Brief Notes \#8

Relationships between Mean and Variance of Normal and Lognormal Distributions

If $X \sim N\left(m_{X}, \sigma_{X}{ }^{2}\right)$, then $Y=e^{X} \sim L N\left(m_{Y}, \sigma_{Y}{ }^{2}\right)$ with mean value and variance given by:

$$
\left\{\begin{array}{l}
m_{Y}=e^{m_{X}+\frac{1}{2} \sigma_{X}{ }^{2}} \\
\sigma_{Y}{ }^{2}=e^{2 m_{X}+\sigma_{X}{ }^{2}}\left(e^{\sigma_{X}{ }^{2}}-1\right)
\end{array}\right.
$$

Conversely, m_{X} and $\sigma_{X}{ }^{2}$ are found from m_{Y} and $\sigma_{Y}{ }^{2}$ as follows:

$$
\left\{\begin{array}{l}
m_{X}=2 \ln \left(m_{Y}\right)-\frac{1}{2} \ln \left(\sigma_{Y}{ }^{2}+m_{Y}{ }^{2}\right) \\
\sigma_{X}{ }^{2}=-2 \ln \left(m_{Y}\right)+\ln \left(\sigma_{Y}{ }^{2}+m_{Y}{ }^{2}\right)
\end{array}\right.
$$

