
Quantum Dynamics

In this section, I will present some general techniques of solving for the time evolution of
quantum systems. Starting from the Schrödinger evolution equation:

iℏ d
dt

|Ψt〉 = Ht|Ψt〉   #   

and the time evolution operator Tt, t0 , which relates the initial state |Ψt0 〉 to the final state
|Ψt〉 by

|Ψt〉 = Tt, t0 |Ψt0 〉   #   

it follows that the time evolution operator satifies the differential equation and initial
condition:

iℏ d
dt

Tt, t0  = HtTt, t0 

Tt0, t0  = 1

  #   

  #   

The evolution for the adjoint space is given by:

− iℏ d
dt

〈Ψt | = 〈Ψt |Ht

iℏ d
dt

Tt, t0  = −Tt, t0 Ht

Tt0, t0  = 1

  #   

  #   

  #   

I have assumed here that the Hamiltonian is Hermitian, which is usually the case.
(Sometimes the Hamiltonian is allowed to be non-Hermitian to represent dissapative
systems. When it corresponds to the energy operator of a system, the Hamiltonian is
always Hermitian.) Notice that

d
dt

Tt, t0 Tt, t0  =
1
iℏ

−Tt, t0 HtTt, t0  + Tt, t0 HtTt, t0  = 0   #   

which together with the initial conditions implies:

Tt, t0 Tt, t0  = 1

Tt, t0  = T−1t, t0  = Tt0, t

  #   

  #   

i.e. the time evolution operator is unitary.

Solving for quantum evolution can be reduced to solving the following integral equation:

Tt, t0  = 1 −

i
ℏ
∫

t0

t
dt′Ht′ Tt′, t0    #   

A formal solution to this equation can be constructed by iteration of this equation (starting
with T0t, t0  = 1), giving:

Tt, t0  = 1 +∑
n=1

∞

−

i
ℏ

n
∫

t0

t
dt1 ∫

t0

t1

dt2. . .∫
t0

tn−1

dtnHt1 . . .Htn    #   

which is known as the Dyson series. One can check that this is indeed a formal solution by
simply plugging it back into the integral equation (and renaming the dummy indices: t′

→ t1

1



and tn  tn+1). The reason for making a distiction between ”solution” and ”formal solution”
is that even though the Dyson series satisfies the integral equation, it must also be a
convergent sum (which it is not guaranteed) in order to be considered a well-defined
solution.

We can write this in a cleaner looking form by introducing the time-ordered product of
operators. For two time-dependant operators L1t,L2t we define the time ordering as:

TL1tL2t′  =

L1tL2t′  if t > t′

L2t′ L1t if t′ > t

= θt − t′ L1tL2t′  + θt′ − tL2t′ L1t

  #   

  #   

where the step function: θti − tj =
1 for ti > tj

0 for ti < tj

. The generalization for more than two

operators should be clear:

T ∏
i=1

n

L iti  = TL1t1 . . .Lntn 

= ∑
σ∈Sn

θtσ1 − tσ2 . . .θtσn−1 − tσn L1tσ1 . . .Lntσn 

= ∑
σ∈Sn

∏
i=1

n−1

θtσi − tσi+1 ∏
i=1

n

L itσi 

Where the summation is over Sn the permutation group of n objects. (Note that there are n!
elements σ in Sn; i.e. there are n! different ways to interchange n objects). This gives:

∫
t0

t
dt1 ∫

t0

t
dt2. . .∫

t0

t
dtnTHt1 . . .Htn 

= ∑
σ∈Sn

∫
t0

t
dt1 ∫

t0

t
dt2. . .∫

t0

t
dtn ∏

i=1

n−1

θtσi − tσi+1 ∏
i=1

n

Htσi 

= ∑
σ∈Sn

∫
t0

t
d t

σ
−11 ∫

t0

t
d t

σ
−12 . . .∫

t0

t
d t

σ
−1n ∏

i=1

n−1

θti − ti+1 ∏
i=1

n

Hti 

= ∑
σ∈Sn

∫
t0

t
dt1 ∫

t0

t
dt2. . .∫

t0

t
dtn ∏

i=1

n−1

θti − ti+1 ∏
i=1

n

Hti 

= ∑
σ∈Sn

∫
t0

t
dt1 ∫

t0

t1

dt2. . .∫
t0

tn−1

dtnHt1 . . .Htn 

= n! ∫
t0

t
dt1 ∫

t0

t1

dt2. . .∫
t0

tn−1

dtnHt1 . . .Htn 

which lets us write the time evolution operator as:

Tt, t0  = 1 +∑
n=1

∞

1
n!

