
Chapter 7

Bose Systems

In this chapter we apply the results of section 5.3 to systems of particles
satisfying Bose-Einstein statistics. The examples are Black Body radiation (the
photon gas), atomic vibration in solids (the phonon gas) and alkali atoms in
traps and liquid 4He (a Bose gas and fluid). Bosons in traps and the superfluid
state of liquid 4He is believed to be an example of Bose-Einstein condensation
in which a large fraction of the Bosons occupy (condense into) the ground state.

7.1 Black Body Radiation

We are all familiar with the idea that hot objects emit radiation –a light
bulb, for example. In the hot wire filament, an electron, originally in an excited
state drops to a lower energy state and the energy difference is given off as
a photon, (ε = hν = ε2 − ε1). We are also familiar with the absorption of
radiation by surfaces. For example, clothes in the summer absorb photons from
the sun and heat up. Black clothes absorb more radiation than lighter ones.
This means, of course that lighter colored clothes reflect a larger fraction of the
light falling on them.

A black body is defined as one which absorbs all the radiation incident
upon it –a perfect absorber. It also emitts the radiation subsequently. If radia-
tion is falling on a black body, its temperature rises until it reaches equilibrium
with the radiation. At equilibrium it re-emitts as much radiation as it absorbs
so there is no net gain in energy and the temperature remains constant. In this
case the surface is in equilibrium with the radiation and the temperature of the
surface must be the same as the temperature of the radiation.

To develop the idea of radiation temperature we construct an enclosure
having walls which are perfect absorbers (see Fig. 7.1). Inside the enclosure
is radiation. Eventually this radiation reaches equilibrium with the enclosure
walls, equal amounts are emitted and absorbed by the walls. Also, the amount
of radiation travelling in each direction becomes equal and is uniform. In this
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Figure 7.1: Isothermal Enclosure.

case the radiation may be regarded as a gas of photons in equilibrium having a
uniform temperature. The enclosure is then called an isothermal enclosure.

An enclosure of this type containing a small hole is itself a black body.
Any radiation passing through the hole will be absorbed. The radiation emitted
from the hole is characteristic of a black body at the temperature of the photon
gas. The properties of the emitted radiation is then independent of the materials
of the wall provided they are sufficiently absorbing that essentially all radiation
entering the hole is absorbed. This universal radiation is called Black Body
Radiation.

An everyday example of a photon gas is the background radiation in the
universe. This photon gas is at a temperature of about 5 K. Thus the earth’s
surface, at a temperature of about 300 K, is not in equilibrium with this gas.
The earth is a net emitter of radiation (excluding the sun) and this is why it is
dark at night and why it is coldest on clear nights when there is no cloud cover
to increase the reflection of the earth’s radiation back to the earth. A second
example is a Bessemer converter used in steel manufacture containing molten
steel. These vessels actually contain holes like the isothermal enclosure of Fig.
7.1. The radiation emitted from the hole is used in steel making to measure the
temperature in the vessel, by means of an optical pyrometer.

Our model of black body radiation is a gas of non-interacting photons
having energy related to their frequency ν and momentum p by ε = hν = pc.
Since photons can be regarded as relativistic (massless) particles, our model also
represents a gas of relativistic finite mass particles for which ε2 = p2c2 +m2c4 ≈
p2c2. What is the energy density, u = U/V , of this photon gas equilibrium? How
does u(T ) depend upon T? As in a gas of non-relativistic particles we expect a
distribution over the possible energies and frequencies (ε = hν) available to the
photons, i.e.

u =
∫ ∞

0

u(ν) dν

What is the spectral distribution u(ν)? In terms of wavelength this is

u =
∫ ∞

0

dλ u(λ)

where u(λ) is the energy density in wavelength range λ to λ+ dλ. For a photon
gas in the enclosure depicted in Fig. 7.1 what pressure does the photon gas
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Figure 7.2: Number of photons absorbed by the wall from angle θ is
n dV = n (A cdt cos θ).

exert on the enclosure walls and what is the power per unit area, the emissive
power, emitted from the hole?

To begin we answer these questions using kinetic theory and thermody-
namics as far as possible. We then turn to statistical mechanics to complete
the answer which forms a fine example of the interplay of thermodynamics and
statistical mechanics. Also quantum ideas entered physics for the first time
in the study of the photon gas. Planck in 1901 found mathematically that
he could derive the observed u(λ) if he summed over a discrete set of photon
states (εn = nhν) rather than integrating over a continuous set of states. This
mathematical result was interpreted physically by Einstein in 1905, using the
photoelectric effect, as discrete quanta of light (photons) each having energy hν.

7.1.1 Radiation Pressure and Emissive Power

We consider N photons in the enclosure of Fig. 7.1 each having momen-
tum p and energy ε = pc = hν. The number density is n = N/V giving energy
density u = U/V = Nε/V . To obtain the pressure on the enclosure walls due
to the photon gas we note that a single photon striking the wall at an angle θ
from the normal, that is absorbed, transfers a momentum to the wall

p cos θ. (7.1)

The total number of such photons striking an area A of the wall (assuming for
the moment they are all incident at angle θ) in time dt is

dN = ndV = n Acdt cos θ (7.2)

Here A (cdt cos θ) is the volume enclosing the photons each travelling at velocity
c, that reach the wall in time dt (See Fig. 7.2). The momentum brought up to
the wall in time dt is then,

p cos θ dN = pn Acdt cos2 θ

The pressure (force per unit area = rate of change of momentum per unit area)
due to these photons arriving at angle θ is

p(θ) =
1
A

p cos θ dN

dt
= pcn cos2 θ = u cos2 θ (7.3)

To find the total pressure we need the fraction of photons striking the
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Figure 7.3: Hemisphere.

wall at angle θ. Since the photons are randomly distributed in direction we can
represent their arrival (and departure) by the hemisphere depicted in Fig. 7.3
in which the fraction arriving from the angle θ is proportional to the surface
area of the hemisphere subtended by the angle θ, divided by the total area of
the hemisphere,

f(θ) d(θ) =
2πr2 sin θ dθ

2πr2
= sin dθ. (7.4)

Here 2πr2 is the area of the hemisphere. The total pressure is then,

p =
∫ π/2

0

p(θ) f(θ) dθ = 4
∫ π/2

0

u cos2 θ sin θ dθ

or
p =

1
3

u (7.5)

Here p is the final pressure if u is the average energy density.
We have made two compensating errors of 2 here. Firstly, there is an

equal number of photons in the gas going toward and away from the wall in the
volume dV in Fig. 7.2. Thus eq. (7.2) should be divided by 2. However, in
equilibrium there is an equal number of photons emitted as absorbed so that
the total momentum transferred to the surface is twice that due to arrival of
photons alone. These two effects cancel to leave eq. (7.5) correct. 1

