
Chapter 8Relative Orientation of StereoImages8.1 IntroductionRecovering the relative geometry of two stereo images is a classical problem in photogram-metry and also a basic problem in stereo vision. Technically, this problem includes interiororientation of each image and relative orientation of the two images, which are the pre-requisite for object localization and surface reconstruction from the two images. Interiororientation of an image refers to the determination of 3 intrinsic parameters: the principaldistance - also called focal length in an inexact sense - and the principal point positionin a given image plane coordinate system. Relative orientation of two images refers todetermination of the relative baseline (translation in motion vision) vector of two per-spective centres and the relative rotation (matrix or angles) of one image relative to theother, which totally involves only �ve parameters. Therefore, the relative geometry of twostereo images includes totally 11 parameters (two sets of three intrinsic parameters andone set of �ve relative orientation parameters). However, if only homologous image pointcoordinates are measured, it is known that only seven parameters can be solved from theimage measurements. Considering general application, the principal point position canbe determined by using �ducial marks with metric cameras, or good cameras are manu-factured such that the principal point can be very close to the image coordinate centre.Therefore, in the following discussions, we assume either the two principal points to beknown a priori or su�ciently close to zero. Hence, we choose to study the problem ofsolving for two principal distance and �ve relative orientation parameters, a problem weshall call general relative orientation. This problem is chosen because it contains a selec-tion of the maximum number of parameters which is symmetric and practically relevant.The word 'general' means that we intend to generalize the standard relative orientationproblem in photogrammetry by including also two principal distances. The importanceof this problem is obvious: given two stereo images with unknown interior and relativeorientations, it is impossible to reconstruct 3D object points or surfaces without solv-ing the general relative orientation even a general image matching can be achieved [Pan,1996]. This paper presents a direct closed-form solution to the general relative orientationproblem. We shall concentrate on the existence and correctness of this solution. The errorsensitivity analysis is beyond the scope of this paper. However, a numerical example anda real image application are provided. 239



240 CHAPTER 8. RELATIVE ORIENTATIONCamera calibration in photogrammetry terminology refers to determining the three in-trinsic geometric parameters and all other camera distortions. This is routinely done byusing control points. Self-calibration of cameras in photogrammetry refers to include thecamera geometry and distortion parameters into the simultaneous adjustment of pho-togrammetric network. However, in computer vision literature, camera calibration refersto anything related to solving intrinsic and extrinsic geometry and distortion parametersof one, or two, or three cameras, thus may include interior and relative orientation. Ina more general setup, we may have a network of overlapping images covering the objectsurfaces of interest completely. The recovery of the image overlapping topology and ge-ometry of this image network may be better called image resituation [Pan et al, 1995a,1995b], meaning to recover the topological and geometric situation of all images of thisnetwork. Therefore, image resituation may be understood as a general umbrella coveringinterior and relative orientation, and camera calibration of any number of networked im-ages. However, in this paper, we shall concentrate on the general relative orientation oftwo stereo views, though this background is clari�ed.Most photogrammetrists consider the problems of interior and relative orientation prob-lem to be already solved. These problems have been revisited in the recently years bycomputer vision specialists partly because the early photogrammetric literature is noteasily available