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1 The central problem in time-dependent perturbation theory:

In time-independent perturbation theory, the object was to find the new eigenvalues and eigenstates when
a system whose states are known is ‘perturbed’ by adding an additional term to the Hamiltonian. The main
trick was to multiply the perturbation operator by λ, and then expand both the states and eigenvalues in
a power series in λ. Inserting these two expansions into the energy eigenvalue equation and equating terms
of equal powers of λ led to a systematic way to build up an approximate solution. At the end λ can be set
to unity to match the solution to the original Hamiltonian.

In time-dependent perturbation theory the main goal is to determine the time-evolution of a perturbed
quantum system, with particular emphasis on calculating transition probabilities and modeling the irre-
versible decay of probability from a small quantum system coupled to a very large quantum system.

Formally, we want to find the time evolution of a state governed by the Schrödinger Equation,

d

dt
|ψ(t)〉 = −

i

~
(H0 + V (t)) |ψ(t)〉, (1)

where H0 is the ‘bare’ Hamiltonian, whose eigenstates and eigenvalues are known, and V (t) is some
perturbation. Experimentally, important information can be obtained by observing how a system responds
when we ‘wiggle’ it or ‘kick’ it, or otherwise perturb it in a time-dependent way. While V (t) is thus
explicitly taken as time-dependent, time-dependent perturbation theory is equally suited to the case where
V is constant in time.

In order to keep track of perturbation ‘order’, it is customary to introduce the perturbation parameter, λ,
and start from the Hamiltonian

H = H0 + λV (t), (2)

and then set λ = 1 at the end of the calculation.

Generally, we will assume that the system starts in one of the unperturbed eigenstates, which we will refer
to as |m〉. But the perturbation approach applies equally well to an arbitrary initial state |ψ(0)〉, i.e. s a
superposition of bare eigenstates. The goal is to find |ψ(t)〉, the state at some later time t. In principle, one
can simply start by inserting a perturbation expansion for |ψ(t)〉 into Eq. (1), and start turning the crank.
However, we can make things much easier on ourselves by (a) computing the perturbed propagator, which
can then be used to propagate any initial state; and (b) switching to the interaction picture, where the
calculation are much cleaner. Thus we will first briefly review the tranformation between the Schrödinger
and Interaction pictures.
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2 Theory of Hilbert-space frame transformations

In Schrödinger’s formulation of quantum mechanics, a quantum system is described by a state vector,
|ψ(t)S〉, whose time evolution is governed by

d

dt
|ψ(t)S〉 = −

i

~
HS|ψ(t)S〉, (3)

where HS is the ‘Hamiltonian’ operator, and the subscript ‘S’ indicates that this is the Schrödinger picture
of Quantum Mechanics. Observables in the Scrhödinger picture correspond to stationary operators, whose
average values are given by

〈O〉 = 〈ψ(t)|OS |ψ(r)〉, (4)

where OS represents any observable quantity.

The state at time t must be related to the state at time t = 0 by a unitary transformation, thus we can
define the ‘Schrödinger picture propagator’ via

|ψS(t)〉 = US(t)|ψS(0)〉. (5)

Substituting this into (3) then gives

d

dt
US(t)|ψS(0)〉 = −

i

~
HSUS(t)|ψS(0)〉. (6)

As this equation must be valid for any initial state, it follows that US(t) is governed by the equation

d

dt
US(t) = −

i

~
HSUS(t), (7)

subject to the initial condition US(0) = I.

In terms of the propagator, expectation values of observables are given by

〈O〉 = 〈ψ(0)|U †S(t)OSUS(t)|ψ(0)〉. (8)

The then begs the question, why do we associate the propagator with the state-vector, and not with
the observables. After all, in classical physics, it is the observables that evolve in time, and there is no
concept of a ‘state’ abstracted from the values of particular observables. Clearly, developing the concept
of a quantum state-vector is a major advancement in quantum theory, precisely because it decouples the
‘state’ of the system from the values of observables, such that once the ‘state’ is known, the value of any
observable, including its quantum uncertainties and correlations, can be computed directly from the ‘state’.

