to 1

2σj in this new
context the three components of a particle’s isospin.

Still later, Glashow, Weinberg and Salam used SU(2) as a symmetry group for the weak nuclear
force, and called the observables corresponding to 1

2σj the three components of a particle’s weak
isospin, Ij . There is a close relation between weak isospin and Heisenberg’s original isospin: in
particular, the isospin of a nucleon is the sum of the weak isospins of the three quarks it is made
of. However, weak isospin is now considered to be important for the weak rather than the strong
nuclear force.

In short: the same math keeps getting recycled for different physics!
Similarly, U(1) started out being used as a symmetry group for the electromagnetic force. For

each integer q there is a unitary irrep ρ of U(1) on C called the charge-q irrep. This is given by

ρ(eiθ)ψ = eiqθψ

for any unit complex number eiθ ∈ U(1) and any vector ψ ∈ C. Differentiating with respect to θ
and setting θ = 0, we get an irrep dρ of the Lie algebra u(1) on C with

dρ(i)ψ = iqψ.

The operator dρ(i) is skew-adjoint, but we can divide it by i to get a self-adjoint operator

Q = i−1dρ(i),



or dρ(1) if we cancel some factors of i in a slightly underhanded way. It’s easy to see that

Qψ = qψ.

The observable corresponding to Q is called electric charge, and the above equation says that
any state of a particle described by the charge-q irrep of U(1) has electric charge equal to q. Using
the group U(1) this way gives a nice ‘explanation’ of the fact that the electric charge is quantized:
the charge of any particle is an integer times some smallest charge. However, it doesn’t say what
this smallest charge actually is!

For a long time people thought that the electron had the smallest possible charge, so they said
the electron has charge 1. Actually they said it has charge −1: an unfortunate convention which
we can blame on Benjamin Franklin, because he was mixed up about which way the electricity
flowed in a current. But what do you expect from someone who flies a kite with a key hanging on
it during a thunderstorm, to attract lightning bolts? Dumb! But lucky: the next two people to try
that experiment were killed.

Much later, people discovered that quarks have electric charges smaller than that of the electron.
Measured in units of the electron charge, quark charges are integral multiples of 1

3 . Mathematically
it would be nicest to redefine our units of charge so the smallest possible charge is still 1, but people
are too conservative to do this, so now the smallest charge is taken to be 1

3 .
Still later, people reused the group U(1) as a symmetry group for the electroweak force, and

used the term ‘hypercharge’ for the observable corresponding to this new U(1). Since hypercharge
is closely related to charge, physicists also measure hypercharge in integral multiples of 1

3 .
Here’s how we accomodate this foolish factor of 1

3 . For each number y with 3y ∈ Z, there is a
unitary irrep ρ of U(1) on C called the hypercharge-y irrep. This is given by

ρ(eiθ)ψ = e3iyθψ.

Differentiating with respect to θ as before, we get an irrep dρ of u(1) on C with

dρ(
i

3
)ψ = iyψ.

The operator dρ( i3 ) is skew-adjoint, but dividing it by i we get a self-adjoint operator

Y = i−1dρ(
i

3
),

or dρ( 1
3 ) for short. It’s easy to see that

Y ψ = yψ.

We call the observable corresponding to Y hypercharge, and the above equation says that any
state of a particle described by the hypercharge-y irrep of U(1) has hypercharge y.

Back to Business

Any particle in the Standard Model corresponds to some unitary irrep of SU(2)×U(1). This is
a unitary rep of both SU(2) and of U(1), so we get self-adjoint operators I1, I2, I3 and Y on this
irrep, corresponding to weak isospin and hypercharge. The observable electric charge is related
to these by the mystical formula

Q = I3 +
Y

2
.

Now let’s use this to work out the electric charges of all the elementary particles!



I’ll do an example: consider the left-handed electron neutrino νLe . As indicated in the chart at
the end of this handout, this is the first member of the standard basis of the irrep C2 ⊗ C−1 of
SU(2)×U(1):

νLe =
(

1
0

)
, eL =

(
0
1

)
.

Note that

I3ν
L
e =

(
1
2 0
0 − 1

2

)(
1
0

)
= 1

2

(
1
0

)
= 1

2ν
L
e .

Since the eigenvalue is 1
2 , a physicist reading this equation will say ‘the left-handed electron neutrino

has I3 = 1
2 ’.

In the chart at the end of this handout, the hypercharge-y irrep of U(1) is denoted Cy. As
explained in the Digression, the hypercharge operator Y acts as multiplication by the number y on
any vector in this representation. Since the left-handed electron lives in the hypercharge-(−1) rep,
it follows that

Y νLe = −νLe .

Now that we know I3 and Y for the left-handed electron neutrino, we can use the magic formula
to work out its electric charge:

QνLe = (I3 +
Y

2
)νLe = 0.

Since the eigenvalue is 0, the left-handed electron neutrino has electric charge 0. And indeed, this
particle is neutral!

