
Lecture 22:
Coherent States

Phy851 Fall 2009



Summary

• Properties of the QM SHO:
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What are the `most classical’ states
of the SHO?

• In HW6.4, we saw that for a minimum
uncertainty wavepacket with:

The uncertainties in position and
momentum would remain constant.

• The interesting thing was that this was
true independent of x0 and p0, the initial
expectation values of X and P.

• We know that other than the case x0=0
and p0=0, the mean position and
momentum oscillate like a classical
particle

• This means that for just the right initial
width, the wave-packet moves around
like a classical particle, but DOESN’T
SPREAD at all.
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‘Coherent States’
• Coherent states, or as they are sometimes

called ‘Glauber Coherent States’ are the
eigenstates of the annihilation operator

– Here α can be any complex number
– i.e. there is a different coherent state for every

possible choice of α
– (Roy Glauber, Nobel Prize for Quantum Optics

Theory 2005)
• These states are not really any more

‘coherent’ then other pure states,
– they do maintain their coherence in the

presence of dissipation somewhat more
efficiently

• In QM the term ‘coherence’ is over-used and
often abused, so do not think that it always
has a precise meaning

• Glauber Coherent States are very important:
– They are the ‘most classical’ states of the

harmonic oscillator
– They describe the quantum state of a laser

• Replace the number of ‘quanta’ with the number
of ‘photons’ in the laser mode

– They describe superfluids and super-conductors
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Series Solution

• Let us expand the coherent state onto energy
eigenstates (i.e. number states)

• Plug into eigenvalue equation:

• Hit from left with 〈m|:
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Continued

• Start from:

– The constant N(α) will be used at the end for
normalization

• Try a few iterations:

• So clearly by induction we have:
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Normalization Constant

• So we have:

• For normalization we require:

• Which gives us:
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Orthogonality

• Let us compute the inner-product of two
coherent states:

• Note that:

• So coherent states are NOT orthogonal
– Does this contradict our earlier results

regarding the orthogonality of eigenstates?
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Expectation  Values of Position
Operator

• Lets look at the shape of the coherent
state wavepacket
– Let

– Better to avoid these integrals, instead
lets try using A and A† :

– Recall the definition of |α〉:

αψα xx =)(

)()( xxxdxX αα ψψ ∗∫=

€ 

X = α
λ
2
A + A†( )α

ααα =A ααα ∗=†A

€ 

X =
λ
2

α Aα + α A† α( )

€ 

=
λ
2
α α α +α∗ α α( )

€ 

=
λ
2
α +α∗( )

€ 

X = 2λRe α{ }



Expectation Value of Momentum Operator

• We can follow the same procedure for the
momentum:

• Not surprisingly, this gives:
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Variance in Position

• Now let us compute the spread in x:

• Put all of the A ’s on the right and the A† ‘s on
the left:
– This is called ‘Normal Ordering’
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Momentum Variance

• Similarly, we have:

– Normal ordering gives:
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Minimum Uncertainty States

• Let us check what Heisenberg Uncertainty
Relation says about coherent states:

• So we see that all coherent states (meaning
no matter what complex value α takes on)
are Minimum Uncertainty States
– This is one of the reasons we say they are

‘most classical’
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Time Evolution

• We can easily determine the time evolution of
the coherent states, since we have already
expanded onto the Energy Eigenstates:
– Let

– Thus we have:

– Let
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Why ‘most classical’?

• What we have learned:
– Coherent states remain coherent states as time

evolves, but the parameter α changes in time
as

– This means they remain a minimum
uncertainty state at all time

– The momentum and position variances are the
same as the n=0 Energy eigenstate

– Recall that:

– So we can see that:

– We already know that <X> and <P> behave as
classical particle in the Harmonic Oscillator, for
any initial state.
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Conclusions

• The Coherent State wavefunction looks
exactly like ground state, but shifted in
momentum and position. It then moves as a
classical particle, while keeping its shape
fixed.
– Note: the coherent state is also called a

‘Displaced Ground State’