The Emissive Power emerging from the hole in the isothermal enclosure
in Fig. 7.1 is defined as the power per unit area emitted from the hole. To
calculate this we note that the energy brought up to a wall by a single photon
is ε. The energy brought up to an area A by photons impinging on the wall at
an angle θ in time dt is, from eq. (7.2),

ε dN = 1/2 (εn) Acdt cos θ

the one half enters since one half of the photons in dV of Fig. 7.2 travel away
from the wall. The power per unit area is then

ε(θ) =
1
A

ε
dN

dt
= 1/2 uc cos θ

1In Chapter 3 we found p = 2/3 u for a perfect gas of classical non-interacting particles.
This is true also for the perfect quantum gases. The difference of 2 enters in the relation
between the velocity and energy. The pressure is really proportional to a product of momen-
tum and velocity. In the relativistic gas case we have in eq. (7.3) n (pc) = u while for
nonrelativistic particles n (1/2 mv2) = n (1/2 pv) = u.
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Figure 7.4: Heat Engine.

Figure 7.5: Carnot Cycle.

Averaging over all angles the total emissive power emerging from a hole in the
enclosure wall is

E =
∫ π/2

0

dθ f (θ) ε (θ) = 1/4 cu (7.6)

Using kinetic theory arguments we have related the radiation pressure
eq. (7.3) and the emissive power eq. (7.6) to the energy density of the photon
gas. We now employ thermodynamics to find the dependence of u on T .

7.1.2 Stefan - Boltzmann Law

In 1879 Stefan deduced the dependence of u on T from the observed
emission power and found

u = a T 4 (7.7)

where a is a constant. Boltzmann derived this relation using thermodynamics
in 1884. Boltzmann used an isothermal enclosure containing a hole as a source
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(and sink) for heat in a heat engine (see Fig. 7.4). He then took the engine
through a complete Carnot cycle (see Fig. 7.5) and deduced the energy density
from the fact that the total entropy change in the reversible cycle must be
zero. We follow the steps in the cycle depicted in Fig. 7.4 and 7.5 briefly. The
isothermal enclosure is assumed sufficiently large that it can emit and absorb
radiation without substantial change in temperature.

Step (1) Open engine to black body at temperature T1. Make an isothermal
expansion from volume V1 to volume V2. Work done by the engine is

δW1 = p1 (V2 − V1) =
1
3

u1 (V2 − V1) (i)

Change in Internal energy is

δU1 = u1 (V2 − V1)

Heat added from Isothermal enclosure is

δQ1 = δU1 + δW1 =
4
3
u1(V2 − V1) (ii)

Step (2) Isolate engine from black body. Make isentropic expansion, T decreases
from T1 to T2 in engine.

u1(T1) → u2(T2).

Step (3) Lower temperature in black body to T2. Open engine to black body.
Make an isothermal compression to point 4. Heat δQ2 is transferred to
the black body at temperature T2.

Step (4) Isolate engine from black body. Make isentropic compression back to
V1. T increases from T2 to T1 and the internal energy returns to its original
value.

A thermodynamic analysis of the cycle gives

(1) Net work done by engine (conservation energy)

δW = δQ1 − δQ2 (iii)

The net work done is also given by the area enclosed in the cycle in Fig. 7.5. If
the change in pressure is small, this is

δW = δp(V2 − V1) =
1
3

δu (V2 − V1) (iv)

(2) Second Law requires

dQ1 = T1 dS1 – entropy change in Step (1)

dQ2 = T2 dS2 – entropy change in Step (2)
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and, since the steps are reversible, the total change in entropy must be zero at
the end of the cycle,

dS1 = dS2 .

Then
δW

δQ1
= 1 − δQ2

δQ1
= 1 − T2 dS2

T1 dS2
=

T1 − T2

T1
=

δT

T1

From (ii) and (iv)
δW

δQ1
=

1
4

δu

u1
=

δT

T1

and u = aT 4

Thus the Stefan - Boltzmann law can be derived using thermodynamics
alone and the emissivity is

E =
1
4

cu =
1
4

ca T 4 = σT 4 (7.8)

Here σ = 0.567 × 10−7 joules/m2 K4 sec is Stefan’s constant. We cannot,
however determine a or σ thermodynamically or the spectral distribution. For
these we turn to statistical mechanics.

7.1.3 The Spectral Distribution

(a) Historical Aside

The distribution of energy density over wavelength, u(λ), in a photon gas
having total energy density

u =
∫ ∞

0

dλ u(λ) (7.9)

holds a special place in the development of quantum mechanics. Wien proposed,
making specific assumptions about the absorption and emission of photons at
the enclosure walls, that the spectral distribution should take the form

u(λ) =
c1

λ5
e−c2/λT (7.10)

where c1 and c2 were undetermined constants. Ray1eigh in 1900 and Jeans in
1905 proposed the expression

u(λ) =
8π

λ4
kT (7.11)

on general grounds which we can readily reproduce here.
From our discussion in section 4.1, the number of photons (particles) we

expect in a wavelength range λ to λ + dλ is

dN(λ) = n(λ) g(λ) dλ (7.12)
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Figure 7.6: The Black Body Spectral Distribution Law, u(λ).

Here n(λ) is the expected occupation of energy states ε = hν = hc/λ and g(λ)
is the density of states. The energy density in this wave length interval is then

u(λ) dλ =
1
V

ε(λ) dN(λ) =
1
V

ε(λ) n(λ) g(λ) dλ (7.13)

To obtain g(λ) we recall that the density of states per momentum interval is
g(p) = V 4πp2/h3. Then using the de Broglie relation p = h/λ

g(p) dp = V π4 λ−4 dλ (7.14)

Here we have dropped the negative sign in dp = −h/λ2dλ since the density of
states must be a positive number. Also there are two transverse polarizations
(two states) possible at each wavelength so that

g(λ) dλ = 2 g(p) dp = V 8πλ−4 dλ

In this development we have used the de Broglie relation which came long after
the work of Rayleigh and Jeans. However, g(λ) can be obtained by considering
the states available to oscillators (which emit radiation) but the argument is
longer as we shall see in section 7.2.2.
Expressed in terms of the photon frequency, via ν = c/λ,

g(ν) dν =
V 8π

c3
ν2 dν (7.15)

Employing this density of states, Rayleigh and Jeans proposed n = 1,
using the idea of a priori equal occupation probability of each state, and set
ε(λ) = kT , using the equipartition theorem value for the energy of an oscillator.
More correctly we should say ε = ε(λ) n(λ) = kT . This gave the Rayleigh-
Jeans law

u (λ) =
8π kT

λ4
.

