
PHY 411-506 Computational Physics II

Chapter 8: Statistical Mechanics, Phase Transitions, and the
Ising Model

Lecture 1

Monday January 14, 2008

1

LECTURE OUTLINE LECTURE OUTLINE

Lecture Outline

The Ising Model and Statistical Mechanics 3
Magnetism . 3
Ising Model . 5
Statistical Mechanics . 7

Mean Field Theory 9

Root Finding Algorithms 12
Bisection method . 13
Convergence rate . 16
Secant method . 17
Newton’s tangent method . 21
Computational Physics Library 24

2

THE ISING MODEL AND STATISTICAL MECHANICS

The Ising Model and Statistical Mechanics

Magnetism

• Magnetic Fields are produced by electric currents and magnetic moments

B = μ0(H + M)

where M is the Magnetization and

J = ∇× H

is the electric current density

• The magnetic susceptibility of the material

χ =
B

μ0H

• Diamagnetism – substance is repelled by a magnetic field

χ < 0

� Atoms have no net magnetic moment

� Consequence of Lenz’ Law – induced moment reduces B

3

Magnetism THE ISING MODEL AND STATISTICAL MECHANICS

• Paramagnetism – substance is not magnetic and attracted by a
magnetic field

χ > 0

� Atoms have net orbital and/or spin magnetic moment

� Thermal motion causes M = 0

� Moments tend to line up with H – increases B

• Ferromagnetism – substance is magnetic and attracted by a magnetic
field

� Quantum mechanical Exchange Interactions causes atomic moments
to spontaneously align inside domains at temperatures below the
Curie temperature Tc

� Magnetic hysteresis – relation between H and B is not linear and
depends on history of sample

• Magnetism is an inherently quantum phenomenon

� Classical charged particles in thermal equilibrium are not diamagnetic

4

Ising Model THE ISING MODEL AND STATISTICAL MECHANICS

� Diamagnetic field of gyrating electrons exactly cancelled by boundary
effects – physical argument by Niels Bohr

� Proved by H.-J. Van Leeuwen, J. Phys. Radium, 2, 361 (1921).

Ising Model

• Magnetism in metals can be caused by local moments (orbital or spin)
and by non-localized moments in electronic bands

• The Heisenberg Model assumes localized moments due to spins si at
fixed lattice sites i and energy

E = −
∑
i,j

Jijsi · sj − μ
∑

i

Hi · si

where Jij represents the exchange interaction between spins at sites i, j,
μ is the gyromagnetic ratio (magnetic moment) of the spin and Hi is
the external magnetic field at site i

• The Ising Model assumes that the spins are classical and restricted to
values

si = ±1
5

Ising Model THE ISING MODEL AND STATISTICAL MECHANICS

and that

Jij =

{
J for nearest neighbors 〈ij〉
0 otherwise

so that
E = −J

∑
〈ij〉

sisj − μH
∑

i

si

• The Ising Model on a one-dimensional lattice was given by Wilhelm Lenz
to Ernst Ising as a PhD thesis topic and has an interesting history

� Ising found that Tc = 0 for this model – it is not ferromagnetic!

• The Ising Model on a 2-d square lattice is ferromagnetic at low
temperatures

� Kramers and Wannier found that
kBTc

J
=

2

log(1 +
√

2)
= 2.269 . . .

� Lars Onsager and C.N. Yang found an exact analytic formula for the
magnetization

6

Statistical Mechanics THE ISING MODEL AND STATISTICAL MECHANICS

Statistical Mechanics

• The Ising Model energy (Hamiltonian) has no kinetic term – the energy
is all potential

• The model has no dynamics – cannot study it as a function of time t

• Study its equlibrium statistical mechanics

� System has a fixed volume – spins are at fixed lattice sites

� Fix the temperature T by placing it in contact with a large heat
reservoir at constant temperature

◦ Individual spins can flip by exchanging energy with the reservoir

◦ The total energy of the system is not constant

� An external magnetic field H is applied to each spin

• The Canonical Ensemble is a set of configurations or microstates α of
the system with probability

Pα ∼ e−Eα/(kBT)

� Observables are averages over this ensemble – for example the
7

Statistical Mechanics THE ISING MODEL AND STATISTICAL MECHANICS

magnetization

M =
∑
α

PαMα

where Mα =
∑

i si

• For an Ising Model with N spins, there are 2N microstates or
configurations

� For the 2-d model with N = 20 × 20 = 400 spins

No. of configs = 2Ns = 2400 = 2.58 × 10120 .

