Lecture 22: Coherent States

Phy851 Fall 2009

Summary

• Properties of the QM SHO:

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2 \qquad \lambda = \sqrt{\frac{\hbar}{m\omega}}$$

$$A = \frac{1}{\sqrt{2}} \left(\frac{X}{\lambda} + i\frac{\lambda}{\hbar}P \right) \qquad A^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{X}{\lambda} - i\frac{\lambda}{\hbar}P \right)$$

$$X = \frac{\lambda}{\sqrt{2}} \left(A + A^{\dagger} \right) \qquad P = -i\frac{\hbar}{\sqrt{2\lambda}} \left(A - A^{\dagger} \right)$$

$$H = \hbar\omega \left(A^{\dagger}A + \frac{1}{2} \right)$$

$$H |n\rangle = \hbar\omega(n+1/2) |n\rangle$$

$$A|n\rangle = \sqrt{n}|n-1\rangle \qquad A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \qquad |n\rangle = \frac{\left(A^{\dagger}\right)^n}{\sqrt{n!}}|0\rangle$$

$$\psi_n(x) = \left[\sqrt{\pi}2^n n!\lambda\right]^{-1/2} H_n(x/\lambda) e^{-\frac{x^2}{2\lambda^2}}$$

$$\psi_n(x) = \sqrt{\frac{2}{n}} \frac{x}{\lambda} \psi_{n-1}(x) - \sqrt{\frac{n-1}{n}} \psi_{n-2}(x)$$

$$\psi_0(x) = \left[\sqrt{\pi}\lambda\right]^{-1/2} e^{-\frac{x^2}{2\lambda^2}} \qquad \psi_1(x) = \left[2\sqrt{\pi}\lambda\right]^{-1/2} 2\frac{x}{\lambda} e^{-\frac{x^2}{2\lambda^2}}$$

$$\Delta X = \lambda\sqrt{n+1/2} \qquad \Delta P = \frac{\hbar}{\lambda}\sqrt{n+1/2}$$

What are the `most classical' states of the SHO?

• In HW6.4, we saw that for a minimum uncertainty wavepacket with:

$$\Delta x = \frac{\lambda_{osc}}{\sqrt{2}} \qquad \lambda_{osc} = \sqrt{\frac{\hbar}{M\omega_{osc}}}$$

The uncertainties in position and momentum would remain constant.

- The interesting thing was that this was true independent of x_0 and p_0 the initial expectation values of X and P.
- We know that other than the case x₀=0 and p₀=0, the mean position and momentum oscillate like a classical particle
- This means that for just the right initial width, the wave-packet moves around like a classical particle, but DOESN'T SPREAD at all.

`Coherent States'

• Coherent states, or as they are sometimes called 'Glauber Coherent States' are the eigenstates of the annihilation operator

$$A|\alpha\rangle = \alpha|\alpha\rangle \qquad \langle \alpha|\alpha\rangle = 1$$

- Here α can be any complex number
- i.e. there is a different coherent state for every possible choice of $\boldsymbol{\alpha}$
- (Roy Glauber, Nobel Prize for Quantum Optics Theory 2005)
- These states are not really any more 'coherent' then other pure states,
 - they do maintain their coherence in the presence of dissipation somewhat more efficiently
- In QM the term 'coherence' is over-used and often abused, so do not think that it always has a precise meaning
- Glauber Coherent States are very important:
 - They are the 'most classical' states of the harmonic oscillator
 - They describe the quantum state of a laser
 - Replace the number of `quanta' with the number of `photons' in the laser mode
 - They describe superfluids and super-conductors

Series Solution

• Let us expand the coherent state onto energy eigenstates (i.e. number states)

$$\left|\alpha\right\rangle = \sum_{n=0}^{\infty} c_{n} \left|n\right\rangle$$

• Plug into eigenvalue equation:

$$A|\alpha\rangle = \alpha |\alpha\rangle$$
$$A\sum_{n=0}^{\infty} c_n |n\rangle = \alpha \sum_{n=0}^{\infty} c_n |n\rangle$$
$$\sum_{n=0}^{\infty} c_n \sqrt{n} |n-1\rangle = \alpha \sum_{n=0}^{\infty} c_n |n\rangle$$