From Fig. 7.6 we see this agrees with the observed u(λ) at wavelenght only.
Originally, Planck thought the Wien expression was correct since it agreed

with experiment. Planck also did not agree with equipartition and he could
derive eq. (7.10) assuming the oscillator energy depended on its frequency
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(ε = hν = hc/λ) and n given by the Boltzmann factor, n ∝ ε−βε = e−
βhc

λ , so
that

u(λ) =
1
V

ε (λ) g(λ) = c1/λ5 e−c2/λkT (7.16)

However, more accurate experiments by Lummer and Pringsheim and by Rubens
and Kurlbaum showed that Wien’s expression did not fit the data at long wave-
length. Planck then made his pioneering assumption that the oscillator energy
levels were discrete and given by

εs = shν , s = 0, 1, 2, . . .

The derivation then followed exactly that leading to (4.58) except that the zero
point energy (1/2 hν) was not included. Without the zero point energy, the
expected energy of N photons having frequency ν is

U(ν) = N ε(ν) = N
hν

(eβhν − 1)

Substituting this energy into eq. (7.16) leads to Planck’s radiation law

u(ν) =
1
V

ε(ν) g(ν) =
8π

c3

hν

(eβhν − 1)
ν2

or
u(λ) =

8πhc

λ5

1

(ε
βhc

λ − 1)
(7.17a)

(b) Statistical Mechanics

To derive Planck’s radiation law directly from our statistical mechanics
of section 5.3, we note that number of photons in the gas is not fixed. The
photons are absorbed and re-emitted by the enclosure walls. Since the photons
are non-interacting it is by this absorption and re-emission that equilibrium is
maintained in the gas. Since, also the free energy F (T, V, N) is constant in
equilibrium (at constant T and V ) while N varies it follows that ∂F/∂N = 0,
that is

μ = (
∂F

∂N
)
T,V

= 0

We obtain the important result that if the number of particles is freely variable
in equilibrium, the chemical potential is zero.

The photon gas is then a Bose gas with μ = 0 so that the canonical
partition function is given directly from (5.24) as

Z = Z =
r∏

s=1

(1 − e−βε)−1 (7.18)

and the expected Bose occupation is

ns = (εβεs − 1)−1. (7.19)
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Using ε = hν we then obtain from eq. (7.19) and the density of states eq. (7.15),

u(ν) =
1
V

ε(ν) n(ν) g(ν)

or
u(ν) =

8π

c3

hν

(eβhν − 1)
ν2 (7.17b)

which is Planck’s Radiation Law.
We may also recover Wien and Rayleigh-Jeans laws as limits of Planck’s

law,
(a) Long wavelength, hc

kTλ � 1
Here

ε =
hc/λ

(ε
hc

kT λ − 1)
≈ kT

and eq. (7.17a) becomes

u(λ) =
1
V

ε(λ) g(λ) ≈ 8 π

λ4
kT (7.20)

which is the Wien law valid at long wavelength.
(b) Short Wavelength, hc

kTλ � 1
Here

ε =
hc

λ
e−

hc
kT λ

and eq. (7.20) becomes

u(λ) =
1
V

ε(λ) g(λ) ≈ 8 πhc

λ5
e−

hc
kT λ (7.21)

which is the Wien law valid at short wavelength with the constants c1 and c2

of eq. (7.10) determined. These approximations are depicted in Fig. 7.6
Employing our statistitcal mechanics we readily obtained Planck’s radi-

ation law. We may also derive the Stefan - Boltzmann law eq. (7.8), for

u =
∫ ∞

0

dν u(ν) =
8π

c3

∫ ∞

0

dν
hν

(εβhν − 1)
ν2

Introducing x = βhν, this reduce to

u =
8πk4

(hc)3

∫ ∞

0

dx
x3

(ex − 1)
T 4 = aT 4

with

a =
8π

(hc)3
k4

∫ ∞

0

dx
x3

(ex − 1)
=

8πk4

(hc)3
π4

15
(7.22)

In this way we obtain, using statistical mechanics, a law derived previously
using thermodynamics including all the numberica1 factors. This gives Stefan’s
constant σ in

E =
1
4
ca T 4 = σT 4
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as

σ =
2π5

15
ck4

(hc)3
= 5.67 × 10−5 erg

cm2 sec K4 (7.23)

A measurement of σ could then be used, for example, to determine Planck’s
constant. Planck in fact determined h as the constant needed in his radiation
law eq. (7.20) to fit the observed spectral distribution law. This gave him the
value h = 6.55 × 10−27 erg.sec which compares with the present value of

h = 6.625 × 10−27 erg.sec

7.1.4 Thermodynamic Properties

We may calculate all the thermodynamic properties of black body radi-
ation using statistical mechanics through the partition function Z and

F = − kT log Z

where Z is given by eq. (7.18). This is the basic method of statistical thermo-
dynamics. The aim is to reproduce all the thermodynamic properties with all
factors and constants evaluated. This gives

F = −kT log
r∏

s=1

(1 − e−βεs)−1

= −kT

r∑
s=1

log (1 − e−βεs)−1

= −kT 2
∫

dΓ
h3

log (1 − e−βε)−1 (7.24)

where the εs are the single photon states and the factor of 2 arises from the
two polarizations available to each photon. This can be integrated in a vari-
ety of ways. Perhaps the most direct is to integrate over phase space (dΓ =
dV 4πp2 dp) and write ε = pc. Introducing the dimensionless variable x = βε =
βpc the Helmholtz free energy is

F = − 1
3

{− 8πk4

(hc)3

∫ ∞

0

d(x)3 log(1 − e−x) } V T 4 (7.25)

The dimensionless integral here can be transformed into that appearing in the
constant a of eq. (7.22) by an integration by parts, i.e.

I = −
∫ ∞

0

d(x)3 log(1−e−x) = − (x)3 log(1−e−x)
∣∣∣∞
0

+
∫ ∞

0

x3 d [log(1−e−x)]

The first term vanishes since
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(a) lim
x→∞ x3 log(1 − e−x) ≈ lim

x→∞ x3 e−x → 0

(b) lim
x→0

x3 log(1 − e−x) ≈ lim
x→0

x3 log x → 0

and

I =
∫ ∞

0

dx
x3

ex − 1
=

π4

15

Comparing eqs. (7.22) and (7.25)

F = − 1
3

aV T 4 (7.26)

From F we may determine all other thermodynamic properties by differ-
entiation. For example, the entropy is

S = −(
∂F

∂T
)
V

= 4/3 aV T 3 (7.27)

The internal energy is

U = F + TS = − 1
3

aV T 4 + 4/3 aV T 4 = aV T 4

given an energy density

u =
1
V

U = aT 4 (7.28)

identical to eq. (7.7) as required. The pressure is

p = − (
∂F

∂V
)
T

=
1
3

aT 4 =
1
3

u

in agreement wit eq. (7.5). The Gibbs free energy is

G = F + pV = − 1
3
aV T 4 +

1
3
aV T 4 = 0

This is zero as required since G = μN and the chemical potential μ = 0. We may
use these expressions to further verify thermodynamic consistency, for example
that CV = T ( dS

dT )
V

= (dU
dT )

V
.