To sum all configurations at 1 billion per second would take
2.58 × 10111 seconds = 8.8 × 10103 years

� If analytic solutions are not available, random sampling of
configurations (Monte Carlo method) must be used

8

MEAN FIELD THEORY

Mean Field Theory

• Mean Field Theory is an approximate way of finding analytic solutions

• The basic idea is to reduce a many-particle problem to an effective
one-particle problem

� The spin-spin interaction terms are replaced by an effective magnetic
field

−J
∑
〈ij〉

sisj ≡ −μHeff

∑
i

si

� Compute the effective field approximately by replacing sj by the
thermal average

〈sj〉 ≡ 〈s〉
� The

Heff =
J

μ

∑
nearest neighbors

〈s〉 =
zJ

μ
〈s〉

where z is the number of nearest neighbors or coordination number of
the lattice (z = 2d for a d-dimensional hypercubic lattice)

9

MEAN FIELD THEORY

• The one-spin problem can easily be solved because there are only two
configurations s = ±1 with canonical ensemble probabilities

P± ∼ e±μ(Heff+H)/(kBT)

� The thermal average of this spin is

〈s〉 =
eμ(Heff+H)/(kBT) − e−μ(Heff+H)/(kBT)

eμ(Heff+H)/(kBT) + e−μ(Heff+H)/(kBT)
= tanh

(
zJ〈s〉 + μH

kBT

)
• This is an implicit equation for 〈s〉 – solving for 〈s〉 is a root finding

problem

f (〈s〉) ≡ 〈s〉 − tanh

(
zJ〈s〉 + μH

kBT

)
= 0

• For H = 0 the equation has a non-zero solution for

kBT

zJ
≤ 1

This means the system is ferromagnetic below a Curie temperature

Tc =
zJ

kB
10

MEAN FIELD THEORY

� Wrong for the 1-d model (z = 2)

� Too high for the 2-d model

• The spontaneous magnetization 〈s〉 can be found numerically – Exercise
8.1

11

ROOT FINDING ALGORITHMS

Root Finding Algorithms

• Finding zeros (roots) of a function needed in many applications – see
Appendix B of the textbook

• Numerical Recipes has Chapter 9 on Root Finding and Nonlinear Sets of
Equations

• Finding extrema of f (x) equivalent to finding roots of f ′(x) – see
Chapter 10 Minimization or Maximization of Functions

• Finding roots can be tricky!

� f (x) = 1 + |x| does not have any roots

� 1 + x2 and cosh(x) have roots, but not for real values of x

� sin(1/x) has ∞ number of roots – which one do you want?

� Make rough plot of function – where (approximately) are the roots?
which root do you want to find?

• We will consider the simplest algorithms

12

Bisection method ROOT FINDING ALGORITHMS

Bisection method

• Algorithm assumes

� f (x) changes sign at root (won’t work for f (x) = (x − 1)2)

� root is bracketed by x0 and x1, i.e., x0 < root < x1

� only one root in [x0, x1]

• Algorithm repeatedly bisects interval

� compute x1
2

= (x0 + x1)/2

� compute product f (x0) × f (x1
2
)

◦ if product is positive replace x0 ← x1
2◦ else replace x1 ← x1

2

� repeat above steps until |x0 − x1| ≤ ε (desired accuracy) or
f (x1

2
) = 0

• The following program finds the root of ex log(x) − x2

bisection.cpp
13

Bisection method ROOT FINDING ALGORITHMS

#include <cmath>

#include <iostream>

#include <iomanip>

using namespace std;

double f(double x) {

return exp(x) * log(x) - x * x;

}

void print(int step, double x, double dx) {

cout.setf(ios::right, ios::adjustfield);

cout << " " << setw(4) << step << " ";

cout.precision(15);

cout.setf(ios::left, ios::adjustfield);

cout.setf(ios::showpoint | ios::fixed);

cout << setw(20) << x << " " << setw(20) << dx << ’\n’;

}

int main() {

cout << " Bisection search for root of exp(x)*log(x) - x*x\n"

<< " --\n"

<< " Enter bracketing guesses x_0, x_1, and desired accuracy: ";

double x0, x1, acc;

cin >> x0 >> x1 >> acc;

14

Bisection method ROOT FINDING ALGORITHMS

cout << " Step x dx\n"

<< " ---- ------------------ ------------------\n";

int step = 0;

double xHalf = (x0 + x1) / 2;

double dx = x1 - x0;

print(step, xHalf, dx);

double f0 = f(x0);

while (abs(dx) > abs(acc)) {

double fHalf = f(xHalf);

if (fHalf == 0) {

dx = 0;

} else {

if (f0 * fHalf > 0) {

x0 = xHalf;

f0 = fHalf;

} else {

x1 = xHalf;

}

xHalf = (x0 + x1) / 2;

dx = x1 - x0;

}

++step;

print(step, xHalf, dx);

}

15

Convergence rate ROOT FINDING ALGORITHMS

}

Convergence rate

• Consider bisection after n steps

|dxn| = |x1 − x0| after n iterations

=
1

2
|dxn−1| =

1

22
|dxn−2| = · · · =

1

2n|dx0|
• Number of steps for accuracy ε

1

2n|dx0| ≤ ε

solve for

n ≥ log2

[|dx0|
ε

]
=

log10

[|dx0|
ε

]
0.3010 . . .