to computer vision community, and largely because the stereo vision sys-tem, e.g. robot head, touches somes aspects of the stereo geometry which may be ratherdi�erent from the standard aerial photogrammetric applications. It is also the case inclose-range photogrammetry. The formulation of the stereo geometry (interior and rel-ative orientation, etc.) goes back to the period around the turn of the century to 30's[Heisse, 1863; Finsterwalder, 1899, 1932; Fourcade, 1903; Kruppa, 1913]. Analyticalphotogrammetry including interior orientation, camera calibration, relative orientation,absolute orientation, up to aerial triangulation network adjustment were intensively stud-ied from the 50's to the 70's [Schut, 1955; Thompson, 1959; Schmid, 1954; Abdel, 1971;Stefanovic, 1973; Wang, 1979; Khlebnikova, 1983]. The relative orientation problem wasstudied by computer vision community rather from a setup of motion vision [Longuet etal, 1980; Longuet, 1981; Bruss et al, 1983]. Horn (1990) bridged over the photogrammetryand computer vision communities, and gave a thorough description of relative orientationproblem. In recent years, the problem of interior and relative orientation were revisited bymany computer vision specialists as well as some photogrammetrists [Huang et al, 1989;Brandst�atter, 1991, 1996; Faugeras et al, 1992; Hartley, 1992; Faugeras, 1993; Niini, 1993;Weng et al, 1993; Niini, 1994].In the standard photogrammetric applications, relative orientation is solved through aniterative least-squares algorithm. A closed-form solution which is usually called rela-tive linear transform was �rst formulated by Thompson (1959) and further exploitedby Stefanovic (1973). As Horn (1990) pointed out, Longuet-Higgin's essential matrix[Longuet, 1981] is similar to Thompson's transform. Of course, a number of propertiesof Longuet-Higgin's essential matrix and Faugeras' fundamental matrix [Faugeras et al,1992] discovered in recent years are not explicitly known previously. On the other hand,Faugeras' fundamental matrix has other usefulness in image matching and motion vision.The work presented here may be considered as a follow-up of these earlier works. Wepresent a new direct closed-form approach to the general relative orientation problem,i.e. solving for two principal distances and �ve relative orientation parameters from pureimage measurements. This problem was also tackled by Hartley (1992), but in a quite



8.2. EXPLICIT AND IMPLICIT COPLANARITY EQUATIONS 241di�erent way which is rather more complicated and less direct than our approach.In the next section, we �rst clarify the relative geometry of two stereo images. Central tothe stereo geometry is the epipolar constraint which is expressed by the coplanarity equa-tion for each pair of homologous image points. It is also known that in photogrammetricnetwork adjustment, such as bundle adjustment, the collinearity equations characterizingthe perspective projection of each single image play the central role, so the relative ori-entation of multiple images may be totally avoided, but at the expense of having controlpoints or other information. However, the coplanarity equations represent still the basicstereo geometry if only two images are available. It is especially useful for robot stereovision systems and biological stereo vision study.8.2 Explicit and Implicit Coplanarity EquationsFor the generality of stereo geometry (Fig. 8.1), let us assume that there is a 3D globalcoordinate system O � XY Z with origin O and orthogonal axes labelled XY Z, withinwhich two stereo images, left and right, are situated. The 2D image coordinate systemo�xy and the 3D camera coordinate system C� ~x~y~z will be local to the left image, whereC is the perspective centre of the left camera. Symbols relating to the right image willbe marked with a prime 0, yielding the right image coordinate systems o0 � x0y0 and rightcamera coordinate system C 0� ~x0~y0~z0. Let c denote the principal point [i.e. the orthogonalprojection of the perspective centre on the image plane] of the left image and f the leftprincipal distance, i.e. f = Cc. The position C in O�XY Z is denoted by (XC ; YC; ZC),the position c in o�xy is (xc; yc). The orientation of