In summary, we have obtained the spectral distribution eq. (7.17) from
the Bose function ns of eq. (7.19) in much the same way as we obtained the
Maxwell-Boltzmann distribution for a classical gas. The only other required
ingredient was the density of states eq. (7.15). We have also obtained all the
thermodynamic properties using the partition function Z.

7.2 Phonons in Solids

7.2.1 Introduction

A solid is a collection of N atoms in an ordered array. The ordered array is
called a lattice and we could imagine building up the solid by placing an atom on
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each lattice point. The points represent the equilibrium positions of the atoms
in the solid. Since the atoms have thermal energy they vibrate about these
equilibrium lattice points. At low temperature the vibrational displacements
�u(�) (� = 1, . . . N) of the atoms away from their lattice points is small. In a
typical metal at room temperature the RMS vibrational amplitude is about 5%
of the interatom spacing. At the melting point of the metal this increases to
about 15% of the interatom spacing.

When the displacements of the atoms are small we may approximate the
complicated interatomic forces by a simple harmonic force pulling each atom
back to its lattice point. Each atom is harmonically bound to its lattice point.
In this case the Hamiltonian for the solid is

H = 1/2

∑
�α

m (
duα(�)

dt
)
2

+ 1/2

∑
�α,�′β

φαβ(��′) uα(�) uβ(�′) (7.29)

This looks rather formidable but here uα(�) is the displacement of atom �, in
direction α, φαβ(��′) is the harmonic restoring force constant and H is simply
the Hamiltonian for a set of N coupled oscillators. The φ can be obtained
from the interatomic forces between the atoms but are often simply regarded as
parameters.

To simplify H we can express it in terms of “normal coordinates” Qq

which are related to the displacements and in which H becomes decoupled. In
these coordinates, the Hamiltonian (eq. 7.29) is

H =
1
2

3N∑
q=1

[
(
dQq

dt
)
2

+ ωq
2 Qq

2
]

(7.30)

The H now describes 3N independent oscillators, one oscillator for each original
coordinate uα(�). The characteristic frequency of each oscillator, ωq, is related
to the φ but for our purposes we again regard them as parameters. Eqs. (7.29)
and (7.30) represent atomic vibration in the harmonic approximation.

The Hamiltonian (7.30) is our starting point or model of atomic vibra-
tion in solids. The discussion above simply serves to indicate its origin. Since
each oscillator in eq. (7.30) is independent we can treat each as a statistically
independent system. Our model is therefore a gas of independent oscillators.
The total energy will then be a simple sum of each oscillator energy. We recall
that the energy levels of a harmonic oscillator having characteristic frequency
ωq are

εq = �ωq(nq +
1
2
) nq = 0, 1, 2, . . . (7.31)

where nq is the quantum number labeling the state2. In the ground state,
(nq = 0) the oscillator q has energy εq = 1

2�ωq. The total energy at T = 0 K is

2Note that each independent oscillator can be treated separately exactly as we treated the
vibration of a single diatomic molecule in Chapter 4 (compare Eqs. (7.31) and (4.56)). We
could calculate the single oscillator partition function as in eq. (4.57) and the vibrational
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∑
q

1
2

�ωq, called the zero point energy. At finite T the total vibrational energy

of the solid is

ES(n1 . . . nq . . .) =
3N∑
q=1

εq =
3N∑
q=1

�ωq(nq +
1
2
) (7.32)

This expression of the vibrational energy of the atoms suggests a new
interpretation. When the oscillator q is in the nq

th state we could say there
are nq excitations each of energy �ωq excited. Each such excitation is called a
phonon. In fact an analysis of the atomic displacements associated with each
oscillator coordinate shows that each excitation represents a wave of atomic
displacements travelling down the solid. The name phonon is based on the
analogy of these displacement waves having discrete energy �ωq and photons
having discrete energy �ω. Hence the energy (eq. 7.32) is interpreted as the
energy of nq such phonons plus the zero point energy. The total vibrational
energy (eq. 7.32) of the solid is then regarded as a gas of n1 phonons of energy
�ω1, n2 phonons of energy �ω2 and so on. It is called a gas since the phonons
are independent and non-interacting. This is then an alternative model of the
vibrational energy and has more physical meaning than the set of oscillators. It
is clearly very similar to the photon gas we considered in section 7.1.

7.2.2 Energy and Specific Heat

The average energy or internal energy associated with the phonon gas
is given by eq. (7.32) with each nq replaced by its thermal average value or
expected value at a temperature T .

U(T ) =
∑

q

εq =
∑

q

�ωq (nq + 1/2) (7.33)

Since the phonons have zero spin they are bosons. Also since the number of
phonons in the gas is completely unrestricted and variable, the chemical poten-
tial is zero. In the phonon gas interpretation this suggests immediately that the
expected number of phonons of energy �ωq is given by the Bose function

nq = (e β�ωq − 1)
−1

(7.34)

However, rather than use this result, let us consider the independent harmonic
oscillator model and calculate the average energy εq for each oscillator. This will
serve to demonstrate the use of the Boltzmann factor and the equivalence of the

partition function of the solid would be a simple product of these single oscillator partition
functions eq. (4.57)

Z =
3N∏
q=1

Zq =
3N∏
q=1

(
ε
1
2 β�ωq − ε−

1
2 β�ωq

)

Here the �ωq of each oscillator replaces the characteristic energy hν of the diatomic molecule.
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two models. Since each oscillator is statistically independent the probability of
observing it in state having energy εq is proportional to the Boltzmann factor,
exp (−βεq). The average energy of oscillator q is then,

ε̄q =
∑
εq

εq e−βεq

/ ∑
εq

e−βεq

=
∞∑

nq=0

�ωq(nq + 1/2) eβ�ωq (nq+ 1/2)
/ ∞∑

nq=0

e−β�ωq(nq+ 1/2)

= − ∂

∂β
log

∞∑
nq=0

e−β�ωq(nq+ 1/2) =
�ωq

(eβ�ωq − 1)
+ 1/2 �ωq (7.35)

Thus the internal energy is

U(T ) =
∑

q

�ωq

(eβ�ωq − 1)
+ 1/2

∑
q

�ωq (7.36)

in agreement with eqs. (7.33) and (7.34).
At T = 0, nq = 0 and there are no phonons excited. Only the zero point

energy of the solid remains. As we heat the crystal, phonons are excited and
the expected number nq of phonons increases. Clearly, from eq. (7.34) if the
phonon energies are large fewer phonons are excited at a given temperature.