2.1 The Heisenberg picture

Never-the-less, one can ask what Quantum Mechanics might look like, if we attached the propagator to
the observable instead of the state vector. In fact, this is exactly how Heisenberg, working independently
of Schrödinger, formulated his own version of Quantum theory. Operators in the ‘Heisenberg picture’ are
related to their Schrödinger picture counterparts via

OH(t) = U †S(t)OSUS(t), (9)
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which leads to the ‘Heisenberg equation of motion’,

d

dt
OH = U̇ †SOSUS + U †SOSU̇S

=
i

~
U †SHSOSUS −

i

~
U †SOSHSUS

=
i

~
U †SHSU

†
SUSOSUS −

i

~
U †SOSU

†
SUSHSUS

=
i

~
[HH , OH ]. (10)

If we take
[AS , BS ] = MS , (11)

i.e. the operator MS is generated by the commutator of A with B in the Schrödinger picture, then it
follows that

[AH , BH ] = MH . (12)

The proof is as follows,

[AH , BH ] = AHBH −BHAH

= U †SASUSU
†
SBUS − U †SBSUSU

†
SAUS

= U †SASBSUS − U †SBSASUS

= U †S [AS , BS ]US

= U †SMSUS

= MH . (13)

This means that the algebraic structure of the operators is invariant when transforming from one picture
to the other, which allows to drop the subscripts and write

[A,B] = M, (14)

which is valid in all frames. For example from [X,P ] = i~, it follows that [XS , PS ] = i~ and also [XH , PH ] =
i~.

In contrast to the Schrödinger picture, the state-vector in the Heisenberg picture is time-independent. It
is related to the time-dependent state-vector in the Schrödinger picture by

|ψH〉 = |ψS(0)〉, (15)

and expectation values are taken via
〈O〉 = 〈ψH |OH(t)|ψH 〉 (16)

That both theories give identical predictions is established by showing that both theories give identical
results for expectation values of any and all operators, i.e.

〈ψH |OH(t)|ψH 〉 = 〈ψS(0)|U †S(t)OSUS(t)|ψS(0)〉 = 〈ψS(t)|OS |ψS(t)〉. (17)

2.2 Generalized Hilbert-space rotating-frame transformations

This transformation is a special case of a more general class of time-dependent unitary transformations
that lead to a continuum of different ‘pictures’ or ’rotating frames’, as they are commonly called, all of
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which make identical physical predictions. The transformation from frame A to frame B is accomplished
by transforming the state vector according to

|ψA(t)〉 → |ψB(t)〉 = UBA(t)|ψA(t)〉, (18)

while at the same time transforming all operators according to

OA(t) → OB(t) = UBA(t)OA(t)UAB(t), (19)

where UBA(t) is a unitary operator generated by a time-independent Hermitian operator, G, via

UBA(t) = eiGt/~. (20)

From this definition, we can see that the time-derivative of UBA is

U̇BA =
i

~
GUBA =

i

~
UBAG. (21)

The inverse transformation, UAB , is given by

UAB(t) = U †BA(t) = e−iGt/~. (22)

With these definitions, it follows that
UAB(t)UBA(t) = I, (23)

which guarantees the invariance of observations,

〈O〉B = 〈ψB |OB |ψB〉 = 〈ψA|UAB UBAOAUAB UBA|ψA〉 = 〈ψA|OA|ψA〉 = 〈O〉A. (24)

Let us assume that the equation of motion for the state-vector in frame A is

d

dt
|ψA〉 = −

i

~
Hψ,A|ψA〉, (25)

and that the equation of motion for the operators is

d

dt
OA =

i

~
[HO,A, OA]. (26)

