The whole number 156 is degrees. 156°.
Multiply the remaining decimal by 60 .

$$
0.742 \times 60=44.52
$$

The whole number 44 is minutes.
Multiply the remaining decimal by 60 .

$$
0.52 \times 60=31.2 \quad 31.2 "
$$

DMS format
$156^{\circ} 44^{\prime} 31.2^{\prime \prime}$

Convert $30^{\circ} 15^{\prime} 50^{\prime \prime}$ angle to decimal degrees

Decimal Degrees $=$ degrees $+($ minutes $/ 60)+($ seconds $/ 3600)$

$$
=30+(15 / 60)+(50 / 3600)=30.263888889^{\circ}
$$

If a piece of land has five sides. What is the sum of its interior angles?

Total angles $=(\mathrm{N}-2) \times 180^{\circ}$

$$
=(5-2) \times 180^{\circ}=540^{\circ}
$$

$$
\mathrm{AB}=\mathrm{D}=\left(\mathrm{R}_{1}-\mathrm{R}_{0}\right) / \tan \alpha
$$

$$
\mathrm{AB}=\mathrm{D}=\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right) /\left(\tan \alpha_{1}-\tan \alpha_{2}\right)
$$

Height $\mathrm{A}=$ horizontal distance $\times \tan \left(90^{\circ}-\mathrm{A}^{\circ}\right)$

Height $\mathrm{B}=$ horizontal distance $\times \tan \left(\mathrm{B}^{\circ}-90^{\circ}\right)$

Determine the WCB and QB for the vectors in the following sketch.

A:
WCB:
27°
QB: $\quad \mathrm{N} 27^{\circ} \mathrm{E}$
B:
WCB:
103°
QB: $\quad \mathrm{S} 107^{\circ} \mathrm{E}$
C:
WCB:
210°
QB: $\quad \mathrm{S} 17^{\circ} \mathrm{W}$
D:
WCB:
340°
QB: $\quad \mathrm{N} 20^{\circ} \mathrm{W}$

Given: $W C B$ of line $O B=160^{\circ} 25^{\prime}$ and $Q B$ of line $O A=N 55^{\circ} 40^{\prime} W$

Calculate: 1-QB of line $O B . \quad$ 2-WCB of line $O A$. 3- Horizontal angle $A O B$.

1- QB of line $\mathrm{OB}: \quad \quad \mathrm{S} 19^{\circ} 35^{\prime} \mathrm{E}$
2- WCB of line OA: $\quad 304^{\circ} 20^{\prime}$
3- Horizontal angle AOB: Starting from OA clockwise: $216^{\circ} 5^{\prime}$
Starting from OA counterclockwise: $143^{\circ} 55^{\prime}$

What is the horizontal distance between the level station and the staff if you see the following view in the eye piece?

Upper stadia hair reading: 2.14 m .
Lower stadia hair reading: 1.94 m .
Stadia interval $=2.14 \mathrm{~m}-1.94 \mathrm{~m}=0.2 \mathrm{~m}$
Stadia factor $=100$; constant
Distance $A B=0.2 \mathrm{~m} \times 100=20 \mathrm{~m}$.

A theodolite was temporary adjusted at station Q. The graduated staff was held vertically at station P followed by station R. Staff readings, vertical angles and horizontal circle readings were recorded at station Q as below: (height of theodolite $=1.45 \mathrm{~m}$)

Staff Station	Staff reading (m)	Vertical Angle	Horizontal circle
P	1.10	1°	$30^{\circ} 30^{\prime}$
	2.90	2°	
R	1.20	2°	$120^{\circ} 30^{\prime}$
	2.80	3°	

Compute:

1- Horizontal ground distance $Q P$ 2- Horizontal ground distance $Q R$.
3- Horizontal angle PQR. 4- Horizontal ground distance PR.
5- Difference in level between P and R.

1- Horizontal ground distance QP
$\mathrm{D}=\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right) /\left(\tan \alpha_{1}-\tan \alpha_{2}\right)=(1.1-2.9) / \tan 1^{\circ}-\tan 2^{\circ}=103.06 \mathrm{~m}$
2- Horizontal ground distance QR
$\mathrm{D}=\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right) /\left(\tan \alpha_{1}-\tan \alpha_{2}\right)=(1.2-2.8) / \tan 2^{\circ}-\tan 3^{\circ}=91.5 \mathrm{~m}$
3- Horizontal angle $\mathrm{PQR}=120^{\circ} 30^{\prime}-30^{\circ} 30^{\prime}=90^{\circ}$
4- Horizontal ground distance $P R=\sqrt{103.06^{2}+91.5^{2}}=92.43 \mathrm{~m}$

5- Difference in level between P and R.
$\mathrm{y} 1=91.5 \times \tan 2^{\circ}=3.195 \mathrm{~m}$
\rightarrow staff reading at horizontal line $\mathrm{x} 1=1.2-3.195=-1.995 \mathrm{~m}$
$\mathrm{y} 2=103.06 \times \tan 1^{\circ}=1.799 \mathrm{~m}$
\rightarrow staff reading at horizontal line $\mathrm{x} 2=1.1-1.799=-0.699 \mathrm{~m}$
Difference between reading equals difference in levels $=-1.995-(-0.699)=-1.296 \mathrm{~m}$