The specific heat due to the atomic vibration can be calculated by eval-
uating U(T ) and using

CV = (
dU

dT
)
V

The CV will clearly depend on the spectrum of characteristic phonon frequencies
ωq. Today it is possible to calculate the frequency spectrum directly from a
model of the interatomic forces for many solids, for example for the solid inert
gases and the alkali metals. Comparison of the calculated and observed specific
heats then serves as a test of the interatomic force models. In many cases, in
the past, it was not possible to calculate the ωq directly. For these cases we
write the sum in U(T ) as a general integral over the frequency spectrum

U(T ) =
∫ ωD

0

dω ε̄(ω) g(ω) (7.37)

Here ε(ω) = �ω(n(ω) + 1/2) and g(ω) is the density of frequencies in the range
ω to ω + dω and ωD is the maximum frequency follows from the periodicity of
the crystal. We now need a model for g(ω) and ωD.

In 1912 Debye proposed the approximation

g(ω) = Kω2 (7.38)

for the density of states where K is a constant. This follows for an elastic
continuum in which the discrete nature of the atoms is ignored. It also follows
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from filling up phase space since this leads to g(ω) ∝ ω2. This is the density of
states we obtained in eq. (7.13) for the photon gas (section 7.1.3) using phase
space counting, for example. In fact in the Debye model eq. (7.37) the energy
of the phonon gas is identical to that of the photon gas except for the limit to
the frequencies of ωD.

The remaining parameter in the Debye theory is ωD. The constant K
can be determined by noting that there are 3N frequencies in the crystal.
Then ∫ ωD

0

g(ω) dω = 3N (7.39)

and substituting eq. (7.38) gives

K =
9N

ωD
3

The thermal energy is

U(T ) =
9N

ωD
3

∫ ωD

0

dω �ω (n(ω) + 1/2) ω2

which we express in terms of a dimensionless integral, introducing x = βhω,

U(T ) =
9N(kT )4

(�ωD) 3

[ ∫ xD

0

x3 dx

(ex − 1)
+ 1/2

∫ xD

0

x3 dx
]

or

U(T ) = 9NkT (
T

θD
)
3 ∫ θD

T

0

x3dx

(ex − 1)
+

9
8

RθD (7.40)

The remaining parameter in the theory,

θD =
�ωD

k
, (7.41)

is called the Debye Temperature. Here EZ = 9/8 RθD is the zero point energy
in the Debye Model. The thermal energy depends solely on the ratio of θD to
T . As in the diatomic molecule the strength of the interatomic forces in the
solid are described by the single characteristic Debye temperature. This can
clearly only be an approximation for a solid so we should not expect the Debye
model to describe U(T ) exactly. A large Debye temperature indicates strong
interatomic forces while a low Debye temperature suggests weak interatomic
forces. Some typical values of θD obtained by fitting the Debye expression for
CV to experiment are shown in table 7.1.

Table 7.1: Debye TemperaturesCu Ag Au Al Na W C* Si Ar
θD(K) 345 226 165 415 155 350 2220 640 84

* diamond
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Figure 7.7: The variation in θ0 with temperature required for the Debye CV

fit experiment.(From R.A. Cowley et al. Phys. Rev. 150, 487
(1968))

Figure 7.8: The Debye density states g(ω) compared to an exact calculation
in potassium.(From Cowley et al.)

If the Debye approximation to g(ω) holds, U(T ) given by eq. (7.40) should
fit experiment with a constant value of θD. In fact it is necessary to allow θD to
vary with T to get eq. (7.40) to fit experiment showing that the Debye theory
fits only approximately. This is shown, for example, for potassium, in Fig. 7.7.
The Debye theory is now so engrained in solid state physics that measurements
of CV are often presented as values of θD(T ) v.s. T . A comparison of the Debye
approximation and an explicit calculation of g(ω) for solid are compared in Fig.
7.8.

We consider now the high and low temperature limits of the Debye theory.

(a) Low temperatures, T � θD

In this case we take the limit in eq. (7.40) as θD/T → ∞ and the integral
there is just π4/15 giving a thermal energy per mole,

U =
3π4

5
R

T 4

θD
3

and

CV =
12
5

π4 R (
T

θD
)
3

. (7.42)

This gives us the famous Debye expression for the low tempeature CV , propor-
tional to T 3. In this limit the phonon gas energy becomes identical to that of
photon gas, where the energy density is u = aT 4 (see eq. 7.22). Only the value
of the constant of proportionality (given by θD) fixing the vibrational frequen-
cies differs.
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(b) High temperatures, T � θD

In this case θD/T is small so that x in eq. (7.40) is always small. We
may then expand (ex − 1)−1 as (1 − x − 1)−1. The thermal energy per mole is
then

U = 9 RT (
T

θD
)
3 1

3
(
θD

T
)
3

= 3 RT (7.43)

and CV = 3 R, which is the classical result, the Dulong-Petit law.
In practice we find eq. (7.42) does not hold until T � θD/50 which from

table 7.1 corresponds to a very low temperature. Also the specific heat of most
metals does not become classical until well above room temperature. Also CV

is CV = 3R only in the harmonic approximation. Usually CV differs from 3 R
in real solid due to anharmonic contributions.

7.2.3 The Free Energy

The partition function of the solid in the harmonic approximation dis-
cussed above can be readily evaluated as

Z =
∑
S

e−βES (7.44)

where ES is given by eq. (7.32). The possible states ES can be enumerated by
summing over all possible values of nq in eq. (7.32),

Z =
∑

nq1 ,nq2

. . . e−β
∑
q �ωq(nq+ 1

2 ) =
∑

nq1 ,nq2

. . .
∏
q e−β�ωq(nq+ 1

2 )

=
∏
q

( ∞∑
nq=0

e−β�ωq(nq+ 1
2 )

)
=

∏
q e−

1
2 β�ωq (1 − e−β�ωq )

−1

=
∏
q (e

1
2 β�ωq − e−

1
2 β�ωq )

−1
(7.45)

The partition function for the phonon gas is a product of partition functions for
each independent oscillator,

Z = Zq1 Zq2 . . . .