Likewise, in frame B, the equations of motion are

d

dt
|ψB〉 = −

i

~
Hψ,B|ψB〉, (27)

and
d

dt
OB =

i

~
[HO,B, OB ]. (28)

The relationships between Hψ and HO in the two frames are readily derived by direct differentiation, which
gives

d

dt
|ψB〉 =

d

dt
UBA|ψA〉

= −
i

~
(UBAHψ,AUAB −G)UBA|ψA〉, (29)

from which we see that
Hψ,B = UBAHψ,AUAB −G. (30)
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Likewise, diffenentiating OB gives

d

dt
OB =

d

dt
UBAOAUAB

=
i

~
[UBAHO,AUAB +G,OB ], (31)

which tells us that
HO,B = UBAHO,AUAB +G. (32)

We note that the quantity H = Hψ +HO is invariant, i.e.

Hψ,B +HO,B = Hψ,A +HO,A. (33)

Which shows that the different reference frames correspond to different ways of dividing the Hamiltonian
into two parts, and associating one part with the state, and the other with the operators.

We can define the time-propagator, UA(t), in frame A via

|ψA(t)〉 = UA(t)|ψA(0)〉, (34)

and likewise, for frame B,
|ψB(t)〉 = UB(t)|ψB(0)〉. (35)

To find the relation between the two time-propagators, we can start from Eq. (18), and use (34) to replace
|ψA(t)〉, giving

|ψB(t)〉 = UBA(t)UA(t)|ψA(0)〉. (36)

At time t = 0, we have UBA(0) = UAB(0) = I, which means that the states and operators in both pictures
are the same. Thus, |ψA(0)〉 = |ψB(0)〉, which together with (35) yields

UB(t)|ψB(0)〉 = UBA(t)UA(t)|ψB(0)〉, (37)

from which we see that
UB(t) = UBA(t)UA(t). (38)

We can see that neither Hψ, HO, nor the time-propagator transform as a normal operator, that is to say
by Eq. (19). This is because the transformation is time-dependent, and these operators are defined solely
by their operation in a given picture.

In this notation, the Schrödinger picture is defined by

Hψ,S = H (39)

and
HO,S = 0, (40)

with the Heisenberg picture corresponding to the opposite extreme

Hψ,H = 0, (41)

and
HO,H = H. (42)

The frame transformation S → H is generated by G = H, with the inverse transformation (H → S)
generated by G = −H.
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2.3 The Interaction Picture

In perturbation theory, we divide the Hamiltonian into two parts via

HS = H0 + V, (43)

where H0 is the ‘bare Hamiltonian’, and V is the perturbation. This division leads to another common
frame called the ‘Interaction picture’. The transformation S → I is generated by G = H0, giving

Hψ,I = UISHψ,SUSI −G

= UISH0USI + UISV USI −H0

= UISV USI

= VI , (44)

and

HO,I = UISHO,SUSI +H0

= H0 (45)

so that the equations of motion are,

d

dt
|ψI(t)〉 = −

i

~
VI(t)|ψI(t)〉, (46)

and
d

dt
OI(t) =

i

~
[H0, OI(t)] (47)

In terms of H0, we see that
VI(t) = eiH0t/~V e−iH0t/~, (48)

where we can replace V with V (t) in the case were the perturbation operator has explicit time-dependence
in the Schrödinger picture. Commonly, one does not solve Eq. (47) to find the interaction-picture operators,
but rather computes them directly from

OI(t) = eiH0t/~OSe
−iH0t/~, (49)

by using explicit knowledge of the commutator between H0 and the particular operator in question.