−

i
ℏ

n
∫

t0

t
dt1 ∫

t0

t
dt2. . .∫

t0

t
dtnTHt1 . . .Htn 

= T exp −

i
ℏ
∫

t0

t
dt′Ht′ 

  #   

  #   
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Now we can easily deal with special cases. When the Hamiltonian commutes with itself at
different times, we can simply ignore the time-ordering and write the solution of the time
evolution operator as:

Tt, t0  = exp −

i
ℏ
∫

t0

t
dt′Ht′    #   

and when the Hamiltonian is independent of time, we can perform the integral explicitly for
all t and write the evolution operator as:

Tt, t0  = exp −

iH
ℏ

t − t0    #   

Since quantum states are not physically observable objects, it should be conceivable
that transformations on the vector space that change the states but leaves certain other
properties intact would produce an equally valid formulation for quantum mechanics.
Indeed, this is the case, and the properties that need to remain unchanged are the
following:
1) the eigenvalue spectra of observable operators
2) the inner products between physical states and (transformed) eigenvectors
corresponding to the (original) eigenvalues
Notice that the conservation of these two properties implies that expectation values also
remain unchanged by the transformation.

A special class of transformations for which these conditions are inherently satified are
the unitary transformations:

|Ψt〉  U|Ψt〉 = |Ψ ′t〉

〈Ψt |  〈Ψt |U
= 〈Ψt |U−1

= 〈Ψ ′t |

Lt  ULtU
= ULtU−1

= L′t

  #   

  #   

  #   

where U is a unitary operator (i.e. U−1
= U), and Lt is an arbitrary operator for the system.

It is easy to check that the two conditions are preserved:

L′t|λL
′ 〉 = ULtU−1U|λL 〉 = ULt|λL 〉 = UλL |λL 〉 = λLU|λL 〉 = λL |λL

′ 〉

〈λL
′ |Ψ ′t〉 = 〈λL |U−1U|Ψt〉 = 〈λL |Ψt〉

  #   

  #   

The three pictures of quantum dynamics are the Schrödinger picture, the Heisenberg
picture, and the Interaction picture (also called the Dirac picture). They are all equivalent
vector space formulations of quantum mechanics, based on different ”pictures” of how the
system is evolving in time, each having its own insights and areas of preferred application.
This might lead you to guess (correctly) that these pictures are somehow related to each
other through the evolution equations, and that the transformations between the pictures
are related to time evolution operators and so would be unitary transformations. I will follow
Merzbacher’s convention and distinguish the states and operators in the Heisenberg picture
by putting a bar over them, and those in the Interaction picture by putting a tilda over them.
(States and operators in the Schrödinger picture will be unaltered.) Another common
convention is adding a subscript or superscript S, H, or I for states and operators in the
Schrödinger, Heisenberg, or Interaction picture respectively. The Schrödinger picture is the

3



formulation that you are already familiar with, and needs no additional explanation. Since
the Heisenberg picture can be thought of as a specific case of the Interaction picture, I will
first introduce the Interaction picture.

The Interaction Picture

For the Interaction picture, we begin by splitting the Hamiltonian in to two parts, the
model Hamiltonian H0 and the interaction term V.

H = H0 + V   #   

There is no restriction on how the partition of the Hamiltonian must be chosen (except that
the two parts should individually be Hermitian), but some choices may largely simplify
solving the time evolution. Let the unitary transformation be given by:

Ut = T00, t   #   

where T00, t satifies the differential equation and initial condition:

iℏ d
dt

T00, t = −T00, tH0t

T00,0 = 1

  #   

  #   

(i.e. T0 is the time evolution operator of a Hamiltonian H0t).
Then the states and operators in the Interaction picture are related to the states and
operators in the Schrödinger picture as follows:

Ψt = Ut|Ψt〉

Lt = UtLtUt

  #   

  #   

The first consequence of this transformation is that the operators in the Interaction picture
satisfy the equation of motion:

iℏ d
dt

Lt = iℏ d
dt

UtLtUt

= −UtH0tLtUt + iℏUt
dLt

dt
Ut + UtLtH0tUt

= −H0tLt + iℏUt
∂Lt
∂t

Ut + LtH0t

= Lt,H0t + iℏ
∂Lt
∂t

  #   

  #   

  #   

  #   

where ∂Lt
∂t

=

∂Lt
∂t

and the states in the Interaction picture satify the equation of motion:

iℏ d
dt

Ψt = iℏ d
dt

Ut|Ψt〉

= −UtH0t|Ψt〉 + UtHt|Ψt〉

= UtVt|Ψt〉

= Vt Ψt

  #   

  #   

  #   

  #   
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It follows that the time evolution operator in the Interaction picture satisfies the differential
equation and initial condition:

iℏ d
dt

Tt, t0  = VtTt, t0 

Tt0, t0  = 1

  #   

  #   

for which we can apply the methods of solving the Schrödinger equation presented in the
first section. However, we must be careful when applying the transformation to the time
evolution operator. Since it can be dependent on two times (unless one is set at zero), the
time evolution operator in the Interaction picture is given by the transformation:

Tt2, t1  = Ut2 Tt2, t1 Ut1    #   

Now we can address the question of how to partition the original Hamiltonian. An
obvious choice is to pick H0 as the part of the Hamiltonian that corresponds to a system that
we already know how to evolve, and then V represents a sort of interaction within this
system (hence the name). This is particularly useful when it leaves the interaction term V as
being small enough so that when using the Dyson series:

Tt, t0  = 1 +∑
n=1

∞

−

i
ℏ

n
∫

t0

t
dt1 ∫

t0

t1

dt2. . .∫
t0

tn−1

dtnVt1 . . .Vtn    #   

the first few terms will give a good approximation to the solution. This method is one of the
approachs used to solve problems in quantum field theory for example. You will later (3rd
term) see another application of this is found in time-dependent perturbation theory, for
which the approximation:

Tt, t0  ≈ 1 −
i
ℏ
∫

t0

t
dt′Vt′ 

is used to find transition probabilities between energy eigenstates of H0.
Of course, there are systems for which picking H0 as the entire familiar part of the
Hamiltonian is not the best choice. In the 11/21/01 and 12/3/01 lectures, we had the
Hamiltonian:

Ht = −γB0Sz + b1cosωtSx + sinωtSy 

=
ℏ

2
ωLσz − γb1cosωtσx + sinωtσy 

  #   

  #   

If we pick

H0 =
ℏωL

2
σz

Vt = −

ℏγb1

2
cosωtσx + sinωtσy  = −

ℏγb1

2
0 e−iωt

eiωt 0

Ut = exp i ℏωL

2
σzt =

eiℏωLt/2 0

0 e−iℏωLt/2

  #   

  #   

  #   

then we get an interaction term in the Interaction picture given by:
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Vt = −

ℏγb1

2
0 e−iω−ωL t

eiω−ωL t 0
  #   

which does not even commute with itself at different times (i.e. the worst case to solve).
Instead, if we pick:

H0 =

ℏω

2
σz

Vt = ℏ

2
ωL − ωσz − γb1cosωtσx + sinωtσy 

Ut = exp i ℏω
2

σzt =
eiℏωt/2 0

0 e−iℏωt/2

  #   

  #   

  #   

it looks messy at first, but we get an interaction term that is constant in the Interaction
picture:

V =

ℏ

2
ωL − ωσz − γb1σx  =

ℏ

2
ωL − ω −γb1

−γb1 −ωL − ω
  #   

which is the easiest case to solve for time evolution (i.e. exponentiate a diagonalizable 2x2
matrix). This particular transformation is exactly what was carried out in those two lectures
when we applied the transformation to the rotating frame. To make this claim explicitly
clear, the translation between the notation used in those lectures and the notation used
here is given by: Oz ↔ Ut, |Ψ ′t〉 ↔ Ψt ,H ′

↔ V

The Heisenberg Picture

Obviously, the special case of the Interaction picture where we pick H0 = 0 simply
returns the Schrödinger picture. On the other extreme, when H0 = H we get what is known
as the Heisenberg picture. Repeating the above steps with:

Ut = T0, t   #   

we get the results:

|Ψt〉 = Ut|Ψt〉 = |Ψ0〉

iℏ d
dt

Lt = Lt, Ht + iℏ
∂Lt
∂t

  #   

  #   

(remember the bar indicates being in the Heisenberg picture). Hence, the special aspect of
the Heisenberg picture is that the states themselves do not evolve in time; all the time
evolution is carried out in the operators. This makes the Heisenberg picture particularly
useful when dealing with constants of motion.
Of important significance is the correlation between ”dynamical variables” in classical
mechanics and in the Heisenberg picture of quantum mechanics. In particular, for any
dynamical variable

Fq , p , t ≡ Fqt, pt, t   #   

6



(where the non-bold Fq,p, t is a classical function of the canonical variables and time).
Comparing the quantum evolution:

d
dt

Fq , p , t = 1
iℏ

Fq , p , t, Ht +
∂Fq , p , t

∂t
  #   

to the analogous classical equation of motion:

d
dt

Fq,p, t = Fq,p, t,HtP.B. +
∂Fq,p, t

∂t
  #   

where Poisson brackets are defined as

u,vP.B. =∑
i

∂u
∂qi

∂v
∂pi

−
∂v
∂qi

∂u
∂pi

  #   

led Dirac to discover the correspondence between the Poisson brackets in classical
mechanics and the commutator in quantum mechanics:

F,GP.B. →
1
iℏ

F ,G   #   

(There are some subtleties involved in this correspondence concerning ordering of
non-commuting operators, but I will not get into that here.)
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