The whole number 156 is degrees.			
Multiply the remaining decimal by 60.			
$0.742 \times 60 = 44.52,$			
The whole number 44 is minutes.			
Multiply the remaining decimal by 60.			
$0.52 \times 60 = 31.2$	31.2"		

DMS format

156° 44' 31.2"

Convert 30° 15' 50" angle to decimal degrees

Decimal Degrees	= degrees + (minutes/60) + (seconds/3600)
	$= 30 + (15/60) + (50/3600) = 30.2638888889^{\circ}$

If a piece of land has five sides. What is the sum of its interior angles?

Total angles = $(N - 2) \times 180^{\circ}$ = $(5 - 2) \times 180^{\circ} = 540^{\circ}$

Eng. Ibrahim Almohanna, 2020 http://fac.ksu.edu.sa/ialmohanna/

 $AB = D = (R_1 - R_0) / tan \alpha$

 $AB = D = (R_1 - R_2) / (\tan \alpha_1 - \tan \alpha_2)$

Height A = horizontal distance $\times \tan (90^\circ - A^\circ)$

Height B = horizontal distance $\times \tan (B^{\circ} - 90^{\circ})$

Determine the WCB and QB for the vectors in the following sketch.

A:	WCB:	27°
	QB:	N 27° E
B:	WCB:	103°
	QB:	S 107° E
C:	WCB:	210°
	QB:	S 17° W
D:	WCB:	340°
	OB:	N 20° W

Eng. Ibrahim Almohanna, 2020 http://fac.ksu.edu.sa/ialmohanna/ *Given:* WCB of line OB = 160° 25' and QB of line OA = N 55° 40' W Calculate: 1- QB of line OB. 2- WCB of line OA. 3- Horizontal angle AOB.

1- QB of line OB:	S 19° 35' E	
2- WCB of line OA:	304° 20'	
3- Horizontal angle AOB:	Starting from OA clockwise:	216° 5'
	Starting from OA counterclockwise:	143° 55'

What is the horizontal distance between the level station and the staff if you see the following view in the eye piece?

Upper stadia hair reading: 2.14 m.

Lower stadia hair reading: 1.94 m.

Stadia interval = 2.14 m - 1.94 m = 0.2 m

Stadia factor = 100; constant

Distance $AB = 0.2 \text{ m} \times 100 = 20 \text{ m}$.

A theodolite was temporary adjusted at station Q. The graduated staff was held vertically at station P followed by station R. Staff readings, vertical angles and horizontal circle readings were recorded at station Q as below: (height of theodolite=1.45m)

Staff Station	Staff reading (m)	Vertical Angle	Horizontal circle
Р	1.10	l°	<i>30° 30'</i>
	2.90	2°	
R	1.20	2°	120° 30'
	2.80	3°	

Compute:

1- Horizontal ground distance QP.

2- Horizontal ground distance QR.4- Horizontal ground distance PR.

3- Horizontal angle PQR.5- Difference in level between P and R.

1- Horizontal ground distance QP

$$D = (R_1 - R_2) / (\tan \alpha_1 - \tan \alpha_2) = (1.1 - 2.9) / \tan 1^\circ - \tan 2^\circ = 103.06 \text{ m}$$

2- Horizontal ground distance QR

 $D = (R_1 - R_2) / (\tan \alpha_1 - \tan \alpha_2) = (1.2 - 2.8)/\tan 2^\circ - \tan 3^\circ = 91.5 \text{ m}$

- 3- Horizontal angle PQR = $120^{\circ} 30' 30^{\circ} 30' = 90^{\circ}$
- 4- Horizontal ground distance PR = $\sqrt{103.06^2 + 91.5^2} = 92.43m$

5- Difference in level between P and R.

 $y1 = 91.5 \times tan2^{\circ} = 3.195 m$

→ staff reading at horizontal line x1 = 1.2 - 3.195 = -1.995 m

 $y2 = 103.06 \times tan1^{\circ} = 1.799 m$

→ staff reading at horizontal line $x^2 = 1.1 - 1.799 = -0.699$ m

Difference between reading equals difference in levels = -1.995 - (-0.699) = -1.296 m