The Schrödinger picture time-propagator is related to the interaction-picture time-propagator via (38),
giving

US(t) = e−iH0t/~UI(t), (50)

thus if one calculated UI(t), one could readily determine US(t). The advantage of calculating UI(t) instead
of directly calculating US(t) is that H0 is removed from the equation of motion, i.e.

d

dt
UI(t) = VI(t)UI(t), (51)

whereas
d

dt
US(t) = (H0 + V )US(t). (52)

As the cost of dropping a term from the equation of motion is a simple multiplication by e−iH0t/~ at the
end, it is well worth-it to use this approach.
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3 The Perturbation Expansion

The advantage of using perturbation theory to calculate the time-propagator, U(t), as opposed to the state-
vector,|ψ(t)〉, is that once it is computed, the state at time t is readily determined for any initial state via

|ψ(t)〉 = U(t)|ψ(0)〉. We note that it is customary to use the notation U0(t) = e−iH0t/~, i.e. USI(t) → U0(t),
as this operator is also the time-propagator of the unperturbed Hamiltonian (in the Schödinger picture).

To solve Eq. (51), we expand UI(t) as a power series in λ,

UI(t) = U
(0)
I (t) + λU

(1)
I (t) + λ2U

(2)
I (t) + . . . , (53)

and substitute this into the equation of motion,

d

dt

(

U
(0)
I (t) + λU

(1)
I (t) + λ2U

(2)
I (t) + . . .

)

= −
i

~
VI(t)

(

λU
(0)
I (t) + λ2U

(1)
I (t) + . . .

)

. (54)

Due to the linear independence of the terms in a power series, a general solution requires us to equate
separately all terms with the same power. From the λ0 terms, we get

λ0 :
d

dt
U

(0)
I (t) = 0, (55)

This, together with the requirement that our solution holds for λ = 0, and our initial condition, UI(0) = I,

requires U
(0)
I (t) = I, while all other terms in the expansion must vanish at t = 0. This can be written

compactly as
UI

(j) = δj,0. (56)

At first-order we find

λ1 :
d

dt
U

(1)
I (t) = −

i

~
VI(t)UI

(0) = −
i

~

∫ t

0
dt1VI(t1), (57)

where we have used the zeroth order result. Formal integration gives

U
(1)
I (t) = −

i

~

∫ t

0
dt1 VI(t1). (58)

At second order, we have

λ2 :
d

dt
U

(2)
I (t) = −

i

~
VI(t)U

(1)
I (t). (59)

Again formal integration gives

U
(2)
I (t) = −

i

~

∫ t

0
dt2VI(t2)U

(1)
I (t2)

=

(

−i

~

)n ∫ t

0
dt2

∫ t2

0
dt1 VI(t2)VI(t1) (60)

At this point the pattern is clear, and we can write our final result

U
(j)
I (t) =

(

−i

~

)j ∫ t

0
dtj

∫ tj

0
dtj−1 . . .

∫ t3

0
dt2

∫ t2

0
dt1VI(tj)VI(tj−1) . . . VI(t2)VI(t1). (61)

The problem is now ‘solved’, what remains is to put the pieces together to compute ‘transition probabilities’,
and to try to gain some intuition by ‘interpreting’ our result.
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4 Switching back to the Schrödinger Picture

We have seen that
US(t) = USI(t)UI(t) = e−iH0t/~UI(t). (62)

Using VI(t) = U †0 (t)V (t)U(t), together with the fact that U0(t)U
†
0 (t′) = U0(t− t′), we find

US(t) = U0(t) +

(

−i

~

)

λ

∫ t

0
dt1U0(t− t1)V (t1)U0(t1)

+

(

−i

~

)2

λ2

∫ t

0
dt2

∫ t2

0
dt1U0(t− t2)V (t2)U0(t2 − t1)V (t1)U0(t1)

+

(

−i

~

)3

λ3

∫ t

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1U0(t− t3)V (t3)U0(t3 − t2)V (t2)U0(t2 − t1)V (t1)U0(t1)