• Hit from left with $\langle m |$:

$$\begin{split} \left\langle m \right| & \rightarrow \sum_{n=0}^{\infty} c_n \sqrt{n} |n-1\rangle = \alpha \sum_{n=0}^{\infty} c_n |n\rangle \\ & \sum_{n=0}^{\infty} c_n \sqrt{n} \left\langle m |n-1\rangle = \alpha \sum_{n=0}^{\infty} c_n \left\langle m |n\rangle \right\rangle \\ & c_{m+1} \sqrt{m+1} = \alpha \ c_m \end{split}$$

Continued

$$c_{m+1} = \frac{\alpha}{\sqrt{m+1}} c_m \qquad \qquad c_m = \frac{\alpha}{\sqrt{m}} c_{m-1}$$

• Start from: $c_0 = \mathcal{N}(\alpha)$

- The constant $N(\alpha)$ will be used at the end for normalization
- Try a few iterations:

$$c_{1} = \frac{\alpha}{\sqrt{1}}c_{0} = \frac{\alpha}{\sqrt{1}}\mathcal{N}(\alpha)$$

$$c_{2} = \frac{\alpha}{\sqrt{2}}c_{1} = \frac{\alpha^{2}}{\sqrt{2 \cdot 1}}\mathcal{N}(\alpha)$$

$$c_{3} = \frac{\alpha}{\sqrt{3}}c_{2} = \frac{\alpha^{3}}{\sqrt{3 \cdot 2 \cdot 1}}\mathcal{N}(\alpha)$$

$$c_{4} = \frac{\alpha}{\sqrt{4}}c_{2} = \frac{\alpha^{4}}{\sqrt{4 \cdot 3 \cdot 2 \cdot 1}}\mathcal{N}(\alpha)$$
So clearly by induction We have:

$$c_n = \frac{\alpha^n}{\sqrt{n!}} \mathcal{N}(\alpha)$$

Normalization Constant

$$c_n = \frac{\alpha^n}{\sqrt{n!}} \mathcal{N}(\alpha)$$

• So we have:

$$|\alpha\rangle = \mathcal{N}(\alpha)\sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

• For normalization we require:

$$1 = \langle \alpha | \alpha \rangle$$

= $|\mathcal{N}(\alpha)|^2 \sum_{\substack{n=0\\m=0}}^{\infty} \frac{\alpha^{*^m} \alpha^n}{\sqrt{m!n!}} \langle m | n \rangle$
= $|\mathcal{N}(\alpha)|^2 \sum_{\substack{n=0\\n=0}}^{\infty} \frac{|\alpha|^{2n}}{n!}$
= $|\mathcal{N}(\alpha)|^2 e^{|\alpha|^2}$

-

• Which gives us:

$$\mathcal{N}(\alpha) = e^{-\frac{|\alpha|^2}{2}} \qquad |\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Orthogonality

• Let us compute the inner-product of two coherent states:

$$\left\langle \alpha \left| \beta \right\rangle = e^{-\frac{\left| \alpha \right|^{2} + \left| \beta \right|^{2}}{2}} \sum_{\substack{n=0\\m=0}}^{\infty} \frac{\alpha^{*^{m}} \beta^{n}}{\sqrt{m! n!}} \left\langle m \left| n \right\rangle$$
$$= e^{-\frac{\left| \alpha \right|^{2} + \left| \beta \right|^{2}}{2}} \sum_{\substack{n=0\\n=0}}^{\infty} \frac{\left(\alpha^{*} \beta \right)^{n}}{n!}$$
$$= e^{-\frac{\left| \alpha \right|^{2} + \left| \beta \right|^{2}}{2} + \alpha^{*} \beta}$$

• Note that:

$$e^{-|\alpha-\beta|^{2}} = e^{-(\alpha^{*}-\beta^{*})(\alpha-\beta)}$$
$$= e^{-(|\alpha|^{2}+|\beta|^{2}+a^{*}\beta+\beta^{*}\alpha)}$$
$$= |\langle \alpha | \beta \rangle|^{2}$$

- So coherent states are NOT orthogonal
 - Does this contradict our earlier results regarding the orthogonality of eigenstates?

