
Run-Time Environments 



Where we are: 

• We have covered the front-end phases  
–  Lexical analysis  
–   Parsing  
–   Semantic analysis 

• The front-end phases enforce the definition of the language 
(syntax) 

• It also builds data structures for code generation 
• The output of the front end are legal programs 
• Next are the back-end phases  

–   Optimization  
–   Code generation  

•  We’ll do code generation first . . . 
 



• In the back-end phases we are no longer 
looking for errors. 

• We are ready to perform code generation 

• Before discussing code generation, we need 
to understand what we are trying to generate  

• There are a number of standard techniques 
for structuring executable code that are 
widely used  

 

 



Outline 

• Management of run-time resources  

• Correspondence between  

–   static (compile-time) and  

–   dynamic (run-time) structures  

• Storage organization  



Run-time Resources 

• Execution of a program is initially under the 
control of the operating system  

•   When a program is invoked:  

–   The OS allocates space for the program  

–   The code is loaded into part of the space  

–   The OS jumps to the entry point (i.e., “main”)  



Memory Layout 



Notes 

• By tradition, pictures of machine organization 
have:  

–   Low address at the top  

–   High address at the bottom  

– Lines delimiting areas for different kinds of data  

• These pictures are simplifications  

–   E.g., not all memory need be contiguous 



What is Other Space? 

• Holds all data for the program  

• Other Space = Data Space  

• Compiler is responsible for:  

–   Generating code  

–   Orchestrating use of the data area  



Code Generation Goals 

• Two goals:  

–   Correctness  

–   Speed  

• Most complications in code generation come 
from trying to be fast as well as correct  



Assumptions about Execution 

1. Execution is sequential; control moves from 
one point in a program to another in a well-
defined order  

2. When a procedure is called, control 
eventually returns to the point immediately 
after the call  



Activations 

• An invocation of procedure P is an activation 
of P  

• The life time of an activation of P is  

–  All the steps to execute P  

–  Including all the steps in procedures P calls 



Lifetimes of Variables 

• The lifetime of a variable x is the portion of 
execution in which x is defined  

• Note that  

–   Lifetime is a dynamic (run-time) concept  

–   Scope is a static concept 



Activation Trees 

• Assumption (2) requires that when P calls Q, 
then Q returns before P does  

• Lifetimes of procedure activations are 
properly nested  

• Activation lifetimes can be depicted as a tree  



Example  



A More Complex example: recursive 

 class Main{ 

     int g(){ ….} 

     int f( int x){ 

                           if(x==0) then return g(); 

                            else return f(x-1); 

      } 

int main() { return f(3);} 

What is the activation tree for this program? 

 

 



Notes 

• The activation tree depends on run-time 
behavior  

• The activation tree may be different for every 
program input  

• Since activations are properly nested, a stack 
can track currently active procedures  



Revised Memory Layout 



Activation Records  

• The information needed to manage one 
procedure activation is called an activation 
record (AR) or frame. 

 

• If procedure F calls G, then G’s activation 
record contains a mix of info about F and G.  



What is in G’s AR when F calls G? 

• F is “suspended” until G completes, at which 
point F resumes.  

• G’s AR contains information needed to resume 
execution of F.  

• G’s AR may also contain:  

–   G’s return value (needed by F)  

–   Actual parameters to G(supplied by F)  

–   Space for G’s local variables  



The Contents of a Typical AR for G 

• Space for G’s return value  

• Actual parameters  

• Pointer to the previous activation record  

–  The control link; points to AR of caller of G  

•  Machine status prior to calling G  

–  Contents of registers & program counter  

–  Local variables  

• Other temporary values  



class Main{ 
     int g(){ ….} 
     int f( int x){ 
                           if(x==0) then return g(); 
                            else return f(x-1)  (**); 
      } 
int main() { return f(3)  (*);} 



Stack after two calls to f 



Notes  

• Main has no argument or local variables and 
its result is never used; its AR is uninteresting  

• (*) and (**) are return addresses of the 
invocations of f  

• The return address is where execution 
resumes after a procedure call finishes  

• This is only one of many possible AR designs  

–  Would also work for C, Pascal, FORTRAN, etc.  



The Main Point 

• The compiler must determine, at compile-
time, the layout of activation records and 
generate code that correctly accesses 
locations in the activation record  

• Thus, the AR layout and the code generator 
must be designed together!  



