

ABD is right angle triangle, so BD can be found $BD = \sqrt{6^2 + 8^2} = 10mm$ Area of triangle = $\sqrt{s \times (s - a) \times (s - b) \times (s - c)}$, where $s = (a + b + c) \div 2$ $A_{ABD} = \sqrt{12 \times (12 - 6) \times (12 - 8) \times (12 - 10)} = 24 mm^2$ $A_{BCD} = \sqrt{10.5 \times (10.5 - 4) \times (10.5 - 7) \times (10.5 - 10)} = 10.929 mm^2$ Total map area = 24 + 10.929 = 34.929 mm² Ground area = 34.929 × 2000² = 139714986 mm² = 139.715 m²

Compute the property ground area ABCDEFGA by dividing it into small geometric figures as shown. IB, HC and ED are offsets from AE, DEF is a straight line and angle EFG is right angle. All dimensions are in meters.

Assuming coordinates of point A: (x=0.0m, y=0.0m) with AE as the x-axis, use method of coordinates to compute the total area.

• By dividing into small geometric figures:

$$A_{ABI} = 12 \times \frac{16}{2} = 96 \, m^2$$

Total area = $720 + 600 + 168 + 184 + 96 = 1768 \text{ m}^2$

• By method of coordinates:

Point	Y	Х
Α	0	0
В	12	16
С	11	32
D	10	48
Е	0	48
F	-30	48
G	-30	8
А	0	0

From right to left		From left to right	
0×16	= 0	0×12	= 0
12×32	= 384	16×11	= 176
11×48	= 528	32×10	= 320
10×48	= 480	48 imes 0	= 0
0×48	= 0	48×-30	= -1440
-30×8	= -240	48×-30	= -1440
-30×0	0	8 imes 0	= 0
Sum	1152	Sum	-2384

Area = $[(1152) - (-2384)]/2 = 1768 \text{ m}^2$

A playground has the shape of a rectangle, with two semi-circles on its smaller sides as diameters, added to its outside. If the sides of the rectangle are 40m and 24m, find the area of the playground.

Area of rectangle = $40 \times 24 = 960 \text{ m}^2$

Area of circle = πr^2 = 3.14 × 12² = 452.57 m²

Total Area = 960 m² + 452.57 m² = 1412.57 m²

Compute the area of the land parcel shown in figure below, with the coordinates of vertices given in meters, using:

1- Method of Coordinates

2- Dividing the parcel in triangles: ABC, ACD and ADE.

• By method of coordinates:

Point	Y	Х
Α	20	0
В	70	50
С	60	110
D	5	100
Е	0	10
A	20	0

From right to left		From left to right	
20×50	= 1000	0×70	= 0
70×110	= 7700	50 imes 60	= 3000
60×100	= 6000	110×5	= 550
5×10	= 50	100×0	= 0
0×0	= 0	10×20	= 200
Sum	14750	Sum	3750

Area = $(14750 - 3750)/2 = 5500 \text{ m}^2$

• Dividing the parcel in triangles: ABC, ACD and ADE

6

$$AC = 117.047 m$$

 $DC = \sqrt{55^2 + 10^2} = 55.902 m$
 $AD = \sqrt{15^2 + 100^2} = 101.119 m$

s = (a + b + c)/2 = (117.047 + 55.902 + 101.119)/2 = 137.034 m $A_{ACD} = \sqrt{s \times (s - a) \times (s - b) \times (s - c)} = 2825 m^2$

Total area = $1750 + 2825 + 925 = 5500 \text{ m}^2$

Point	Y	Х
Α	1475	0
В	2860	1710
C	802	4542
D	0	1547
A	1475	0

8

From right to left		From left to right	
1475×1710	= 2522250	0×2860	= 0
2860×4542	= 12990120	1710×802	= 1371420
802×1547	= 1240694	4542×0	= 0
0 imes 0	= 0	1547×1475	= 2281825
Sum	16753064	Sum	3653245

Area = $(16753064 - 3653245)/2 = 6549909.5 \text{ m}^2$

Exam Question: The figure below shows the plan view of a house. AB = 20.0m, AE = 22.0m, CD=ED = 24.0m and CE=16.0m; angles at A and E (EAB and CEA) are right angles, Assuming A as origin of a 2D coordinates system (AE is the x-axis). Use method of coordinates to calculate the area of the house with boundary ABCDEA.

• Coordinates of corners of figure:

A (0.00, 0.00); B (0.00, 20.00); C (22.00, 16.00);

D (44.627, 8.00); Since DF = $[24.00^2 - 8.00^2]^{1/2} = 22.627 \text{ m}$

E (22.00, 0.00)

• Area of figure = (1/2) {[$20.00 \times 22.00 + 16 \times 44.627 + 8.00 \times 22.00$] - [22.00×8.00]} = 577.016 m²