Expectation Values of Position Operator

• Lets look at the shape of the coherent state wavepacket

- Let
$$\psi_{\alpha}(x) = \langle x | \alpha \rangle$$

 $\langle X \rangle = \int dx \psi_{\alpha}^{*}(x) x \psi_{\alpha}(x)$

– Better to avoid these integrals, instead lets try using A and A^{\dagger} :

$$\langle X \rangle = \langle \alpha | \frac{\lambda}{\sqrt{2}} (A + A^{\dagger}) | \alpha \rangle$$

– Recall the definition of $|\alpha\rangle$:

$$A|\alpha\rangle = \alpha |\alpha\rangle \qquad \langle \alpha |A^{\dagger} = \alpha^{*} \langle \alpha |$$
$$\langle X \rangle = \frac{\lambda}{\sqrt{2}} (\langle \alpha |A|\alpha\rangle + \langle \alpha |A^{\dagger}|\alpha\rangle)$$
$$= \frac{\lambda}{\sqrt{2}} (\alpha \langle \alpha |\alpha\rangle + \alpha^{*} \langle \alpha |\alpha\rangle)$$
$$= \frac{\lambda}{\sqrt{2}} (\alpha + \alpha^{*})$$
$$\langle X \rangle = \sqrt{2} \lambda \operatorname{Re} \{\alpha\}$$

Expectation Value of Momentum Operator

• We can follow the same procedure for the momentum:

$$\langle P \rangle = -i \frac{\hbar}{\sqrt{2\lambda}} \langle \alpha | (A - A^{\dagger}) | \alpha \rangle$$

$$= \frac{\sqrt{2\hbar}}{2i\lambda} (\langle \alpha | A | \alpha \rangle - \langle \alpha | A^{\dagger} | \alpha \rangle)$$

$$= \frac{\sqrt{2\hbar}}{2i\lambda} (\alpha - \alpha^{*})$$

$$\langle P \rangle = \frac{\sqrt{2\hbar}}{\lambda} \operatorname{Im}\{\alpha\}$$

$$\langle X \rangle = \sqrt{2} \lambda \operatorname{Re}\{\alpha\}$$

• Not surprisingly, this gives:

$$\alpha = \frac{1}{\sqrt{2}} \left(\frac{1}{\lambda} \left\langle X \right\rangle + i \frac{\lambda}{\hbar} \left\langle P \right\rangle \right)$$

Variance in Position

• Now let us compute the spread in *x*:

$$\langle X^2 \rangle = \langle \alpha | \frac{\lambda^2}{2} (A + A^{\dagger})^2 | \alpha \rangle$$
$$= \langle \alpha | \frac{\lambda^2}{2} (A^2 + AA^{\dagger} + A^{\dagger}A + A^{\dagger}A^{\dagger}) | \alpha \rangle$$

- Put all of the *A* 's on the right and the *A*[†] 's on the left:
 - This is called 'Normal Ordering'

Δ

$$= \langle \alpha | \frac{\lambda^{2}}{2} (A^{2} + 2A^{\dagger}A + 1 + A^{\dagger}A^{\dagger}) | \alpha \rangle$$

$$= \frac{\lambda^{2}}{2} (\alpha^{2} + 2\alpha^{*}\alpha + 1 + \alpha^{*2})$$

$$= \frac{\lambda^{2}}{2} ((\alpha + \alpha^{*})^{2} + 1)$$

$$\langle X \rangle = \frac{\lambda}{\sqrt{2}} (\alpha + \alpha^{*})$$

$$\langle X^{2} \rangle = \langle X \rangle^{2} + \frac{\lambda^{2}}{2}$$

$$X = \sqrt{\langle X^{2} \rangle - \langle X \rangle^{2}} = \frac{\lambda}{\sqrt{2}}$$
Exactly the same variance as the ground state $|n=0\rangle$

Momentum Variance

- Similarly, we have: $\langle P^2 \rangle = -\frac{\hbar^2}{2\lambda^2} \langle \alpha | (A - A^{\dagger})^2 | \alpha \rangle$ $= -\frac{\hbar^2}{2\lambda^2} \langle \alpha | (AA - AA^{\dagger} - A^{\dagger}A + A^{\dagger}A^{\dagger}) | \alpha \rangle$
 - Normal ordering gives:

$$\left\langle P^{2} \right\rangle = -\frac{\hbar^{2}}{2\lambda^{2}} \left\langle \alpha \left| \left(AA - 2A^{\dagger}A - 1 + A^{\dagger}A^{\dagger} \right) \right| \alpha \right\rangle$$

$$= -\frac{\hbar^{2}}{2\lambda^{2}} \left\langle \alpha \left| \left(AA - 2A^{\dagger}A - 1 + A^{\dagger}A^{\dagger} \right) \right| \alpha \right\rangle$$

$$= -\frac{\hbar^{2}}{2\lambda^{2}} \left(\alpha^{2} - 2\alpha^{*}\alpha + \alpha^{*2} - 1 \right)$$

$$= -\frac{\hbar^{2}}{2\lambda^{2}} \left(\left(\alpha - \alpha^{*} \right)^{2} - 1 \right)$$

$$\left\langle P \right\rangle = \frac{\sqrt{2\hbar}}{2i\lambda} \left(\alpha - \alpha^{*} \right)$$