C� ~x~y~z in O�XY Z is captured byan orthonormal rotation matrix R de�ned by 3 successive rotation angles �, �,  aroundC � ~x, C � ~y, and C � ~z axes respectively.8.2.1 Explicit Coplanarity EquationWhen the only available information is a number of homologous image points, we can eas-ily see that the collinearity equations given in (2.13) - (2.14) contain too many unknownsthat cannot be solved from pure image measurements. Let B denote the baseline vector,B = 0B@ BxByBz 1CA = 0B@ XC �XC0YC � YC0ZC � ZC0 1CA (8.1)As the magnitude of B cannot be determined without control information, let b denotea positively scaled version of Bb = (bx by bz)t = �B; � > 0 (8.2)For any given object point P visible from the left and right images, there are two homol-ogous image points p(x; y) and p0(x0; y0). A simple fact is that the �ve points P , p, p0,C, and C 0 are coplanar, which can be captured by a cross product of three vectors beingequal to zero [�pb �p0] = �p � (b� �p0) = 0 (8.3)
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YFigure 8.1: Analytical Geometry of Two Stereo Imageswhere p = 0B@ xy1 1CA ; ~p = 
p; �p = R~p (8.4)and 
 is de�ned as in (2.8), representing the translation of the image coordinate systemorigin to the principal point (xc; yc; f).This is the coplanarity equation so-called traditionally in photogrammetry. There areseveral ways of rewriting this coplanarity equation. One way is to write it in the simplestanalytical form ������� bx by bz�x �y �z�x0 �y0 �z0 ������� = 0 (8.5)This is the most direct form of coplanarity equation used in iterative relative orientationin photogrammetry.We can also rewrite the coplanarity equation (8.3) in the form of matrix product,�p � (b� �p0) = �ptB�p0 = 0 (8.6)where B is a skew-symmetric matrix de�ned by the elements of b: (bx; by; bz),B = 0B@ 0 �bz bybz 0 �bx�by bx 0 1CA (8.7)



8.2. EXPLICIT AND IMPLICIT COPLANARITY EQUATIONS 243Using the notations and relations de�ned so far, we can rewrite the coplanarity equationas pt
tRtBR0 
0 p0 = 0 (8.8)We shall call this form the explicit coplanarity equation, because the role of each geometricparameters is explicit shown. This becomes more clear if we rewrite this equation inanalytical form� xy1 �t� 1 0 �xc0 1 �yc0 0 �f �t� r11 r12 r13r21 r22 r23r31 r32 r33 �t� 0 �bz bybz 0 �bx�by bx 0 �� r011 r012 r013r021 r022 r023r031 r032 r033) �� 1 0 �x0c0 1 �y0c0 0 �f 0 �� x0y01 � = 0 (8.9)8.2.2 Implicit Coplanarity EquationLet A = RtBR0 (8.10)equation (8.8) then becomes ~ptA ~p0 = 0 (8.11)or, in expanded form,� x� xc y � yc �f �0B@ a11 a12 a13a21 a22 a23a31 a32 a33 1CA0B@ x0 � x0cy0 � y0c�f 0 1CA = 0 (8.12)where aij, i; j = 1; 2; 3, are the elements of A. We term equation (8.12) the �rst formof the implicit coplanarity equation, and A the special coplanarity matrix.It is useful at this stage to consider folding (xc; yc; f; x0c; y0c; f 0) into A, thereby obtainingan equation which is made up explicit only of the purely measured coordinates of imagepoints. Let D = 
tA
0 (8.13)equation (8.11) then can be rewritten asptD p0 = 0 (8.14)or, in expanded form,� x y 1 � 0B@ d11 d12 d13d21 d22 d23d31 d32 d33 1CA0B@ x0y01 1CA = 0 (8.15)where dij, i; j = 1; 2; 3, are the elements of D. We term equation (8.15) the second formof the implicit coplanarity equation, and D the general coplanarity matrix.



244 CHAPTER 8. RELATIVE ORIENTATIONThe equations (8.12) and (8.15) may be considered as a generalized reformulation of therelative linear transform �rst introduced by Thompson (1959) and then followed by Ste-fanovic (1973). In the work of Longuet-Higgins (1981), the intrinsic parameters (xc; yc; f)and (x0c; y0c; f 0) are assumed known, and a coordinate system equivalent to the second ref-erence system described in section 8.2.3 is adopted. Longuet-Higgins' essential matrix isequivalent to the special coplanarity matrix, but in a less general setting. Faugeras et al(1992) considered the more general case in which the intrinsic parameters are unknown,but are �xed across all images (with camera adjustment disabled, as would apply with afrozen mobile camera). A fundamental matrix was de�ned which is essentially equivalentto the above general coplanarity matrix, D, in the case where (xc; yc; f) = (x0c; y0c; f 