Revision For Math. 203
First Mid-Term Exam
(Differential and Integral Calculus)

Q1: Determine whether the sequence $\left\{\frac{\tan ^{-1} n}{n}\right\}_{n=1}^{\infty}$ is convergent or not, and if it converges find its limit.
Q2: Find the interval of convergence and the radius of convergence of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{n+1}$
Q3 Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln \mathrm{n})^{n}}$ is absolutely convergent, conditionally convergent, or divergent
Q4: Find a power series representation for $f(x)=\ln (1+x),|x|<1$ and use it to calculate $\ln (1.2)$
Q5: Use the first two non-zero terms of a Maclaurin series to approximate $\int_{0}^{0.5} x \cos \left(x^{2}\right) d x$ and estimate the error in this approximation.

Model answer

$$
\begin{aligned}
& \text { QI } \because \frac{-\pi}{2}<\tan ^{-1} n<\frac{\pi}{2} \\
& f_{0 r} \text { every } n \\
& \Rightarrow \frac{-\pi}{2 n}<\frac{\tan ^{-1} n}{n}<\frac{\pi}{2 n} \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{-\pi}{2 n}<\lim _{n \rightarrow \infty} \frac{\tan ^{-1} n}{n}<\lim _{n \rightarrow \infty} \frac{\pi}{2 n} \\
& 0<\lim _{n \rightarrow \infty} \frac{\tan ^{-1} n}{n}<0 \\
& \therefore \lim _{n \rightarrow \infty} \frac{\tan ^{-1} n}{n}=0 \text { sandwich th. } \\
& \Rightarrow\left\{\frac{\tan ^{-1} n}{n}\right\} \text { is clit. }
\end{aligned}
$$

Q2 For the series $\sum_{n=0}^{\infty} \sum_{n}^{\infty} \frac{(x-3)^{n}}{n+1} \frac{\text { QB }}{k t}$ check absolutely clot
Apply Abslut ratio test,

$$
\begin{aligned}
& \text { let } u_{n}=(-1)^{n} \frac{1}{n+1}(x-3)^{n} \\
& \left\langle u_{n+1}=(-1)^{n+1} \frac{1}{n+2}(x-3)^{n+1}\right. \\
& \begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{n+2} \cdot \frac{n+1}{(x-3)^{n}}\right| \\
& =|x-3|
\end{aligned}
\end{aligned}
$$

(1)

$$
\text { if }|x-3|<1 \Rightarrow 2<x<4
$$

\Rightarrow the series is absolutely cig for every $x \in(2,4)$
(2) If $|x-3|>1 \Rightarrow x>4$ or $x<2$
\Rightarrow the series diverges if

$$
x<2 \text { or } x>4
$$

- For $x=4$
the series become $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}$
which is cligt by using AST
- For $x=2$
the series be sues $\sum_{n=0}^{\infty} \frac{1}{n+1}$
which is d'gt harmonic series
Hence, the interval of converguce is $(2,4]$ and the radius of converguc is $r=\frac{y-2}{2}=1$.

$$
\begin{aligned}
& \sum\left|a_{n}\right|=\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}} \\
& \Rightarrow \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0
\end{aligned}
$$

$\Rightarrow \sum_{n=3}^{\infty} \frac{(-1)^{n}}{(\ln n)^{n}}$ is absolutely cigt.

2
Qu

$$
\begin{aligned}
\because \frac{1}{1+x} & =1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots \\
\because \ln (1+x) & =\int_{0}^{x} \frac{1}{1+t} d t \\
\Rightarrow \ln (1+x) & =\int_{0}^{x}\left[1-t+t^{2}-t^{3}+\cdots+(-1)^{n} t^{n}+\cdots\right] d t \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n} \frac{x^{n+1}}{n+1}+\cdots \\
\therefore \ln (1.2) & =\ln (1+0.2) \\
\ln (1.2) & =0.2-\frac{(0.2)^{2}}{2}+\frac{(0.2)^{3}}{3}-\frac{(0.2)^{4}}{4}+\cdots \\
& \simeq 0.1823
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q5 Maclaurin series for } \operatorname{cas} x \text { is } \\
& \operatorname{Cos} x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \\
& \Rightarrow \cos \left(x^{2}\right)=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!} \cdots \cdot \\
& \Rightarrow x \cos \left(x^{2}\right)=x-\frac{x^{5}}{4}+\frac{x^{9}}{4!} \cdots \cdot \\
& \begin{aligned}
\Rightarrow \int_{0}^{0.5} x \cos \left(x^{2}\right) d x & =\int_{0}^{0.5}\left[x-\frac{x^{5}}{2!}+\frac{x^{9}}{4!} \cdots\right] d x \\
& =\left[\frac{x^{2}}{2}-\frac{x^{6}}{2(6)}+\frac{x^{10}}{24(10)} \cdots\right]_{0}^{10} \\
& =\frac{(0.5)^{2}}{2}-\frac{(0.5)^{6}}{12}+\frac{(0.5)^{10}}{240} \cdots \\
\Rightarrow \int_{0}^{0.5} x \operatorname{Cos}\left(x^{2}\right) d x & \simeq \frac{(0.5)^{2}}{2}-\frac{(0.5)^{6}}{12} \\
& =0.1237] \\
\text { and } E & =\frac{(0.5)^{10}}{240}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } E=\frac{240}{} \Rightarrow E \leqslant 4.069 \times 10^{-6}
\end{aligned}
$$

