The figure below shows the boundary of a small farm as plotted on a map of scale 1:500, dimensions are in cms. Compute the actual ground area of the farm in sq. meters, using:

1- Average heights, 2-trapezoidal rule, 3-Simpson's rule.


- Average heights:

$$
\begin{gathered}
\text { Average heights, } H=\frac{\sum h_{i}}{n}=\frac{10+16+12+18+0}{5}=11.2 \mathrm{~cm} \\
\text { Area }_{\text {map }}=[(n-1) X] \times H=[(5-1) 10] \times 11.2=448 \mathrm{~cm}^{2} \\
\text { Area }_{\text {ground }}=448 \times 500^{2}=112000000 \mathrm{~cm}^{2}=11200 \mathrm{~m}^{2}
\end{gathered}
$$

- trapezoidal rule:

$$
\begin{gathered}
\text { Area }=\frac{X}{2}\left[h_{1}+h_{n}+2 \sum\left(h_{2}+h_{3}+\cdots+h_{n-1}\right)\right] \\
\text { Area }_{\text {map }}=\frac{10}{2}\left[10+0+2 \sum(16+12+18)\right]=510 \mathrm{~cm}^{2} \\
\text { Area }_{\text {ground }}=510 \times 500^{2}=127500000 \mathrm{~cm}^{2}=12750 \mathrm{~m}^{2}
\end{gathered}
$$

- Simpson's rule:

$$
\begin{gathered}
\text { Area }=\frac{X}{3}\left[h_{1}+h_{n}+4 \sum\left(h_{2}+h_{4}+h_{6}+\cdots\right)+2 \sum\left(h_{3}+h_{5}+h_{7}+\cdots\right)\right] \\
\text { Area }_{\text {map }}=\frac{10}{3}\left[10+0+4 \sum(16+18)+2 \sum(12)\right]=566.667 \mathrm{~cm}^{2} \\
\text { Area }_{\text {ground }}=566.667 \times 500^{2}=141666666.667 \mathrm{~cm}^{2}=14166.667 \mathrm{~m}^{2}
\end{gathered}
$$

Exam Question: The figure below shows a tract of land that has three straight boundaries: $A B$, $B C$, and $C D$. The fourth boundary DA is irregular. The measured lengths are as follows: $A B=$ $40.00 \mathrm{~m}, B C=82.00 \mathrm{~m}, C D=20.00 \mathrm{~m}, B D=86 \mathrm{~m}$. offsets were measured from the boundary $D A$ to the irregular boundary at a regular interval of 9.00 m and were recorded in meters as shown in the figure.


Compute the regular area $A B C D$ and the irregular one using Simpson's rule. What is the total area?

$$
\begin{gathered}
s_{A B D}=(a+b+c) \div 2=(40+86+54) / 2=90 \mathrm{~m} \\
A_{A B D}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)} \\
A_{A B D}=\sqrt{90 \times(90-40) \times(90-86) \times(90-54)}=805 \mathrm{~m}^{2} \\
s_{B C D}=(a+b+c) \div 2=(82+86+20) / 2=94 \mathrm{~m} \\
A_{A B D}=\sqrt{s \times(s-a) \times(s-b) \times(s-c)} \\
A_{B C D}=\sqrt{94 \times(94-82) \times(94-86) \times(94-20)}=817 \mathrm{~m}^{2} \\
\text { Area }_{\text {irregular }}=\frac{X}{3}\left[h_{1}+h_{n}+4 \sum\left(h_{2}+h_{4}+h_{6}+\cdots\right)+2 \sum\left(h_{3}+h_{5}+h_{7}+\cdots\right)\right] \\
\text { Area }_{\text {irregular }}=\frac{9}{3}\left[8+0+4 \sum(10+12+13)+2 \sum(9+15)\right]=588 \mathrm{~m}^{2}
\end{gathered}
$$

Total area $=805+817+588=2210 \mathrm{~m}^{2}$

Exam Question: Given the data in the plan below. Compute the ground area of the land tract in square meters. Use Simpson's rule for the area bounded by a curve.




A1: Simpson's rule: $A_{1}=\frac{1}{3}[1+0+4(2.7+2.9+2+0.2)+2(3+2.6+1)]=15.13 \mathrm{~cm}^{2}$
A2: Rectangular: $A_{2}=1 \times 8=8 \mathrm{~cm}^{2}$
$\mathrm{A}_{3}$ : Right angle triangle: $A_{3}=0.5 \times 4 \times 6=12 \mathrm{~cm}^{2}$
A4: Rectangular: $A_{2}=2 \times 4=8 \mathrm{~cm}^{2}$
$\mathrm{A}_{5}$ : Right angle triangle: $A_{5}=0.5 \times 1 \times 3=1.5 \mathrm{~cm}^{2}$
Total plan area:

$$
\begin{aligned}
& A_{\text {total plan }}=A_{1}+A_{2}+A_{3}+A_{4}-A_{5} \\
& A_{\text {total plan }}=15.13+8+12+8-1.5=41.63 \mathrm{~cm}^{2}
\end{aligned}
$$

Total ground area:

$$
A_{\text {total ground }}=41.63 \times 1000^{2}=41630000 \mathrm{~cm}^{2}=4163 \mathrm{~m}^{2}
$$

