King Saud University Mathematics Department M-254 Summer Semester (1st Midterm Exam) 1437-1438 H Max Marks=25 Time Allowed: 90 Mins.

Which of the following iterations

(i) 
$$x_{n+1} = e^{x_n} - x_n - 1$$
,  $n \ge 0$ , (ii)  $x_{n+1} = \ln(2x_n + 1)$ ,  $n \ge 0$ ,

is most suitable to approximate the root of the equation  $e^x - 2x = 1$  in the interval [1,2]? Starting with  $x_0 = 1.5$ , find the second approximation  $x_2$  of the root. Also, compute the error bound for the approximation.

Successive approximations  $x_n$  to the desired root are generated by the scheme

$$x_{n+1} = e^{x_n} - 2, \qquad n \ge 0.$$

Find  $f(x_n)$  and its derivative  $f'(x_n)$  and then use Newton's method to find the second approximation  $x_2$  of the root, starting with  $x_0 = 10$ .

Show that  $\alpha = 1$  is the root for the equation  $x^4 - x^3 - 3x^2 = 2 - 5x$ . Use quadratic convergent iterative method to find the first approximation of  $\alpha$  starting with  $x_0 = 0.5$ . Compute absolute error.

Question 4: (5)

If  $x = \alpha$  is a root of multiplicity 5 of f(x) = 0, then show that the rate of convergence of modified Newton's method is at least quadratic.

Question 5: (5

Find the first approximation for the nonlinear using  $(x_0, y_0)^T = (0.5, -0.5)^T$  system

$$y = -\sqrt{x} \\ (x-3)^2 + y^2 = 5$$

## Solution of the Midterm I Examination

King Saud University Mathematics Department M-254 Summer Semester (1st Midterm Exam) 1437-1438 H Max Marks=25 Time Allowed: 90 Mins.

Question 1: (5)

Which of the following iterations

(i)  $x_{n+1} = e^{x_n} - x_n - 1$ ,  $n \ge 0$  (ii)  $x_{n+1} = \ln(2x_n + 1)$ ,  $n \ge 0$ 

is most suitable to approximate the root of the equation  $e^x - 2x = 1$  in the interval [1,2]? Starting with  $x_0 = 1.5$ , find the second approximation  $x_2$  of the root. Also, compute the error bound for the approximation.

**Solution.** Since  $f(x) = e^x - 2x - 1$ , and f(1).f(2) = (-0.2817)(2.3891) < 0, then the solution we seek is in the interval [1, 2].

- (i) For the first scheme,  $g(x) = e^x x 1$  is continuous in [1,2] but both g(1) = 0.718 and g(2) = 4.39 are not in [1,2]. Also,  $g'(x) = e^x 1$ , which is greater than unity throughout the interval [1,2]. So by the Fixed-Point Theorem, this iteration will fail to converge.
- (ii) For the second scheme, we are given  $g(x) = \ln(2x+1)$ , which is continuous in [1,2] and  $g(1) = \ln(3) = 1.0986123$  and  $g(2) = \ln(5) = 1.6094379$  both lie in the interval [1,2]. Since g is increasing function of x, and  $g(x) \in [1,2]$ , for all  $x \in [1,2]$ . Also, we have g'(x) = 2/(2x+1) < 1, for all x in the given interval [1,2]. So from Fixed-Point Theorem, this g(x) has a unique fixed-point. For finding the second approximation of the root lying in the interval [1,2], using the given initial approximation  $x_0 = 1.5$ ,

$$x_1 = \ln(2(1.5) + 1) = 1.386294$$
, and  $x_2 = \ln(2x_1 + 1) = 1.327761$ .

To compute the error bound,

$$|\alpha - x_2| \le \frac{k^2}{1-k} |x_1 - x_0|,$$

we need  $k_1 = |g'(1)| = 0.66667$ ,  $k_2 = |g'(2)| = 0.40$  and  $k = \max\{k_1, k_2\} = 0.667$ , therefore, the error bound for our approximation will be as follows:

$$|\alpha - x_2| \le \frac{(0.667)^2}{1 - 0.667} |1.386294 - 1.5| == 0.1516.$$

Question 2:

(5)

Successive approximations  $x_n$  to the desired root are generated by the scheme

$$x_{n+1} = e^{x_n} - 2, \qquad n \ge 0$$

Find  $f(x_n)$  and its derivative  $f'(x_n)$  and then use Newton's method to find the first approximation of the root, starting with  $x_0 = 10$ .

**Solution:** Given  $x = e^x - 2 = g(x)$ , and it can be written as

$$g(x) - x = e^x - 2 - x = 0,$$

SO

$$f(x) = e^x - 2 - x$$
,  $f'(x) = e^x - 1$ .

Thus

$$f(x_n) = e^{x_n} - x_n - 2$$
,  $f'(x_n) = e^{x_n} - 1$ .

and the Newton's method gets the form

$$x_{n+1} = x_n - \frac{e^{x_n} - x_n - 2}{e^{x_n} - 1}, \quad n \ge 0.$$

Using it to find first approximation  $x_1$ , with  $x_0 = 10$ 

$$x_1 = x_0 - \frac{e^{x_0} - x_0 - 2}{e^{x_0} - 1} = 10 - \frac{e^{10} - 10 - 2}{e^{10} - 1} = 9.0005.$$

Show that  $\alpha = 1$  is the root for the equation

$$x^4 - x^3 - 3x^2 = 2 - 5x.$$

(5)

Use quadratic convergent iterative method to find the first approximation of  $\alpha$  starting with  $x_0 = 0.5$ . Compute absolute error.