0).Faugeras et al. actually considered a more general camera model with a greater rangeof linear distortions and associated free parameters than that considered here, but theyassume these parameters have already been found by calibrating the camera: they do notattempt to solve for them along with rotation and baseline parameters for the case of twoimages. The reason we term matrix A in (8.12) and D in (8.15) the special and generalcoplanarity matrix respectively is to keep the consistency with the term coplanarity equa-tion which is in existence for decades.8.2.3 Choices of the Reference SystemWe now explain why a global coordinate system O�XY Z is introduced at the beginningof this section. The reason is simple: because there are di�erent ways of choosing thereference system for the general relative orientation, each with its trade-o�.Reference System 1:The �rst choice is to align the global coordinate system with baseline vector and the left(or right) image, such that O = C, O �X = CC 0, and the O �XZ plane contains theleft (or right) principal point c. The two-way ambiguity of the O�Y axis's direction maybe resolved by adoption of the right-hand rule. We now have thatb = (b; 0; 0)t; � = 0 (8.16)where b is the magnitude of b. Because b cannot be determined, the degrees of freedomare now given by (�; ; �0; � 0;  0; xc; yc; f; x0c; y0c; f 0):With this reference system, the explicit coplanarity equation (8.8) becomespt
tRtR0 
0 p0 = 0 (8.17)where R = R� R. The special coplanarity matrix A of (8.10) becomesA = RtR0 (8.18)This reference system is inspired by the biological vision system. It is neutral and naturalto take the baseline as the X-axis. With this reference system, the disparity for a pair ofhomologous points can be decomposed to horizontal and vertical components. Horizontaldisparity can be de�ned to the orientational di�erence of the left and right viewing rays inthe baseline direction, while the vertical disparity refers to the di�erence in the directionperpendicular to the plane de�ned by the baseline and the left principal axis.Reference System 2:The second choice is the coincidence of the global and image coordinate systems. Withoutloss of generality, we choose the left image system. When O�XY Z coincides with C�~x~y~z,



8.2. EXPLICIT AND IMPLICIT COPLANARITY EQUATIONS 245the left view is de�ned by the values of the intrinsic parameters (xc; yc; f) as well as theequalities R = I; (XC ; YC ; ZC)T = (0; 0; 0)T (8.19)where I is the identity matrix. The nature of the right view is �xed by the speci�cationof the intrinsic parameters (x0c; y0c; f 0), the matrix R0 (incorporating the rotation angles�0, � 0,  0), and the direction of the baseline vector given byB = (XC0 ; YC0 ; ZC0)T (8.20)With this reference system, the parameter set for characterising the stereo geometrybecomes (�0; � 0;  0; bx; by; bz; xc; yc; f; x0c; y0c; f 0); where only two of the three componentsbx, by, bz need to be determined. Apparently, this reference system is more biased to theleft (or right) image.Note that, for the remainder of this work, we shall assume this second reference systembeing used. Since we shall no longer deal with both left and right rotation matrices,we henceforth drop the prime and refer to R0 as R = (rij), i; j = 1; 2; 3, this being therotation matrix mapping the right image system into the left image system. The specialcoplanarity matrix A (8.10) thus becomesA = BR (8.21)which is identical to Longuet-Higgins' essential matrix.8.2.4 Properties of Coplanarity MatricesSimilar to the properties of the essential matrix and the fundamental matrix found byHuang and Faugeras (1989) and Faugeras et al (1992), some obvious properties of thespecial and general coplanarity matrices A and D can be easily shown,1. Because the determinant of matrix B is zero, from (8.10) and (8.13), we knowjAj = jDj = 0 (8.22)2. From the implicit coplanarity equations (8.11) and (8.14), we know both A and Donly determined to a scale factor.3. From the above two properties, we know the degree of freedom (DoF) of D is 7, i.e.DoF (D) = 7 (8.23)We also know that A is solely de�ned by 5 relative orientation parameters, whateverthese parameters are chosen, so DoF (A) = 5 (8.24)