 $\Delta P = \sqrt{\left\langle P^2 \right\rangle - \left\langle P \right\rangle^2} = \frac{\hbar}{\sqrt{2\lambda}}$

$$\left\langle P^2 \right\rangle = \left\langle P \right\rangle^2 + \frac{\hbar^2}{2\lambda^2}$$

۲

Minimum Uncertainty States

• Let us check what Heisenberg Uncertainty Relation says about coherent states:

$$\Delta X = \sqrt{\left\langle X^2 \right\rangle - \left\langle X \right\rangle^2} = \frac{\lambda}{\sqrt{2}}$$

$$\Delta P = \sqrt{\left\langle P^2 \right\rangle - \left\langle P \right\rangle^2} = \frac{\hbar}{\sqrt{2\lambda}}$$

$$\Delta X \Delta P = \frac{\lambda}{\sqrt{2}} \frac{\hbar}{\sqrt{2}\lambda}$$

$$\Delta X \Delta P = \frac{\hbar}{2}$$

- So we see that all coherent states (meaning no matter what complex value α takes on) are *Minimum Uncertainty States*
 - This is one of the reasons we say they are 'most classical'

Time Evolution

 We can easily determine the time evolution of the coherent states, since we have already expanded onto the Energy Eigenstates:

$$|\psi(t=0)\rangle = |\alpha_0\rangle$$
 - Thus we have:

$$\left|\psi\left(0\right)\right\rangle = e^{-\frac{\left|\alpha\right|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha_{0}^{n}}{\sqrt{n!}} \left|n\right\rangle$$

$$\left|\psi\left(t\right)\right\rangle = e^{-\frac{\left|\alpha\right|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha_{0}^{n}}{\sqrt{n!}} e^{-i\omega\left(n+1/2\right)t} \left|n\right\rangle$$

$$=e^{-i\omega t/2}e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^{\infty}\frac{\alpha_0^n}{\sqrt{n!}}e^{-i\omega nt}|n\rangle$$

$$=e^{-i\omega t/2}e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^{\infty}\frac{\left(\alpha_0e^{-i\omega t}\right)^n}{\sqrt{n!}}|n\rangle$$

– Let

$$\alpha(t) = \alpha_0 e^{-i\omega t}$$

 $\psi(t) = \left| \alpha(t) \right\rangle$

By this we mean it remains in a coherent state, but the value of the parameter α changes in time

Why 'most classical'?

- What we have learned:
 - Coherent states remain coherent states as time evolves, but the parameter α changes in time as

$$\alpha(t) = \alpha_0 e^{-i\omega t}$$

- This means they remain a minimum uncertainty state at all time
- The momentum and position variances are the same as the *n*=0 Energy eigenstate
- Recall that:

$$\langle X \rangle = \sqrt{2\lambda} \operatorname{Re}\{\alpha\}$$

 $\langle P \rangle = \frac{\sqrt{2\hbar}}{2} \operatorname{Im}\{\alpha\}$

λ

- So we can see that:

$$\alpha_0 = \frac{1}{\sqrt{2}} \left(\frac{x_0}{\lambda} + i \frac{\lambda}{\hbar} p_0 \right) \qquad p_0 = \langle \alpha(t) | X | \alpha(t) \rangle$$

$$p_0 = \langle \alpha(t) | P | \alpha(t) \rangle$$

 We already know that <X> and <P> behave as classical particle in the Harmonic Oscillator, for any initial state.

$$x(t) = x_0 \cos(\omega t) + \frac{p_0}{\omega} \sin(\omega t) \qquad p(t) = p_0 \cos(\omega t) - \omega x_0 \sin(\omega t)$$

Conclusions

- The Coherent State wavefunction looks exactly like ground state, but shifted in momentum and position. It then moves as a classical particle, while keeping its shape fixed.
 - Note: the coherent state is also called a 'Displaced Ground State'