Example: |dx0| = 0.1 and ε = 10−6 requires n ≥ 17

• General definition of convergence rate

|dxn| � CF |dxn−1|α ,

where order of convergence (= α) and convergence factor (= CF)
16

Secant method ROOT FINDING ALGORITHMS

• For bisection α = 1 – convergence is linear (rather slow)

Secant method

• Use secant (latin secare cut) line

s(x) = f (x1) +
f (x1) − f (x0)

x1 − x0
(x − x1)

• Next point determined by

s(xnew) = 0 ⇒ xnew = x1−(x1−x0)
f (x1)

f (x1) − f (x0)
≡ x1+dxnew .

• Secant algorithm

� choose x0, x1 near root – need not bracket

� if x(x0) = f (x1) algorithm fails – abort and retry

� otherwise replace x0 ← x1 and x1 ← xnew

� repeat above steps until |x0 − x1| ≤ ε (desired accuracy) or
f (xnew) = 0

17

Secant method ROOT FINDING ALGORITHMS

• Convergence rate is the famous Golden Ratio

α =
1 +

√
5

2
= 1.618033988 . . .

• Convergence is supelinear – much faster than linear

18

Secant method ROOT FINDING ALGORITHMS

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 0.5 1 1.5 2 2.5
x

f(x)
secant

tangent

x0

x1

Secant Method

Tangent Method

• The following program finds the root of ex log(x) − x2

secant.cpp

19

Secant method ROOT FINDING ALGORITHMS

#include <cmath>

#include <iostream>

#include <iomanip>

using namespace std;

double f(double x) {

return exp(x) * log(x) - x * x;

}

void print(int step, double x, double dx) {

cout.setf(ios::right, ios::adjustfield);

cout << " " << setw(4) << step << " ";

cout.precision(15);

cout.setf(ios::left, ios::adjustfield);

cout.setf(ios::showpoint | ios::fixed);

cout << setw(20) << x << " " << setw(20) << dx << ’\n’;

}

int main() {

cout << " Secant search for root of exp(x)*log(x) - x*x\n"

<< " ---\n"

<< " Enter guesses x_0, x_1, and desired accuracy: ";

double x0, x1, acc;

cin >> x0 >> x1 >> acc;

20

Newton’s tangent method ROOT FINDING ALGORITHMS

cout << " Step x dx\n"

<< " ---- ------------------ ------------------\n";

int step = 0;

double dx = x1 - x0;

print(step, x1, dx);

double f0 = f(x0);

while (abs(dx) > abs(acc)) {

double f1 = f(x1);

if (f0 == f1) {

cerr << " Secant horizontal ... try again!\n";

return 1;

} else {

dx *= - f1 / (f1 - f0);

x0 = x1;

f0 = f1;

x1 += dx;

}

++step;

print(step, x1, dx);

}

}

Newton’s tangent method

• Requires only one intial guess x0 sufficiently close to root

21

Newton’s tangent method ROOT FINDING ALGORITHMS

• Construct tangent (latin tangere touch) line

t(x) = f (x0) + f ′(x0)(x − x0)

• Next point is intersection with x axis

xnew = x0 −
f (x0)

f ′(x0)
≡ x0 + dx

• Convergence rate α = 2 is quadratic – very fast

• Requires derivative f ′(x) either analytically or as finite difference

f ′(x0) �
f (x1) − f (x0)

x1 − x0

• The following program finds the root of ex log(x) − x2

tangent.cpp

#include <cmath>

#include <iostream>

#include <iomanip>

using namespace std;

22

Newton’s tangent method ROOT FINDING ALGORITHMS

double f(double x) {

return exp(x) * log(x) - x * x;

}

double fPrime(double x) {

return exp(x) * (log(x) + 1/x) - 2 * x;

}

void print(int step, double x, double dx) {

cout.setf(ios::right, ios::adjustfield);

cout << " " << setw(4) << step << " ";

cout.precision(15);

cout.setf(ios::left, ios::adjustfield);

cout.setf(ios::showpoint | ios::fixed);

cout << setw(20) << x << " " << setw(20) << dx << ’\n’;

}

int main() {

cout << " Tangent search for root of exp(x)*log(x) - x*x\n"

<< " --\n"

<< " Enter guess x_0, and desired accuracy: ";

double x, acc;

cin >> x >> acc;

23

Computational Physics Library ROOT FINDING ALGORITHMS

cout << " Step x dx\n"

<< " ---- ------------------ ------------------\n";

int step = 0;

double dx = 1;

print(step, x, dx);

while (abs(dx) > abs(acc)) {

double slope = fPrime(x);

if (slope == 0) {

cerr << " Tangent horizontal ... try again!\n";

return 1;

} else {

dx = - f(x) / slope;

x += dx;

}

++step;

print(step, x, dx);

}

}

Computational Physics Library

• The root finding routines outlined above are available in the
Computational Physics Library, see the header file findroot.hpp

24