Each Zq is the same as the vibrational partition function we obtained in section
for a single diatomic molecule having characteristic frequency �ωq = hν. The
total Z is a simple product because the total energy ES is a sum of oscillator
energies. Thus Z is a product in the same way that Z for an atom having
internal degrees of freedom of Zq is a product of a Z for each independent
degree of freedom.
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To complete the model we should really add to ES the potential energy,
φ, of the crystal with the atoms fixed at their lattice points.
Then

Z = e−βφ
∑
S e−βES

= e−βφ
∏
q 2 sinh (

1
2
β�ωq) (7.46)

and the Helmholtz free energy is

F = −kT log Z = φ + kT log 2 sinh (
1
2
β�ωq) (7.47)

and all other thermodynamic functions follow by differentiation. For example,

U =
∂

∂β
(βF ) =

∂

∂β

(
βφ +

∑
q

[ log (1 − e−β�ωq ) +
1
2
β�ωq]

)

= φ +
∑

q

�ωq (nq +
1
2
) (7.48)

which agress with eq. (7.36). The entropy is

S =
1
T

(U − F ) = k
∑

q

[
β�ωq nq − log (1 − e−β�ωq )

]
(7.49)

which depends only on the thermal vibrational energy. This clearly goes to zero
as T → 0.

7.3 Bose Gas

As a third example of Bose statistics we consider an ideal gas of Bose
particles. This is a gas of any integral spin (e.g. zero spin) particles at a
temperature low enough that quantum effects are important. Quantum effects
become important when the termal wavelength λT = (h2/2πmkT )

1
2 of the par-

ticles is comparable or greater than the interparticle spacing, i.e. nλ3
T � 1. The

prime physical example is a gas of 4He atoms. In fact the 4He-4He interatomic
interaction is strong enough that the gas condenses into a liquid at low temper-
ature, below 4.2 K. In spite of this, liquid 4He properties are often compared
with similar properties in the perfect Bose gas.

In 1924 Einstein proposed that a Bose gas at low temperature would un-
dergo a “condensation” in which a macroscopic or large fraction of the particles
condense into the lowest energy single particle state (the zero momentum state).
This Bose-Einstein condensation was a logical consequence of the new statistics
introduced by Bose. Although there is not yet a fully satisfactory theory of
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liquid 4He this condensation is observed in liquid 4He at T = Tλ = 2.17 K. At
Tλ a fraction of atoms begin to condensate into the condensate state. At T = 0
K 7.25 ± 0.75 % of the fluid is in the condensate. This condensation is the fun-
damental origin of superfluidity in liquid 4He at Tλ. The superfluid component
in liquid 4He arises from the component of the liquid condensed into the zero
momentum state.

Similarly, Bose-Einstein condensation (BEC) is observed in gases of alkali
atoms confined in harmonic traps. In this case the Bosons are in an external
confining potential U(r), the gas is dilute, n(r) = N(r)/V ∼ 108 atoms/cm3,
and the gas density n(r) varies with distance r from the center of the trap.
The gas can be cooled to extremely low temperature (T ∼ 5 × 10−9 K) where
essentially 100 % of the atoms condense into the lowest energy state, in this case
a harmonic oscillator state. We now discuss this condensation and its relation
to liquid 4He.

7.3.1 Ideal Bose Gas and Bose Einstein Condensation

Specifically, we consider a uniform gas of N non-interacting Bosons con-
fined to a volume V at constant number density n = N/V = 1/v. There is
no external potential U(r) confining the N Bosons in V except the walls of the
container –i.e. U(r) = 0. Such a gas cannot be realized in practice at low tem-
perature since the equilibrium state of Bosons is liquid if U(r) = 0. However,
a uniform Bose gas serves as an outstanding model for Bose gases in harmonic
magnetic traps where U(r) = 1

2mω0
2r2 and ω0

2 is the trap frequency. The
uniform Bose gas also shows several features displayed by uniform liquid 4He
such as BEC, superflow if there is weak interaction, entropy that is carried by
particles in excited states above the condensate only.

The Bose function (5.26) gives the number of Bosons in each single par-
ticle state εs as

ns = (eβ(εs−μ) − 1)
−1

.

Since ns must be positive (ns ≥ 0) and we may choose the energy scale so that
the lowest single particle energy is zero (ε0 = 0), we must have

μ < 0 .

If μ > 0 and ε0 = 0, then n0 = (e−βμ − 1)−1 would be negative which is
unphysical.

In a classical gas, we found that the chemical potential was large and
negative, μ = −kT log (1/nλ3

T ). In the classical limit, λT = (h2/2πmkT )
1
2 is

short, much less than the diameter of an atom. As the temperature is lowered
λT increases, nλ3

T increases and μ increases toward zero, its maximum value.
The fugacity z defined by z = eβμ is, in the classical limit, just z = nλ3

T

(classical limit only). As temperature is decreased and μ goes from a large
negative number to zero, z = eβμ goes from zero to its maximum value of 1,
0 ≤ z ≤ 1. This dependence is displayed in Fig. 7.9.
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Figure 7.9: The chemical potential μ and fugacity z = eβμ for a Bose gas.

The total number density in the gas is

N

V
=

1
V

∑
s

ns =
1
V

∑
s

(
eβ(εs−μ) − 1

)−1

. (7.50)

Since N/V is constant, μ(T ) and z(T ) = eβμ must change with temperature to
maintain N/V constant.

Similarly, the thermodynamic properties can be obtained from the Grand
partition function

Ω = −pV = −kT log Z (7.51)

where Z =
∑

N

∑
S e−β(ES−μN), the gas energy is Es =

∑
s ns εs and N =∑

s ns. In section 5.3 we found log Z = −∑
s log (1 − ze−βεs) so that

p

kT
= − 1

V

∑
s

log (1 − ze−βεs). (7.52)

Other thermodynamic properties can be obtained by differentiating Ω (i.e.
log Z). We note particularly that the gas energy is

U =
∑
N

zN
∑
S

ES e−βES =
∑

s

nsεs

so that
U = − ∂

∂β
(log Z)z,n (7.53)

Note that the expression is defined as differentiation at constant z. In general
z(T ) is a function of temperature.