Finally, here’s where you come in....
1. Use this idea to fill out as much of the following chart as you can. If you know enough

representation theory you can do it all! It may help to reread the list of conventions in the previous
homework on elementary particles.



type of particle eigenvalue of: Y I3 Q
GAUGE BOSONS
grg, grb, ggr, ggb, gbr, gbg, grr − gbb, gbb − ggg
W1

W2

W3

W0

HIGGS BOSON
H+

H0

FIRST GENERATION FERMIONS
Leptons:
νLe
eL

νRe
eR

Quarks:
uLr , u

L
g , u

L
b

dLr , d
L
g , d

L
b

uRr , u
R
g , u

R
b

dRr , d
R
g , d

R
b

SECOND GENERATION FERMIONS
Leptons:
νLµ
µL

νRµ
µR

Quarks:
cLr , c

L
g , c

L
b

sLr , s
L
g , s

L
b

cRr , c
R
g , c

R
b

sRr , s
R
g , s

R
b

THIRD GENERATION FERMIONS
Leptons:
νLτ
τL

νRτ
τR

Quarks:
tLr , t

L
g , t

L
b

bLr , b
L
g , b

L
b

tRr , t
R
g , t

R
b

bRr , b
R
g , b

R
b

2. In problem 1 of the previous homework you may have noticed that for leptons and quarks, the
average of the hypercharge of the right-handed ones is equal to the hypercharge of the left-handed
one. Use your new-found knowledge to say more about the significance of this fact.

3. What is the sum of the hypercharges of all the fermions in a given generation? To do this
right you have to sum over all 16 basis vectors of the fermion rep, e.g. νLe , eL, νRe , eR, uLr ,uLg ,uLb
dLr ,dLg ,dLb , uRr ,uRg ,uRb , dRr ,dRg ,dRb .

4. What is the sum of the eigenvalues of I3 over all the fermions in a given generation?



5. What is the sum of the electric charges of all the fermions in a given generation?
The answers to questions 3-5 are very important in grand unified theories. These are theories

where su(3) ⊕ su(2) ⊕ u(1) is embedded as a Lie subalgebra of some simple Lie algebra like su(5)
or so(10): i.e., a Lie algebra with no nontrivial ideals. The fermion rep can only extend to a rep of
a simple Lie algebra if the answers to questions 3-5 take a certain special form!

ELEMENTARY PARTICLES IN THE STANDARD MODEL



type of particle ISpin(3, 1) irrep SU(3) irrep SU(2) irrep U(1) irrep
GAUGE BOSONS
• gluons (SU(3) force carriers):
(grg, grb, ggr, ggb, gbr, gbg, grr − gbb, gbb − ggg) massless spin-1 su(3) R R

• SU(2) force carriers:
(W1,W2,W3) massless spin-1 R su(2) R

• U(1) force carrier:
(W0) massless spin-1 R R u(1)
HIGGS BOSON
• Higgs:
(H+,H0) massless spin-0 C C

2
C1

and its antiparticle!
FIRST GENERATION FERMIONS
Leptons:
• left-handed electron neutrino and electron:
(νLe , e

L) left-handed massless spin-1/2 C C
2

C−1

• right-handed electron neutrino:
(νRe ) right-handed massless spin-1/2 C C C0

• right-handed electron:
(eR) right-handed massless spin-1/2 C C C−2

and their antiparticles!
Quarks:
• left-handed up and down quarks:
(uLr , u

L
g , u

L
b , d

L
r , d

L
g , d

L
b ) left-handed massless spin-1/2 C

3
C

2
C 1

3

• right-handed up quark:
(uRr , u

R
g , u

R
b ) right-handed massless spin-1/2 C

3
C C 4

3

• right-handed down quark
(dRr , d

R
g , d

R
b ) right-handed massless spin-1/2 C

3
C C− 2

3

and their antiparticles!
SECOND GENERATION FERMIONS
Leptons:
• left-handed mu neutrino and muon:
(νLµ , µ

L) left-handed massless spin-1/2 C C
2

C−1

• right-handed mu neutrino:
(νRµ ) right-handed massless spin-1/2 C C C0

• right-handed muon:
(µR) right-handed massless spin-1/2 C C C−2

and their antiparticles!
Quarks:
• left-handed charm and strange quarks:
(cLr , c

L
g , c

L
b , s

L
r , s

L
g , s

L
b ) left-handed massless spin-1/2 C

3
C

2
C 1

3

• right-handed charm quark:
(cRr , c

R
g , c

R
b ) right-handed massless spin-1/2 C

3
C C 4

3

• right-handed strange quark
(sRr , s

R
g , s

R
b ) right-handed massless spin-1/2 C

3
C C− 2

3

and their antiparticles!
THIRD GENERATION FERMIONS
Leptons:
• left-handed tau neutrino and tau:
(νLτ , τ

L) left-handed massless spin-1/2 C C
2

C−1

• right-handed tau neutrino:
(νRτ ) right-handed massless spin-1/2 C C C0

• right-handed tau:
(τR) right-handed massless spin-1/2 C C C−2

and their antiparticles!
Quarks:
• left-handed top and bottom quarks:
(tLr , t

L
g , t

L
b , b

L
r , b

L
g , b

L
b ) left-handed massless spin-1/2 C

3
C

2
C 1

3

• right-handed top quark:
(tRr , t

R
g , t

R
b ) right-handed massless spin-1/2 C

3
C C 4

3

• right-handed bottom quark
(bRr , b

R
g , b

R
b ) right-handed massless spin-1/2 C

3
C C− 2

3

and their antiparticles!


