
Run-Time Environments

Where we are:

• We have covered the front-end phases
– Lexical analysis
–   Parsing
–   Semantic analysis

• The front-end phases enforce the definition of the language
(syntax)

• It also builds data structures for code generation
• The output of the front end are legal programs
• Next are the back-end phases

–   Optimization
–   Code generation

• We’ll do code generation first . . .

• In the back-end phases we are no longer
looking for errors.

• We are ready to perform code generation

• Before discussing code generation, we need
to understand what we are trying to generate

• There are a number of standard techniques
for structuring executable code that are
widely used

Outline

• Management of run-time resources

• Correspondence between

–   static (compile-time) and

–   dynamic (run-time) structures

• Storage organization

Run-time Resources

• Execution of a program is initially under the
control of the operating system

•   When a program is invoked:

–   The OS allocates space for the program

–   The code is loaded into part of the space

–   The OS jumps to the entry point (i.e., “main”)

Memory Layout

Notes

• By tradition, pictures of machine organization
have:

–   Low address at the top

–   High address at the bottom

– Lines delimiting areas for different kinds of data

• These pictures are simplifications

–   E.g., not all memory need be contiguous

What is Other Space?

• Holds all data for the program

• Other Space = Data Space

• Compiler is responsible for:

–   Generating code

–   Orchestrating use of the data area

Code Generation Goals

• Two goals:

–   Correctness

–   Speed

• Most complications in code generation come
from trying to be fast as well as correct

Assumptions about Execution

1. Execution is sequential; control moves from
one point in a program to another in a well-
defined order

2. When a procedure is called, control
eventually returns to the point immediately
after the call

Activations

• An invocation of procedure P is an activation
of P

• The life time of an activation of P is

– All the steps to execute P

– Including all the steps in procedures P calls

Lifetimes of Variables

• The lifetime of a variable x is the portion of
execution in which x is defined

• Note that

–   Lifetime is a dynamic (run-time) concept

–   Scope is a static concept

Activation Trees

• Assumption (2) requires that when P calls Q,
then Q returns before P does

• Lifetimes of procedure activations are
properly nested

• Activation lifetimes can be depicted as a tree

Example

A More Complex example: recursive

 class Main{

 int g(){ ….}

 int f(int x){

 if(x==0) then return g();

 else return f(x-1);

 }

int main() { return f(3);}

What is the activation tree for this program?

Notes

• The activation tree depends on run-time
behavior

• The activation tree may be different for every
program input

• Since activations are properly nested, a stack
can track currently active procedures

Revised Memory Layout

Activation Records

• The information needed to manage one
procedure activation is called an activation
record (AR) or frame.

• If procedure F calls G, then G’s activation
record contains a mix of info about F and G.

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which
point F resumes.

• G’s AR contains information needed to resume
execution of F.

• G’s AR may also contain:

–   G’s return value (needed by F)

–   Actual parameters to G(supplied by F)

–   Space for G’s local variables

The Contents of a Typical AR for G

• Space for G’s return value

• Actual parameters

• Pointer to the previous activation record

– The control link; points to AR of caller of G

• Machine status prior to calling G

– Contents of registers & program counter

– Local variables

• Other temporary values

class Main{
 int g(){ ….}
 int f(int x){
 if(x==0) then return g();
 else return f(x-1) (**);
 }
int main() { return f(3) (*);}

Stack after two calls to f

Notes

• Main has no argument or local variables and
its result is never used; its AR is uninteresting

• (*) and (**) are return addresses of the
invocations of f

• The return address is where execution
resumes after a procedure call finishes

• This is only one of many possible AR designs

– Would also work for C, Pascal, FORTRAN, etc.

The Main Point

• The compiler must determine, at compile-
time, the layout of activation records and
generate code that correctly accesses
locations in the activation record

• Thus, the AR layout and the code generator
must be designed together!

Discussion

• The advantage of placing the return value 1st
in a frame is that the caller can find it at a
fixed offset from its own frame

• There is nothing magic about this organization

– Can rearrange order of frame elements

– Can divide caller/callee responsibilities differently

– An organization is better if it improves execution
speed or simplifies code generation

• Real compilers hold as much of the frame as
possible in registers

– Especially the method result and arguments

Global Variables

• All references to a global variable point to the
same object

– Can’t store a global in an activation record

• Globals are assigned a fixed address once

– Variables with fixed address are “statically
allocated”

• Depending on the language, there may be
other statically allocated values

Memory Layout with Static Data

Heap Storage

• A value that outlives the procedure that
creates it cannot be kept in the AR

method foo() { new Bar }

• The Bar value must survive deallocation of
foo’s AR

• Languages with dynamically allocated data use
a heap to store dynamic data

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with fixed
addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently active
procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
 –  In C, heap is managed by malloc and free

Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each
other

• Solution: start heap and stack at opposite
ends of memory and let them grow towards
each other

Memory Layout with Heap

Data Layout

• Low-level details of machine architecture are
important in laying out data for correct code
and maximum performance

• Chief among these concerns is alignment

Alignment

• Most modern machines are (still) 32 bit
– 8 bits in a byte

– 4 bytes in a word

– Machines are either byte or word addressable

• Data is word alignedif it begins at a word
boundary

• Most machines have some alignment
restrictions
– Or performance penalties for poor alignment

Alignment

• Example: A string

 “Hello”

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding”
characters to the string

• The padding is not part of the string, it’s just
unused memory

Next Topic: Stack Machines

• A simple evaluation model

• No variables or registers

• A stack of values for intermediate results

• Each instruction:

–   Takes its operands from the top of the stack

–   Removes those operands from the stack

–   Computes the required operation on them

–   Pushes the result on the stack

Example of Stack Machine Operation

• The addition operation on a stack machine

Example of a Stack Machine Program

• Consider two instructions

– push i- place the integer ion top of the stack

– add- pop two elements, add them and put the
result back on the stack

• A program to compute 7 + 5:

push 7

push 5

add

Why Use a Stack Machine ?

• Each operation takes operands from the same
place and puts results in the same place

• This means a uniform compilation scheme

• And therefore a simpler compiler

Why Use a Stack Machine ?

• Location of the operands is implicit
– Always on the top of the stack

• No need to specify operands explicitly

• No need to specify the location of the result

• Instruction “add” as opposed to “add r1, r2”
⇒Smaller encoding of instructions

⇒More compact programs

• This is one reason why Java Bytecodes use a stack
evaluation model

Optimizing the Stack Machine

• The add instruction does 3 memory operations
– Two reads and one write to the stack

–   The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator)
– Register accesses are faster

• The “add” instruction is now

 acc ←acc + top_of_stack
– Only one memory operation!

Stack Machine with Accumulator

• Invariants

– The result of an expression is in the accumulator

• For op(e1,…,en) push the accumulator on the
stack after computing e1,…,en-1

– After the operation pops n-1 values

• Expression evaluation preserves the stack

Stack Machine with Accumulator.
Example

• Compute 7 + 5 using an accumulator

A Bigger Example: 3 + (7 + 5)

Code Acc Stack
acc ←3 3 <init>

push acc 3 3, <init>

acc ←7 7 3, <init>

push acc 7 7, 3, <init>

acc ←5 5 7, 3, <init>

acc ←acc + top_of_stack 12 7, 3, <init>

pop 12 3, <init>

acc ←acc + top_of_stack 15 3, <init>

pop 15 <init>

Notes

• It is very important evaluation of a
subexpression preserves the stack

– Stack before the evaluation of 7 + 5 is 3, <init>

– Stack after the evaluation of 7 + 5 is 3, <init>

– The first operand is on top of the stack