+ . . . , (63)

where we note that 0 < t1 < t2 < t3 . . . < tj < t, so that the time evolution in each term can be
traced clearly from right to left. This shows that the time-propagator has a natural interpretation in
terms of instantaneous ‘quantum jumps’. The first term simply describes free propagation (i.e. governed
by H0 alone) of the initial state under the background Hamiltonian, H0. The second term describes free
propagation for a time t1, followed by a sudden change of state from |ψ(t1)〉 to the state |ψ′〉 = V (t1)|ψ(t1)〉.
After this ‘jump’, the new state continues to propagate freely from t1 to t. By integrating over t1, this
term is a summation over all possible evolution ‘paths’ containing exactly one quantum jump. Likewise,
the third term is a sum over all trajectories with two quantum jumps, and so on. Thus the full propagator
is thus a sum over all possible quantum jump sequences.

5 Transition Amplitudes

Quantum mechanics is formulated to answer the question: “If the particle starts in state |m〉, what is the
probability that it will be found in state |n〉 at time t?” The probability to be in state |n〉 at time t, given
that the system was in state |m〉 at time t = 0, is given by

Pn←m(t) = |〈n|US(t)|m〉|2 = |〈n|U0(t)UI(t)|m〉|2 . (64)

As we know, quantum mechanics is a theory of probability amplitudes rather than probabilities. Thus
we will use our perturbation expansion for the interaction-picture propagator to directly compute the
transition amplitudes. The probability amplitude for the system to be in state |n〉 at time t, given that it
is state |m〉 at t = 0 is

unm(t) = 〈n|US(t)|m〉 = 〈n|U0(t)UI(t)|m〉. (65)

Henceforth we shall assume that both |m〉 and |n〉 are eigenstates of H0, with eigenfrequencies ωm and ωn,
respectively. With this, the amplitude becomes

unm(t) = e−iωnt〈n|UI(t)|m〉. (66)

Since the unm(t)’s are computed with respect to the full Hamiltonian H = H0 + λV (t), we can expand
them in power series in λ as

unm(t) = u(0)
nm(t) + λu(1)

nm(t) + λ2u(2)
nm(t) . . . (67)
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From the definition (65), and the perturbation expansion (61), it is easy to construct the terms in the
series

u(0)
nm(t) = e−ωntδnm (68)

u(1)
nm(t) = −

i

~
e−ωnt

∫ t

0
dt1〈n|VI(t1)|m〉 (69)

u(2)
nm(t) = −

1

~2
e−ωnt

∑

m2

∫ t

0
dt2

∫ t2

0
dt1 〈n|VI(t2)|m2〉〈m2|VI(t1)|m〉, (70)

and so on. Switching back to the Schrödinger picture via

〈n|VI(t)|m〉 = 〈n|U †0 (t)VS(t)U0(t)|m〉 = 〈n|VS(t)|m〉ei(ωn−ωm)t, (71)

and with the definition
Vnm(t) := 〈n|VS(t)|m〉, (72)

we can express the jth term as

u(j)
nm(t) =

(

−i

~

)j
∑

m2,m3,
. . . ,mj

∫ t

0
dtj

∫ tj

0
dtj−1 . . .

∫ t2

0
dt1 e

−iωn(t−tj)Vnmj
(tj)e

−iωmj
(tj−tj−1)Vmjmj−1

(tj−1) . . .

. . . e−iωm3
(t3−t2)Vm3m2

(t2)e
−iωm2

(t2−t1)Vm2m(t1)e
−iωm(t1) (73)

This term can clearly be interpreted as the amplitude for the process where the system goes from bare-state
|m〉 to bare-state |n〉 by a sequence of j discrete quantum jumps between bare eigenstates. The summations
and integrations are then summing over all possible jump times and intermediate states. For the purposes
of calculation, it is slightly more convenient to use ωnm = ωn − ωn,and write

u(j)
nm(t) =

(

−i

~

)j
∑

m2,m3,
. . . ,mj

∫ t

0
dtj

∫ tj

0
dtj−1 . . .

