Selecting the Proper Tools of Risk management

Example:

- Suppose that a business is exposed to accidental property losses (fire) that are described by the following PD:

Loss	0	3000	30000	60000	300000
Prob.	0.700	0.160	0.120	0.018	0.002

- Further assume that the risk manager must decide among of five courses of action:

1) Retain the possible accident losses.
2) Retain the possible accident losses, but introduce some loss control measure (sprinkler) with cost $\$ 2,500$ that will change the probabilities in the above prob. dist.as follow:

Loss	0	2,000	23,000	52,000	260,000
Prob.	0.800	0.100	0.090	0.009	0.001

3) Purchase an insurance policy that will cover accidental losses up to $\$ 30,000$ for a prem. \$6,840.
4) Purchase an insurance policy that will cover accidental losses up to $\$ 300,000$ but not the first $\$ 3,000$ (deductible) for a prem. \$7,080.
5) Purchase an insurance policy that will cover all losses for a prem. \$8,400.

- As a risk manager, determine the proper tool using:
A)The minimum expected tangible loss criteria.
B)The worry method (total losses; tangible \& intangible losses) if the cost of worry (or anxiety) the risk manager assigned respectively are:
$4,000,3,000,2,000,500,0$
A) The minimum expected tangible loss criteria.
- Tangible losses matrix

Loss:	0	3,000	30,000	60,000	300,000
Prob.:	0.700	0.160	0.120	0.018	0.002

1-Retention:
Loss: $0 \quad 3,000 \quad 30,000 \quad 60,000 \quad 300,000$

Cost: 0 3,000 30,000 60,000 300,000

1-The expected tangible loss of the first tool =
$(0 \times 0.7)+(3,000 \times 0.16)+(30,000 \times 0.12)+(60.000 \times 0.018)+$ $(300,000 \times 0.002)=\underline{5,760}$

- Tangible losses matrix
Loss: $\begin{array}{llllll} & 0 & 2,000 & 23,000 & 52,000 & 260,000\end{array}$
Prob.: $0.800 \quad 0.100 \quad 0.090 \quad 0.009 \quad 0.001$

2-Retention with loss control with cost \$ 2,500:

Loss:	0	2,000	23,000	52,000	260,000
Cost:	0	2,000	23,000	52,000	260,000

2-The expected tangible loss of the second tool $=$ $(0 \times 0.8)+(2,000 \times 0.1)+(23,000 \times 0.09)+(52,000 \times$ $0.009)+(260,000 \times 0.001)+2,500=\underline{5,498}$

Tangible losses matrix

Loss:	0	3,000	30,000	60,000	300,000
Prob.: 0.700	0.160	0.120	0.018	0.002	
3-Insurance up to $\$ 30,000$	for	$\$ 6,840$	prem.:		
Loss: 0	3,000	30,000	60,000	300,000	
Cost: 0	0	0	30,000	270,000	

3-The expected tangible loss of the third tool $=$ $(0 \times 0.7)+(0 \times 0.16)+(0 \times 0.12)+(30,000 \times 0.018)$ $+(270,000 \times 0.002)+6,840=\underline{\mathbf{7 , 9 2 0}}$

Tangible losses matrix

Loss:	0	3,000	30,000	60,000	300,000
Prob.:	0.700	0.160	0.120	0.018	0.002

4-Insurance up to $\$ 300,000$ with $\$ 3,000$ deductible for $\$ 7,080$ prem.:
Loss: 0 3,000 30,000 60,000 300,000

T.C.: 0	3,000	3,000	3,000	3,000

4-The expected tangible loss of the fourth tool $=$ $(0 \times 0.7)+(3,000 \times 0.16)+(3,000 \times 0.12)+(3,000 \times$ $0.018)+(3,000 \times 0.002)+7,080=\$ \mathbf{7 , 9 8 0}$

Tangible losses matrix

Loss:	0	3,000	30,000	60,000	300,000
Prob.: 0.700	0.160	0.120	0.018	0.002	

5- Insurance up to \$ 300,000 (full insurance) for \$ 8,400 prem.:
Loss: $0 \quad 3,000 \quad 30,000 \quad 60,000 \quad 300,000$
T.C.:0

0
0
0

5-The expected tangible loss of the fifth tool $=$ $(0 \times 0.7)+(0 \times 0.16)+(0 \times 0.12)+(0 \times 0.018)+(0 x$ $0.002)+8,400=\underline{8,400}$

A) The minimum expected tangible loss criteria:

1-The expected tangible loss of the 1st tool $=\underline{\mathbf{5 , 7 6 0}}$
2-The expected tangible loss of the 2 nd tool $=\underline{5,498}$
3-The expected tangible loss of the 3rd tool = 7,920
4-The expected tangible loss of the 4th tool = 7,980
5-The expected tangible loss of the 5th tool $=\underline{8,400}$

- Then the proper tool under the expected tangible loss criteria is the second one (Retention with loss control).

B) The worry method (total losses; tangible and intangible losses):

1-The expected total loss (tangible and intangible loss) of the 1st tool $=5,760+4,000=\underline{9,760}$
2-The expected total loss (tangible and intangible loss) of the 2 nd tool $=5,498+3,000=8,498$
3-The expected total loss (tangible and intangible loss) of the 3rd tool $=7,920+2,000=\underline{9,920}$
4 -The expected total loss (tangible and intangible loss) of the 4 rth tool $=7,980+500=\underline{8,480}$
5 -The expected total loss (tangible and intangible loss) of the 5th tool $=8,400+0=8,400$

- Then the optimal tool under the worry method (expected total loss) criteria is the 5th one (full insurance).