246 CHAPTER 8. RELATIVE ORIENTATION4. Because the �rst property (8.22) is a third-order polynomial equation, we know thedegree of linear freedom (number of linearly noncorrelated coe�cients) (DoLF) is8, i.e. DoLF (D) = 8 (8.25)Similarity DoLF (A) = 8 (8.26)The third property (8.23) shows that at most only 7 parameters can be solved from therelative geometry of two images using only image measurements. It is another con�rma-tion of seven degrees of freedom in relative stereo geometry known previously [Kruppa,1913]. That is why we choose seven unknowns (two principal distances and �ve relativeorientation parameters) to de�ne the problem of general relative orientation as the centraltopic of this work.It is the fourth property (8.25) and (8.26) that makes it possible to solve for D or A frompure image measurements via a simultaneous collection of implicit coplanarity equations.In addition to these simple properties, we will show more complicated properties by fullyexploiting the orthonomality of the rotation matrix R. Using equation (8.21), we obtaina direct relation between A and B,AAt = (BR) (B R)t = BRRtBt = BBt (8.27)Expanding this equation, we have a211 + a212 + a213 = b2y + b2z (8.28)a221 + a222 + a223 = b2x + b2z (8.29)a231 + a232 + a233 = b2x + b2y (8.30)a11a21 + a12a22 + a13a23 = �bxby (8.31)a11a31 + a12a32 + a13a33 = �bxbz (8.32)a21a31 + a22a32 + a23a33 = �bybz (8.33)Equations (8.28) { (8.30) are simple linear equations of b2x, b2y, and b2z, so0B@ b2xb2yb2z 1CA = 0B@ 0 1 11 0 11 1 0 1CA�10B@ a211 + a212 + a213a221 + a222 + a223a231 + a232 + a233 1CA (8.34)From equations (8.31) { (8.33) we can also solve for b2x, b2y, and b2z as(b2x; b2y; b2z)T =  bxybxzbyz ; bxybyzbxz ; bxzbyzbxy !T (8.35)where bxy = �(a11a21 + a12a22 + a13a23) (8.36)bxz = �(a11a31 + a12a32 + a13a33) (8.37)byz = �(a21a31 + a22a32 + a23a33) (8.38)



8.3. SOLVINGFOR THECOPLANARITYMATRIXFROM IMAGEMEASUREMENTS247Substituting (8.35) into (8.34) gives 3 equations de�ned purely in terms of the elementsof A,(�a213+ a223 + a231 + a232 + a233 � a211 � a212 + a221 + a222)(a21a31 + a22a32 + a23a33)+2(a11a21 + a12a22 + a13a23)(a11a31 + a12a32 + a13a33) = 0 (8.39)(a213 � a223 + a231 + a232 + a233 + a211 + a212 � a221 � a222)(a11a31 + a12a32 + a13a33)+2(a11a21 + a12a22 + a13a23)(a21a31 + a22a32 + a23a33) = 0 (8.40)(a213 + a223 � a231 � a232 � a233 + d211 + d212 + d221 + d222)(a11a21 + a12a22 + a13a23)+2(a11a31 + a12a32 + a13a33)(a21a31 + a22a32 + a23a33) = 0 (8.41)These will later prove valuable in deriving a direct closed-form solution for solving for twoprincipal distances from the general coplanarity matrix D. Equations (8.39) - (8.41) arenot known in the literature, which can only be derived with such elementary manipula-tions. Due to equation (8.24) and considering the properties in (8.22) and (8.26), we knowthat one of the three equations (8.39)-(8.41) is redundant. However, this redundancy isuseful for robustness.8.2.5 Outline of the Whole ProcedureIn the following sections, we shall show how to recover the 2 principal distances and 5relative orientation parameters through the implicit and explicit coplanarity equationsfrom pure image measurements. The whole procedure consists of these steps: (1) Solvingfor the general coplanarity matrixD from eight or more pairs of homologous image points.(2) Solving for the 2 principal distances f and f 0 from the general coplanarity matrix Dvia a novel direct closed-form solution. (3) Solving for the special coplanarity matrix Afrom D and f and f 0 also via a direct relation. (4) Solving for the baseline vector androtation matrix from A via a novel direct solution.8.3 Solving for The Coplanarity Matrix from ImageMeasurementsThe problem of the �rst step is equivalent to solving the relative linear transform ofThompson (1959), and the essential matrix of Longuet-Higgins (1981), as well as the fun-damental matrix of Faugeras (1992). An obvious approach [Thompson, 1959; Stefanovic,1973; Longuet, 1981; Khlebnikova, 1983] is to transform the implicit coplanarity equation(equivalent) to a normal linear equation by setting one of the implicit coe�cients dij's tounit. The remaining eight unknowns can thus be solved from the linear equations, usingeight or more pairs of homologous image points [Hartley, 1995]. This approach is knownto be ine�cient and sensitive to noise in image measurements and to the near-singularcases [Brandst�atter, 1996]. An alternative approach [Faugeras et al, 1992; Weng et al,1993] makes use of normalization constraint3Xi=1 3Xj=1 dij = 1 (8.42)and solves for the 9 unknowns of D (equivalent) via the singular value decomposition.This second approach is an improvement to the �rst approach as we no longer need to