**Solution:** Since  $f(x) = x^4 - x^3 - 3x^2 + 5x - 2$ . First we show that  $\alpha = 1$  is the zero of the given function as

$$f(\alpha) = f(1) = (1)^4 - (1)^3 - 3(1)^2 + 5(1) - 2 = 0.$$

To check whether it is simple or multiple zero of f(x), we do the following

$$f'(x) = 4x^3 - 3x^2 - 6x + 5$$
 and  $f'(\alpha) = f'(1) = 4 - 3 - 6 + 5 = 0$ ,

which means that  $\alpha=1$  is the multiple zero of the given function. To find its order of multiplicity, we do

$$f''(x) = 12x^2 - 6x - 6$$
 and  $f''(\alpha) = f''(1) = 12x^2 - 6x - 6 = 0$ ,

$$f'''(x) = 24x - 6$$
 and  $f'''(\alpha) = f'''(1) = 24 - 6 = 18 \neq 0$ ,

hence  $\alpha = 1$  is a zero of multiplicity 3 of the given function. Then

$$x_{n+1} = x_n - m \frac{(x_n^4 - x_n^3 - 3x_n^2 + 5x_n - 2)}{(4x_n^3 - 3x_n^2 - 6x_n + 5)} = 0.5 - 3 \frac{(-0.3125)}{(1.75)} = 0.6786,$$

and the possible absolute error is

Absolute Error = 
$$|1 - 0.6786| = 0.3214$$
.

Question 4:

If  $x = \alpha$  is a root of multiplicity 5 of f(x) = 0, then show that the rate of convergence of modified Newton's method is at least quadratic.

(5)

Solution: The modified Newton's iterative formula is:

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)} = g(x_n), \quad n \ge 0.$$

and in the fixed-point iteration can be obtained as follows: Since the equation f(x) = 0 has multiple root of multiplicity 5, so f(x) can be written as

$$f(x) = (x - \alpha)^5 h(x), \quad f'(x) = 5(x - \alpha)^4 h(x) + (x - \alpha)^5 h'(x).$$

Substituting the values of the f(x) and f'(x) in the above function iteration form, we get

$$g(x) = x - \frac{5(x-\alpha)^5 h(x)}{(5(x-\alpha)^4 h(x) + (x-\alpha)^5 h'(x))} = x - \frac{5(x-\alpha)h(x)}{(5h(x) + (x-\alpha)h'(x))}.$$

Then

$$g'(x) = 1 - 5\{([5h(x) + (x - \alpha)][h(x) + (x - \alpha)h'(x)] - [(x - \alpha)h(x)] + (5h'(x) + h'(x) + (x - \alpha)h''(x)]\}/([5h(x) + (x - \alpha)h'(x)]^2).$$

At  $x = \alpha$ , we have

$$g'(\alpha) = 1 - \frac{[5^2 h^2(\alpha)]}{[5h(\alpha)]^2} = 0.$$

Question 5:

(5)

Find the first approximation for the nonlinear system

$$y = -\sqrt{x}$$
$$(x-3)^2 + y^2 = 5$$

using Newton's method, starting with initial approximation  $(x_0, y_0)^T = (0.5, -0.5)^T$ .

**Solution:** Solving the given nonlinear system using the Newton's method, we do the following:

$$f_1(x,y) = \sqrt{x} + y,$$
  $f_{1x} = \frac{1}{2\sqrt{x}},$   $f_{1y} = 1$   
 $f_2(x,y) = (x-3)^2 + y^2 - 5,$   $f_{2x} = 2(x-3),$   $f_{2y} = 2y.$ 

At the given initial approximation  $x_0 = 0.5$  and  $y_0 = -0.5$ , we get

$$f_1(0.5, -0.5) = 0.205, \quad \frac{\partial f_1}{\partial x} = f_{1x} = 0.707, \quad \frac{\partial f_1}{\partial y} = f_{1y} = 1$$

$$f_2(0.5, -0.5) = 1.5, \quad \frac{\partial f_1}{\partial x} = f_{2x} = -5.0, \quad \frac{\partial f_2}{\partial y} = f_{2y} = -1$$

The Jacobian matrix J and its inverse  $J^{-1}$  at the given initial approximation can be calculated as

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 0.707 & 1 \\ -5 & -1 \end{pmatrix}$$

and one can find its inverse as

$$J^{-1} = \frac{1}{4.293} \left( \begin{array}{cc} -1 & -1 \\ 5 & 0.707 \end{array} \right)$$

Substituting all these values in the Newton's formula to get the first approximation as follows

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix} - \begin{pmatrix} -0.233 & -0.233 \\ 1.165 & 0.165 \end{pmatrix} \begin{pmatrix} 0.205 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 0.898 \\ -0.987 \end{pmatrix}$$