The remainder of the development consists of evaluating N/V and log Z
and exploring their properties. For Bosons in a box, the density of states s is,

∑
s

=
∫

ds =
∫

dΓ
(

ds

dΓ

)
=

1
h3

∫ ∫
d3r d3p

=
1
h3

∫
d3r

∫
4πp2dp

Since U(r) = 0, we can integrate over the volume directly and independently
of p to obtain

∫
d3r = V . However, if U(r) �= 0, then ε = p2/2m + U(r) and
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p2 = 2m[ε − U(r)] and the integration over r and p is coupled, as we shall
see for Bosons confined in a trapping potential, U(r). For U(r) = 0, we have
p = (2mε)

1
2 and the sum over states gives the number of states up to energy ε

as ∑
s

= V

∫ ε

0

dε′
2√
π

(
2πm

h2
)

3
2 ε′

1
2 = N(ε)

and the density of states is

g(ε) =
dN(ε)

dε
= V

2√
π

(
2πm

h2

) 3
2

ε
1
2 (7.54)

as we obtained before. Thus for a uniform gas of Bosons we obtain

N

V
=

1
λ3

T

1
(
√

π/2)

∫ ∞

0

dx
x

1
2

( 1
z ex − 1)

=
1

λ3
T

g3/2(z) (7.55)

and

p

kT
= − 1

λ3
T

1
(
√

π/2)

∫ ∞

0

dx x
1
2 log

(
1 − ze−x

)

=
1

λ3
T

1
(3/2)(

√
π/2)

∫ ∞

0

dx
x

3
2(

1
z ex − 1

) =
1

λ3
T

g5/2(z) (7.56)

The second expression for p/kT is obtained by an integration by parts. The
functions gν(z) are defined as

gν(z) ≡ 1
Γ(ν)

∫ ∞

0

dx
xν−1(

1
z ex − 1

) (7.57)

where Γ(ν) is the Gamma function. We will encounter Γ(ν) for ν = 1
2 integers

only for which Γ(1
2 ) =

√
π and Γ(ν + 1) = νΓ(ν), i.e. Γ( 3

2 ) = 1
2Γ( 1

2 ) =
√

π
2 .

The gν(z) are often denoted the Bose gas functions. For the case z = 1 (i.e.
for temperatures T ≤ Tc), the gν(z) reduce to the Riemann zeta functions,
gν(z = 1) = ζ(ν). A simple and useful representation of the gν(z) is obtained
by expanding the denominator in eq. (7.57) in a power series giving

gν(z) =
∞∑

l=1

zl

lν
= z +

z2

2ν
+

z3

3ν
+ . . . (7.58)

Eq. (7.58) may also be taken as the definition of gν(z). It is particularly useful
when derivatives of gν(z) are sought or the classical limit z → 0 is taken.

7.3.2 Bose-Einstein Condensation

From eq. (7.55), the product of the number density and λ3
T is

nλ3
T = g3/2(z). (7.59)
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Figure 7.10: The phase diagram of 4He.

We consider first constant n = N/V . In the high temperature, classical limit of
the Bose gas, where z → 0, we have from the series expression (7.58) g3/2(z) = z

so that nλ3
T = z = eβμ. This is the classical result for μ and z –where nλ3

T �
1. As temperature is lowered, λ3

T increases and LHS of eq. (7.59) increases.
The RHS of eq. (7.59) must similarly increase. However, the RHS reaches a
maximum value at z = 1, where g3/2(z = 1) = ζ( 3

2 ) = 2.612. At temperatures
below this critical temperature Tc, λ3

T continues to increase and eq. (7.59) is no
longer fulfilled. We might say that all N of the Bosons in

(
N
V

)
can no longer

be accomodated in the result nλ3
T = 2.612. Specifically, all N Bosons can no

longer be accomodated in the states ε > 0 since the DOS g(ε) given by eq. (7.54)
includes only the ε > 0 states. In eq. (7.54) because of the ε

1
2 , the ground (zero

energy) state ε0 has zero weight and is not included in eq. (7.59).
At T = Tc, we can just accomodate all N atoms in the excited (p >

0, ε > 0) single particle states. At constant n, Tc is determined as the lowest
temperature at which eq. (7.59) is fulfilled, i.e. Tc is defined by

nλ3
Tc

= 2.612 . (7.60)

Below Tc to accomodate all N of the Bosons we must explicitly include the zero
momentum state (p = 0, ε = 0) in eq. (7.59). That is, we have for T < Tc,

n = nex + n0 =
2.612
λ3

T

+ n0 (7.61)

Where nex is the density of Bosons in the p �= 0 states at T < Tc. Below Tc,
since we have included excited states only in eq. (7.59), nex λ3

T = 2.612. Clearly
nex → 0 as λT → ∞ at T → 0. Indeed from nλ3

Tc
= 2.612 = nex λ3

T and from
eq. (7.61) we have

1 =
nex

n
+

n0

n
=

λ3
Tc

λ3
T

+
n0

n

or
n0

n
=

N0

N
= 1 −

(
T

Tc

) 3
2

(7.62)

N0/N is defined as the condensate fraction.
Thus at constant n, we begin to get a macroscopic fraction N0/N in the

p = 0 state at a temperature T = Tc with Tc given by eq. (7.60). Bose-Einstein
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condensation (BEC) begins at Tc. At T < Tc the fraction of atoms in the
condensate state (p = 0), N0/N is given by eq. (7.62). At T = 0 K all Bosons
are in the condensate. There are no Bosons in excited states, Nex = 0 at T = 0
K. This condensation is very similar to the condensation of a gas to a liquid.
The atoms in the excited states correspond to the gas, those in the condensate
to the liquid.

In a similar way, we could consider a Bose gas at constant temperature
T and vary the density. For example, we could fix T (and λT ) in eq. (7.59)
and increase the density n (e.g. reduce V ). As n increases (or v = 1/n = V/N
decreases), the LHS of eq. (7.59) increases until it reaches a critical value nc

given by
ncλ

3
T = 2.612 (7.63)

where again 2.612 is the maximum value of the RHS. For n > nc we must again
include the N0 Bosons in the p = 0 state explicitly so that

n = nc + n0

or
n0

n
=

N0

N
= 1 − nc

n
= 1 − v

vc

At a given T , the more we compress the gas (increase n or decrease v) the
larger the fraction of Bosons that drop into the condensate states. This is an
important question for a dilute gas of Bosons in a trap at a given temperature.
The higher the density of the gas, the larger the fraction in the condensate. This
result is true only if the interparticle interaction is negligible. In an interacting
Bose gas the reverse is true because increased density means increased depletion
of the condensate by interaction. We now go on to explore the nature of the
BEC transition by examining the thermodynamic properties above and below
Tc(nc).

