15 cm on map	→	300 m on ground	unify units
15 cm on map	→	30000 cm on ground	divide by 15
1 cm on map	→	2000 cm on ground	scale format
 Ratio scale: Representative Engineering Sc		$\begin{array}{l} 1:2000\\ 1/2000\\ 1 \ \mathrm{cm} = 20 \ \mathrm{m} \end{array}$	

A circular field has a diameter of 20.0mm on a map of scale 1:500. Compute the ground diameter and perimeter of the field.

1 unit on map	→	500 units on ground
---------------	---	---------------------

20 mm on map \rightarrow ? mm on ground

1

Ground diameter = $20 \times 500 / 1 = 10000 \text{ mm} = 10 \text{ m}$

Ground perimeter = $2\pi r = 2 \times 3.14 \times 5 m = 31.4286 m$

A land parcel of planimetric area $8000.00m^2$ was plotted on a map of scale 1:5000, what is the area of this land on the map (in mm^2)?

A map distance between two points is 20.0 cm. The corresponding ground distance between these points is 100.00 m. Compute the map scale (write your answer in Rep Fraction, Ratio and engineering scale forms, respectively).

Plot a simple graphical scale for this map scale that can read to 1.0m accuracy.

20 cm on map	→	100 m on ground	unify units
20 cm on map	→	10000 cm on ground	divide by 20
1 cm on map	→	500 cm on ground	scale format

- Ratio scale: 1:500
- Representative Fraction: 1/500
- Engineering Scale: 1 cm = 5 m

Scale	= length available on the paper \div Maximum length of the land		
	= 25 cm / 300 m	→ 1 cm / 12 m	
	= 1 cm / 1200 cm	→ 1: 1200	

If 25 cm size drawing paper is available, and we want to draw a sketch of a land where the maximum dimension to be plot is 140 m what scale should we use?

Scale	= length available on the paper \div Maximum length of the land			
	= 25 cm / 140 m	→ 1 cm / 5.6 m	say 1 cm / 6 m	
	= 1 cm / 600 cm	→ 1: 600		

Exam Question: An area of a playground was plotted on a map of scale 1:250. If this area measures 200 cm^2 on this map, what is the ground area of the playground?

Distance scale: 1:250	Area scale: $1^2:250^2$ \rightarrow	Area scale 1:62500		
1 unit on map →	62500 units on ground			
200 cm ² on map \rightarrow	? cm ² on ground			
Ground area = $200 \times 62500 / 1 = 12500000 \text{ cm}^2 = 1250 \text{ m}^2$				

Exam Question: A distance AB measures 20 mm on a 1:24000 scale map. The same distance AB measures 30 mm on a second map. What is the scale of the second map?

• First map:

1 unit on map →	24000 units on ground			
20 mm on map →	? mm	? mm on ground		
Ground diameter = $20 \times 24000 / 1 = 480000 \text{ mm} = 480 \text{ m}$				
 Second map: 				
30 mm on map	→	480 m on ground	unify units	
30 mm on map	→	480000 mm on ground	divide by 30	
1 mm on map	→	16000 mm on ground	scale format	

Ratio scale: 1:16000
Representative Fraction: 1/16000
Engineering Scale: 1 mm = 16 m