∫ t2

0
dt1 e

−iωntVnmj
(tj)e

iωnmj
tjVmjmj−1

(tj−1)e
iωmj−1mj−2

t2 . . .

. . . Vm3m2
(t2)e

iωm2mt1 (74)

The probability to be found in state |n〉 at time t is given in terms of these amplitudes by

Pn←m(t) =
∣

∣

∣
δnm + λu(1)

nm(t) + λ2u(2)
nm(t) . . .

∣

∣

∣

2
(75)

It is important to appreciate that the transition probability is the square of the sum of the amplitudes
and not the sum of the squares. The meaning of this is that the different pathways from |m〉 to |n〉 can
interfere with each other constructively or destructively, and that this interference can have a significant
effect on the transition probability.

The final key is to expand the probability to the desired order in λ, giving for n 6= m

Pn←m(t) = λ2|u(1)
nm(t)|2 +O(λ3) (76)

This makes the important point that to calculate the transition probabilities between distinct

quantum state to 2nd order, it is only necessary to compute the amplitudes to first order.
For the case n = m, this is no longer the case, however, it is much easier to derive it from conservation of
probability, as opposed to direct integration. By conservation of probability, we have

Pm←m = 1 − λ2
∑

n 6=m

|u(1)
nm(t)|2 +O(λ3). (77)
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6 Harmonic Perturbations

Here we consider the case of a perturbation with a single well-defined frequency, whose perturbation
operator is

V (t) = V e−iωt + V †eiωt. (78)

For n 6= m, the first order probability amplitudes are then

u(1)
nm(t) = −

i

~
e−iωnt

[

Vnm

∫ t

0
dt1 e

−i(ω−ωnm)t1 + V ∗mn

∫ t

0
dt1 e

i(ω+ωnm)t1

]

(79)

We can perform the integration, yielding

u(1)
nm = −

2i

~

[

Vnme
−i(ω+ωn+ωm)t/2 sin ((ω − ωnm)t/2)

ω − ωnm
+ V ∗mne

i(ω−ωn−ωm)t/2 sin ((ω + ωnm)t/2)

ω + ωnm

]

(80)

It is common to encounter the situation where the drive frequency is very close to the transition frequency,
i.e.t ω ≈ |ωnm|. Note that while ω is a positive frequency by definition, the transition frequency ωnm can
be positive or negative, depending on the ordering of n and m.The near-resonance condition is therefore
ω ≈ |ωnm|. This implies then that ω − |ωnm| ≪ ω + |ωnm|. In this case, the far off-resonance term is

smaller than the near-resonance term by a factor of ω−|ωnm|
2|ωnm|

. Thus it is usually justified to drop the non-
resonant term, which can give a much smaller correction than say, the second-order near-resonant term.
For example, in optics, we have ω ∼ 1015s−1, whereas ∆ = ω−ωnm ∼ 107s−1, so that the far off-resonance
term is smaller by a factor 10−8. Keeping only the near-resonance term, the probability to be in state n
at time t, given that the system was in state m at t = 0, is

Pn←m(t) ≈
4|Vnm|

2

~2

sin2 ((ω − |ωnm|)t/2)

(ω − |ωnm|)2
. (81)

In the exactly on-resonance cas,e ω = |ωnm|, we can take the limit ω → |ωnm| of this expression, giving

Pn←m(t) ≈
|Vnm|

2

~2
t2. (82)

For the decay of the initial state, conservation of probability gives

Pm←m(t) = 1 −
∑

n 6=m

Pm→n(t) = 1 −
∑

n 6=m

4|Vnm|
2

~2

sin2 ((ω − |ωnm|)t/2)

(ω − |ωnm|)2
. (83)

To evaluate this term, some judgement must be made whether to keep or discard the counter-rotating
term in (80). Keep in mind that the summation of a large number of negligible terms may or may not be
negligible, depending on the specific form of the terms involved. Note that for short times, we must have,
for short times,

