The diagram below shows tape-distance measurement of line $A B$ hindered by a river. Construction and measurement of perpendicular lines $E B$ and $D C$ were made. $D E A$ is a straight line. $C D=$ $90 \mathrm{~m}, E B=75 \mathrm{~m}, B C=45 \mathrm{~m}$.

Compute the length of $A B$.

A lake made it difficult to measure the distance between points P and Q. To find the length of $P Q$ a perpendicular is erected from Q on $P Q$ to meet a line extended from P to S at point R.

What is the length of $P Q$ (to the nearest cm), if $Q R$ and $P R$ were respectively, recorded as 25 m and $52 m$?

$$
\begin{gathered}
P R^{2}=Q R^{2}+P Q^{2} \\
52^{2}=25^{2}+x^{2} \\
x=\sqrt{2704-625}=45.596 \mathrm{~m}
\end{gathered}
$$

$\rightarrow \mathrm{PQ}=45 \mathrm{~m}$ and 60 cm

To measure the distance PB around the obstacle shown in figure the following constructions and measurements were carried out:

From A, a point on the extension of $B P$ a line $A R$ is constructed and perpendiculars from P and B are dropped on $A R$ intersecting it at Q and C.
$A P, P Q$ and $B C$ were measured and recorded as: $40 \mathrm{~m}, 16 \mathrm{~m}$ and 60 m respectively.
Compute the distance PB.

$$
\begin{gathered}
\frac{B C}{B A}=\frac{P Q}{P A} \\
\frac{60}{40+x}=\frac{16}{40} \\
2400=16(40+x) \\
16 x=1760 \\
x=110 \mathrm{~m}
\end{gathered}
$$

