Compute the area for the boundary shown in figure below: angle x is right angle, dimensions shown are in mm, extracted from a map of scale 1:2000.

ABD is right angle triangle, so BD can be found $B D=\sqrt{6^{2}+8^{2}}=10 \mathrm{~mm}$
Area of triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}, \quad$ where $s=(a+b+c) \div 2$
$A_{A B D}=\sqrt{12 \times(12-6) \times(12-8) \times(12-10)}=24 \mathrm{~mm}^{2}$
$A_{B C D}=\sqrt{10.5 \times(10.5-4) \times(10.5-7) \times(10.5-10)}=10.929 \mathrm{~mm}^{2}$
Total map area $=24+10.929=34.929 \mathrm{~mm}^{2}$
Ground area $=34.929 \times 2000^{2}=139714986 \mathrm{~mm}^{2}=139.715 \mathrm{~m}^{2}$

Compute the property ground area $A B C D E F G A$ by dividing it into small geometric figures as shown. $I B, H C$ and $E D$ are offsets from $A E, D E F$ is a straight line and angle $E F G$ is right angle. All dimensions are in meters.

Assuming coordinates of point A: $(x=0.0 m, y=0.0 m)$ with $A E$ as the x-axis, use method of coordinates to compute the total area.

- By dividing into small geometric figures:

$$
A_{A B I}=12 \times \frac{16}{2}=96 \mathrm{~m}^{2}
$$

$$
A_{B C H I}=(11+12) \times \frac{16}{2}=184 \mathrm{~m}^{2}
$$

$$
A_{C D E H}=(10+11) \times \frac{16}{2}=168 \mathrm{~m}^{2}
$$

$$
A_{E F G}=30 \times \frac{40}{2}=600 \mathrm{~m}^{2}
$$

To find $A_{A E G}$:
$E G=\sqrt{30^{2}+40^{2}}=50 \mathrm{~m}$
$A G=\sqrt{30^{2}+8^{2}}=31.0483 \mathrm{~m}$

$$
A E=16+16+16=48 \mathrm{~m}
$$

$$
s=(50+31.0483+48) / 2=64.52415 \mathrm{~m}
$$

$$
A_{E G A}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}
$$

$$
A_{E F G}=720 \mathrm{~m}^{2}
$$

Total area $=720+600+168+184+96=1768 \mathrm{~m}^{2}$

- By method of coordinates:

Point	Y	X
A	0	0
B	12	16
C	11	32
D	10	48
E	0	48
F	-30	48
G	-30	8
A	0	0

From right to left		From left to right	
0×16	$=0$	0×12	$=0$
12×32	$=384$	16×11	$=176$
11×48	$=528$	32×10	$=320$
10×48	$=480$	48×0	$=0$
0×48	$=0$	48×-30	$=-1440$
-30×8	$=-240$	48×-30	$=-1440$
-30×0	0	8×0	$=0$
Sum	1152	Sum	-2384

Area $=[(1152)-(-2384)] / 2=1768 \mathrm{~m}^{2}$

A playground has the shape of a rectangle, with two semi-circles on its smaller sides as diameters, added to its outside. If the sides of the rectangle are 40 m and $24 m$, find the area of the playground.

Area of rectangle $=40 \times 24=960 \mathrm{~m}^{2}$
Area of circle $=\pi \mathrm{r}^{2}=3.14 \times 12^{2}=452.57 \mathrm{~m}^{2}$
Total Area $=960 \mathrm{~m}^{2}+452.57 \mathrm{~m}^{2}=1412.57 \mathrm{~m}^{2}$

Compute the area of the land parcel shown in figure below, with the coordinates of vertices given in meters, using:

1- Method of Coordinates
2- Dividing the parcel in triangles: $A B C, A C D$ and $A D E$.

- By method of coordinates:

Point	Y	X
A	20	0
B	70	50
C	60	110
D	5	100
E	0	10
A	20	0

From right to left		From left to right	
20×50	$=1000$	0×70	$=0$
70×110	$=7700$	50×60	$=3000$
60×100	$=6000$	110×5	$=550$
5×10	$=50$	100×0	$=0$
0×0	$=0$	10×20	$=200$
Sum	14750	Sum	3750

Area $=(14750-3750) / 2=5500 \mathrm{~m}^{2}$

- Dividing the parcel in triangles: $\mathrm{ABC}, \mathrm{ACD}$ and ADE

$$
\begin{gathered}
A B=\sqrt{50^{2}+50^{2}}=70.711 \mathrm{~m} \\
B A=\sqrt{60^{2}+10^{2}}=60.828 \mathrm{~m} \\
A C=\sqrt{40^{2}+110^{2}}=117.047 \mathrm{~m} \\
s=(a+b+c) / 2=(70.711+60.828+117.047) / 2=124.293 \mathrm{~m} \\
A_{A B C}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}=1750 \mathrm{~m}^{2}
\end{gathered}
$$

$$
\begin{gathered}
A C=\sqrt{55^{2}+10^{2}}=55.902 m \\
A D=\sqrt{15^{2}+100^{2}}=101.119 m \\
S=(a+b+c) / 2=(117.047+55.902+101.119) / 2=137.034 m \\
A_{A C D}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}=2825 m^{2}
\end{gathered}
$$

$$
\begin{gathered}
A D=101.119 \mathrm{~m} \\
A E=\sqrt{10^{2}+20^{2}}=22.361 \mathrm{~m} \\
E D=\sqrt{5^{2}+90^{2}}=90.139 \mathrm{~m} \\
s=(a+b+c) / 2=(22.361+90.139+101.119) / 2=106.810 \mathrm{~m} \\
A_{A C D}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}=925 \mathrm{~m}^{2}
\end{gathered}
$$

Total area $=1750+2825+925=5500 \mathrm{~m}^{2}$

Exam Question: given the data in the in meters. Compute the ground area of the land tract.

Point	Y	X
A	1475	0
B	2860	1710
C	802	4542
D	0	1547
A	1475	0

From right to left		From left to right	
1475×1710	$=2522250$	0×2860	$=0$
2860×4542	$=12990120$	1710×802	$=1371420$
802×1547	$=1240694$	4542×0	$=0$
0×0	$=0$	1547×1475	$=2281825$
Sum	16753064	Sum	3653245

Area $=(16753064-3653245) / 2=6549909.5 \mathrm{~m}^{2}$

Exam Question: The figure below shows the plan view of a house. $A B=20.0 \mathrm{~m}, A E=22.0 \mathrm{~m}$, $C D=E D=24.0 \mathrm{~m}$ and $C E=16.0 \mathrm{~m}$; angles at A and E ($E A B$ and $C E A$) are right angles, Assuming A as origin of a $2 D$ coordinates system (AE is the x-axis). Use method of coordinates to calculate the area of the house with boundary $A B C D E A$.

- Coordinates of corners of figure:

A ($0.00,0.00)$; B ($0.00,20.00)$; C $(22.00,16.00)$;
$\mathrm{D}(44.627,8.00)$; Since $\mathrm{DF}=\left[24.00^{2}-8.00^{2}\right]^{1 / 2}=22.627 \mathrm{~m}$
E (22.00, 0.00)

- Area of figure $=(1 / 2)\{[20.00 \times 22.00+16 \times 44.627+8.00 \times 22.00]-[22.00 \times 8.00]\}$

$$
=577.016 \mathrm{~m}^{2}
$$