∑

n 6=m

Pm→n(t) ∝ t2, (84)

as can be seen from (82).
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7 The problem of a single state coupled to a continuum of final states:

Fermi’s Golden Rule

An interesting result occurs when there are many available final states all very close to resonance. If the
levels are close enough, they form a quasi continuum and we can replace the summation by an integral,

nmax
∑

n=nmin

dn →

∫ Emax

Emin

dE n(E), (85)

where n is the principle quantum number, dn is the degeneracy of the nth energy level, and n(E) is the
‘density of states’, defined by

n(E) =
dN(E)

dE
, (86)

with N(E) being the number of possible final states with energies below E. Note that both sides of (85)
yield N(Emax) upon summation/integration, with the understanding that Emax = ~ωnmax

in the discrete
case.

Let us now consider the simplest case where a single level |m〉 is coupled to a continuum, with time-
independent coupling constants, i.e. ω = 0, or equivalently

V (t) = V. (87)

As long as we are trying to compute |ψ(t)〉, we can still use TDPT. In this case, we can write the probability
to remain in state m, in the continuum limit, as

Pm→m(t) = 1 − λ24

∫

dEf n(Ef )|Vm(Ef )|
2 sin2((Ef − ~ωm)t/2~)

(Ef − ~ωm)2
, (88)

where we have taken ~ωn → Ef , and Vnm → Vm(Ef ), to emphasize that we are integrating over final
states.

Mathematically speaking, the function sin2(ax)/x2 is an element of a delta-sequence, so that

lim
a→∞

sin2(ax)

x2
= πaδ(x). (89)

To see this, note that its maximum value, occuring at x = 0 is a, and that it is bounded from above by
the envelope function

f(x) =
1

a
·

1

x2
, (90)

which goes to zero as a→ ∞ for all x 6= 0. In addition, its integral is independent of a,

∫ ∞

−∞
dx

sin2(ax)

x2
=

∫ ∞

−∞
du

sin2 u

u2
= π. (91)

Thus in the limit as a→ 0, the height at x = 0 goes to ∞, while the value for all x 6= 0 goes to zero, with
the area held constant. With a = t/2~ and x = Ef − ~ωi, we thus have

lim
t→∞

sin2((Ef − ~ωm)t/2~)

(Ef − ~ωm)2
=
πt

2~
δ(Ef − ~ωm) (92)
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For t large compared to the inverse bandwidth, i.e. t ≪ ~/(Emax − Emin), we then have

Pm→m(t) ≈ 1 −
2πt

~

∫

dE n(E)|Vm(E)|2δ(E − ~ωm)

≈ 1 −
2π

~
|Vm(Em)|2n(Em) t

≈ 1 − Γ t, (93)

This shows that the probability to remain in the initial state |m〉 decays at the rate

Γ =
2π|Vm(Em)|2n(Em)

~
. (94)

This result is known as the ‘Fermi Golden Rule’, and is a handy way to estimate the decay rate when
probability flows from a small quantum system o a much larger system. The physics of the irreversibility is
that the reverse processes from all of the different final states interfere with random phases, and thus cancel
each other out. This requires sufficient time to have passed for the the continuum states to randomize
their phases, hence the requirement t≫ ~/(Emax − Emin).

The Fermi golden rule is more conventionally written as

Γ =
2π

~
|Vfi|

2n(Ei). (95)

where Ei is the energy of the initial state, and Vfi is the matrix element coupling the initial state to the
final state, where the final state is selected by energy conservation. In order for first-order perturbation
theory to be valid, we therefore require that the deviation from the unperturbed value, i.e. unity, be a
small perturbation, thus the validity of the FGR is

~

Emax − Emin
≪ t≪

1

Γ
. (96)

Note that the result (93) seems to violate the quadratic condition (84), but we shouldn’t be alarmed,
because (84) is valid for t . ~/(Emax −Emin), whereas the FGR is expected to break-down.
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