Discussion 

• The advantage of placing the return value 1st 
in a frame is that the caller can find it at a 
fixed offset from its own frame  

• There is nothing magic about this organization  

– Can rearrange order of frame elements  

–  Can divide caller/callee responsibilities differently  

–  An organization is better if it improves execution 
speed or simplifies code generation  



• Real compilers hold as much of the frame as 
possible in registers  

– Especially the method result and arguments  



Global Variables 

• All references to a global variable point to the 
same object  

– Can’t store a global in an activation record  

• Globals are assigned a fixed address once  

– Variables with fixed address are “statically 
allocated” 

• Depending on the language, there may be 
other statically allocated values  



Memory Layout with Static Data 



Heap Storage 

• A value that outlives the procedure that 
creates it cannot be kept in the AR  

method foo() { new Bar }  

• The Bar value must survive deallocation of 
foo’s AR 

• Languages with dynamically allocated data use 
a heap to store dynamic data 



Notes 

• The code area contains object code  
– For most languages, fixed size and read only  

• The static area contains data (not code) with fixed 
addresses (e.g., global data)  
– Fixed size, may be readable or writable  

• The stack contains an AR for each currently active 
procedure  
– Each AR usually fixed size, contains locals  

• Heap contains all other data  
  –  In C, heap is managed by malloc and free  





Notes (Cont.) 

• Both the heap and the stack grow  

• Must take care that they don’t grow into each 
other  

• Solution: start heap and stack at opposite 
ends of memory and let them grow towards 
each other  



Memory Layout with Heap 



Data Layout 

• Low-level details of machine architecture are 
important in laying out data for correct code 
and maximum performance  

• Chief among these concerns is alignment 



Alignment 

• Most modern machines are (still) 32 bit  
– 8 bits in a byte  

– 4 bytes in a word  

– Machines are either byte or word addressable  

• Data is word alignedif it begins at a word 
boundary  

•  Most machines have some alignment 
restrictions  
–  Or performance penalties for poor alignment 



Alignment 

• Example: A string  

    “Hello” 

Takes 5 characters (without a terminating \0)  

• To word align next datum, add 3 “padding” 
characters to the string  

• The padding is not part of the string, it’s just 
unused memory 



Next Topic: Stack Machines 

• A simple evaluation model  

• No variables or registers  

• A stack of values for intermediate results  

•  Each instruction:  

–   Takes its operands from the top of the stack  

–   Removes those operands from the stack  

–   Computes the required operation on them  

–   Pushes the result on the stack 



Example of Stack Machine Operation 

• The addition operation on a stack machine 



Example of a Stack Machine Program 

• Consider two instructions  

–  push i- place the integer ion top of the stack  

–  add- pop two elements, add them and put the 
result back on the stack  

• A program to compute 7 + 5:  

push 7  

push 5  

add 



Why Use a Stack Machine ? 

• Each operation takes operands from the same 
place and puts results in the same place  

 

• This means a uniform compilation scheme  

 

• And therefore a simpler compiler 



Why Use a Stack Machine ? 

• Location of the operands is implicit  
– Always on the top of the stack  

• No need to specify operands explicitly  

• No need to specify the location of the result  

• Instruction “add” as opposed to “add r1, r2” 
⇒Smaller encoding of instructions  

⇒More compact programs  

• This is one reason why Java Bytecodes use a stack 
evaluation model 



Optimizing the Stack Machine 

• The add instruction does 3 memory operations  
–  Two reads and one write to the stack  

–   The top of the stack is frequently accessed  

• Idea: keep the top of the stack in a register (called 
accumulator)  
– Register accesses are faster  

• The “add” instruction is now  

   acc ←acc + top_of_stack  
– Only one memory operation! 



Stack Machine with Accumulator 

• Invariants  

– The result of an expression is in the accumulator  

• For op(e1,…,en) push the accumulator on the 
stack after computing e1,…,en-1 

–  After the operation pops n-1 values  

• Expression evaluation preserves the stack 



Stack Machine with Accumulator. 
Example 

• Compute 7 + 5 using an accumulator 



A Bigger Example: 3 + (7 + 5) 

Code     Acc    Stack  
acc ←3    3    <init>  

push acc    3    3, <init>  

acc ←7    7    3, <init>  

push acc     7    7, 3, <init>  

acc ←5    5    7, 3, <init>  

acc ←acc + top_of_stack     12    7, 3, <init>  

pop     12    3, <init>  

acc ←acc + top_of_stack  15    3, <init>  

pop     15    <init> 



Notes 

• It is very important evaluation of a 
subexpression preserves the stack  

– Stack before the evaluation of 7 + 5 is  3, <init>  

– Stack after the evaluation of 7 + 5 is 3, <init>  

– The first operand is on top of the stack 