7.3.3 Thermodynamic Properties

In this section we investigate the thermodynamic properties of the ideal
Bose gas based on equations (7.55) and (7.56),

p =
kT

λ3
T

g5/2(z) , n =
1

λ3
T

g3/2(z) (7.64)

We show that at and below the critical volume per Boson (v < vc) or critical
temperature (T < Tc) where BEC takes place, the isothermal compressibility
κT

−1 = −V (∂P/∂V )T is infinity. This is characteristic of a first order gas to
liquid transition in which the gas is condensing into a liquid. In the present case
the Bosons are condensing from the excited states to the ground state (BEC)
as v is decreased below vc. We show that there is a latent heat associated with
the BEC transition which is also characteristic of a first order transition. This
latent heat is consistent with entropy change during BEC. We show when all
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Figure 7.11: Isotherms of the Ideal Bose gas.

the Bosons are in the zero momentum state, the entropy of the gas is zero. The
entropy arises entirely from Bosons in the excited states (i.e. from excitations)
which is an important concept in understanding superfluidity in interacting Bose
fluids and the two fluid model of superfluids. Finally, we evaluate the specific
heat below and above Tc.

We first consider p = (kT/λ3
T ) g5/2(z) as a function of v = V/N = n−1

at constant temperature. At large volume per atom, v → ∞, the gas becomes
classical since the Boson wave functions do not overlap. At z → 0, z approaches
the classical limit, z = nλ3

T , and z goes to zero. From the expansion (7.58)
g5/2(z) → 0 as z → 0. Thus from (7.64) p → 0 at v → ∞. As the gas is
compressed, z increases, g5/2(z) increases until at z = 1, the onset of BEC,
g5/2(z) reaches its maximum value, g5/2(z = 1) = ζ(5/2) = 1.342. At z = 1 (v =
vc) the pressure reaches its maximum value given by

p0 =
kT

λ3
T

g5/2(1) =
kT

λ3
T

1.342. (7.65)

The pressure remains at its maximum value p0 in the Bose condensed
phase, v < vc, independent of v. Since p0 is a constant for v < vc the gas is
infinitely compressible, i.e.

κT
−1 = −V

(
∂p

∂V

)
T

= 0. (7.66)

Note that both the equations for p and n in (7.64) include the contributions
from excited states only, nothing from the condensate. It is remarkable that as
the occupation of the excited states is depleted for v < vc, the pressure remains
constant. The variation of p(v) with v at constant temperature is depicted in
Fig. 7.11. By eliminating temperature from the equations in (7.64), the pressure
and critical volume are found to satisfy the relation,

p0 vc
5/3 =

(
h2

2πm

)3/2
g5/2(1)
g3/2(1)

. (7.67)

Eq. (7.67) for p0 is plotted in Fig. 7.12 as a function of T . Note that since
p0 is independent of v at the transition we do not need to consider constant v.
However, it is useful to consider Fig. 7.12 as a constant v plot at T > Tc, on the
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Figure 7.12: The Bose condensed phase pressure versus temperature.

RHS of the transition line. Also, we cannot go to pressures below the transition
line. The Bose condensed phase lies on the transition line. From eq. (7.67),

dp0(T )
dT

=
5
2

kg5/2(1)
λ3

T

=
1

Tvc

[
5
2

kT
g5/2(1)
g3/2(1)

]
(7.68)

This is the Clapeyreon equation dp0/dT = L
TΔv along the transition line, where

L is the latent heat of transition and Δv is the volume difference between the
two phases. In present case Δv = vc since the specific volume of the condensate
(the Bosons in the p = 0 state) is zero. The latent heat per Boson is

L =
g5/2(1)
g3/2(1)

5
2
kT = R(1)

5
2
kT = 0.514

5
2
kT (7.69)

where R(1) = g5/2(1)/g3/2(1) = 0.514.
We now discuss the entropy and specific heat of the Bose gas. The internal

energy can be obtained as U =
∑

s nsεs, and following the same procedure used

to evaluate N =
∑

s ns, or by differentiating log Z
(
U = − ∂

∂β (log Z)z,V

)
to

give
U

N
=

3
2

kTv

λ3
T

g5/2(z) . (7.70)

The Helmholtz free energy can be obtained from − Ω = pV = − (F − μN) to
give

F

N
= −kTv

λ3
T

g5/2(z) + log z (7.71)

from which the entropy is TS = U − F or

S

N
=

5
2

kv

λ3
T

g5/2(z) − log z. (7.72)

In the Bose condensed phase, the entropy per particle is

S =
5
2

k
v

λ3
T

g5/2(1) (7.73)

which goes to zero at T = 0 K. Thus the condensate has zero entropy and all
entropy is carried by the excitations (and all U,F , and Ω as well). The specific
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Figure 7.13: The specific heat of a Bose gas.

Figure 7.14: The specific heat of liquid 4He at the Lambda transition.

heat can be obtained by differentiating U ,

CV

N
=

(
∂U

∂T

)
V

=
15
4

kv

λ3
T

g5/2(z) − 9
4

g3/2(z)
g1/2(z)

. (7.74)

To obtain this result we have to remember the z is a function of T . Using
the series expression for gν(z), we find dgν(z)/dT = (dz/dT ) (dgν(z)/dz) =
(dz/dT ) 1

z gν−1(z). From eq. (7.64) we also have dg3/2(z)/dT = d(λ3
T n)/dT =

−(3
2T )(λ3

T n) = −( 3
2T ) g3/2(z). From these two results we obtain z−1(dz/dT ) =

−(3
2T ) g3/2(z)/g1/2(z) and CV can be obtained by direct differentiation. For

T < Tc, CV has only the first term since g5/2(z = 1) = 1.342 is constant. CV (T )
is shown in Fig. 7.13. In the Bose condensed phase (T < Tc) (z = 1), CV (T ) is
proportional to T 3/2. The T 3/2 arises from the density of single particle states
εp = p2/2m in the gas which is g(ε) ∝ ε

1
2 . In contrast, the density of states for

phonon excitations εp = cp is g(ε) ∝ ε2 which leads to CV ∝ T 3 as we saw for
phonons in solids and photons. When there is interaction between the Bosons,
the excitations become phonon like εp = cp at low p and CV ∝ T 3. From Fig.
7.13 we see that CV reaches a peak at Tc and thereafter decreases to the classical
limit at high temperature.

The classical limit of the Bose gas is readily obtained by replacing nλ3
T by

g3/2(z) in the thermodynamic functions, taking z → 0 and gν(z) ∼ z at z → 0.
Eq. (7.61) reduces to

p =
kT

λ3
T

g5/2(z) = kTn
g5/2(z)
g3/2(z)

→ kTN

V
(7.75)

which is the classical ideal gas law. Similarly,

U =
3
2
kTV g5/2(z) =

3
2
NkT

g5/2(z)
g3/2(z)

→ 3
2
NkT (7.76)

which is the classical gas translational kinetic energy.


