A 100m tape was used to measure a distance between stations P and Q. The recorded slope distance was 1020.00 m . The elevation angle measured by a clinometer was 5° and the standardized length of the tape was 99.98 m .

Compute the corrected slope distance and the required horizontal distance PQ.

$\begin{array}{lll}100 \mathrm{~m} \text { tape } & \boldsymbol{\rightarrow} & 1020 \mathrm{~m} \text { distance } \\ 99.98 \mathrm{~m} \text { tape } & \boldsymbol{\rightarrow} & ? \mathrm{~m} \text { distance }\end{array}$
corrected slope distance $=99.98 \times 1020 / 100=1019.796 \mathrm{~m}$
horizontal distance $=1019.796 \times \cos 5=1015.915 \mathrm{~m}$

A steel tape of coefficient of expansion 0.0000116 per unit length per ${ }^{\circ} \mathrm{C}$ was used to measure a distance recorded as 600.00 m at $40^{\circ} \mathrm{C}$, while the standard temp. is $20^{\circ} \mathrm{C}$.

Compute the temperature correction and the corrected distance.

$$
\begin{gathered}
C_{t}=C \times L \times\left(T-T_{s}\right) \\
C_{t}=0.0000116 \times 600 \times(40-20)=0.1392 \mathrm{~m} \\
\text { corrected distance }=C_{t}+L \\
\text { corrected distance }=0.1392+600=600.1392 \mathrm{~m}
\end{gathered}
$$

The figure below shows the undulating distance $A B$ divided into three segments. Compute the horizontal distance $A B$ if the standardized tape length is 50.02 m .

Measured slope distances: $A P=900.00 \mathrm{~m}, P Q=820.00 \mathrm{~m}, Q B=600.00 \mathrm{~m}$.
Elevation differences are $A P=10.00 \mathrm{~m}, P Q=-12.00 \mathrm{~m}, Q B=15.00 \mathrm{~m}$.

corrected slope distance $=50.02 \times 820 / 50=820.328 \mathrm{~m}$

$$
\text { horizontal distance }=\sqrt{820.328^{2}-12^{2}}=820.2402 \mathrm{~m}
$$

- From Q to B:

50 m tape

$$
\rightarrow \quad 600 \mathrm{~m} \text { distance }
$$

$$
50.02 \mathrm{~m} \text { tape } \quad \rightarrow \quad \text { ? m distance }
$$

corrected slope distance $=50.02 \times 600 / 50=600.24 \mathrm{~m}$

$$
\text { horizontal distance }=\sqrt{600.24^{2}-15^{2}}=600.0525 \mathrm{~m}
$$

- Total horizontal distance $=900.3045+820.2402+600.0525=2320.5972 \mathrm{~m}$

Exam Questing: A slope distance, AB was measured using a 50m tape and was recorded as 760.00 m . if the height difference between A and B is 20.0 m and the standardized tape length was found to be 49.92 m , compute the corrected horizontal distance $A B$.

corrected slope distance $=49.92 \times 760 / 50=758.784 \mathrm{~m}$

$$
\text { horizontal distance }=\sqrt{758.784^{2}-20^{2}}=758.5204 \mathrm{~m}
$$

Exam Questing: During a steel tape measurement of a distance recorded as 360.800 m the outside temperature during measurement was $20^{\circ} \mathrm{C}$ higher than the standardized temperature, what is the correct distance if steel thermal coefficient of expansion is $11.0 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

$$
\begin{gathered}
C_{t}=C \times L \times\left(T-T_{s}\right) \\
C_{t}=\left(11.0 \times 10^{-6}\right) \times 360.8 \times 20=0.079376 \mathrm{~m} \\
\text { corrected distance }=C_{t}+L \\
\text { corrected distance }=0.079376+360.8=360.879376 \mathrm{~m}
\end{gathered}
$$