248 CHAPTER 8. RELATIVE ORIENTATIONarbitrarily set a non-zero dij to unit, which may actually be close to zero. Again, thisapproach is known to be still sensitive to image noise and distribution of image points.Another approach [Pan et al, 1995b] is to use an iterative least squares criterion that takesinto account the image noise, distribution of image points and constraints. Importantly,the problem of enforcing the constraint (8.22) has been done in INRIA [Zhang et al, 1995].In addition, the problem of eliminating outliers has been done in Oxford [Torr, 1995].In the following paragraphs, we present two iterative nonlinear least-square approaches.Many experiments in which moderate image noise is involved show that these approachesgive signi�cant improvement to estimatingD and are very robust in comparison with thosethat are solely based on relative linear transform and the singular value decomposition.The rationale of our approach is based on three points:� the exact use of least-squares criterion,� iterative numerical approximation, and� the use of su�cient constraints.Our approaches also take into account the distribution of homologous image point pairsin each image, and consequently, di�erent weighting factors are properly computed andassigned to each pair of points.From the process of getting an estimation of the coplanarity matrix D to the �nal step ofrecovering all the necessary imaging parameters, improvement has been achieved for eachstage. Firstly, the initial estimation of D obtained from the singular value decompositionis iteratively �ne tuned using a linear least-squares criterion on the image measurements.This �ne tuning process will be given in Section 8.3.1. A further improvement for esti-mating D is found if the zero determinant of the matrix concerned is also included, thiswill be discussed in Section 8.3.2.8.3.1 Iterative Singular Value DecompositionGiven n pairs of homologous image points, a coplanarity equation of the form given in(8.14) is associated with each pair of points. Let (xi; yi) and (x0i; y0i) be the i-th imagepoint pair then pTi D p0i =Mi d = 0; (8.43)where Mi = (xix0i xiy0i xi yix0i yiy0i yi x0i y0i 1) (8.44)d = (d11 d12 d13 d21 d22 d23 d31 d32 d33)T : (8.45)With n � 8, (8.43) can be written in matrix form as:M d = 0 (8.46)where M = 0BBBB@ M1M2...Mn 1CCCCA = 0BBBB@ x1x01 x1y01 x1 y1x01 y1y01 y1 x01 y01 1x2x02 x2y02 x2 y2x02 y2y02 y2 x02 y02 1...xnx0n xny0n xn ynx0n yny0n yn x0n y0n 1 1CCCCA : (8.47)



8.3. SOLVINGFOR THECOPLANARITYMATRIXFROM IMAGEMEASUREMENTS249In order to avoid the trivial case where d = 0 is a solution to (8.46) and to also �x thescale factor of d, we also use the normalization constraint (8.42).Note that this normalization does not uniquely determine the sign of d, so both d and�d are valid solutions. For the unique normalization of D, we may set the �rst non-zeroelement of d to be +1.For each pair of homologous image points, an observation equation is available:Fi(d) =Mi d = 0: (8.48)In general, noise is assumed to exist in each image measurements (xi; yi) and (xi; yi), sothe observation equation can be linearized toFx;ivxi + Fy;ivyi + Fx0;ivx0i + Fy0 ;ivy0i +Mid = 0; (8.49)where vxi, vyi , vx0i, and vy0i are, respectively, corrections to xi, yi, x0i, and y0i; Fx;i is thepartial derivative of F with respect to x computed for the i-th image point pair:Fx;i = x0id11 + y0id12 + d13 (8.50)Fy;i = x0id21 + y0id22 + d23 (8.51)Fx0;i = xid11 + yid21 + d31 (8.52)Fy0;i = xid12 + yid22 + d32: (8.53)Let v be the vector of corrections to the image point observations viz,v = (vx1 vy1 vx01 vy01 : : : vxn vyn vx0n vy0n)T ; (8.54)then the linearized observation equations can be written asGv +M d = 0 (8.55)whereG = �0BBBB@ Fx;1 Fy;1 Fx0;1 Fy0;1 0 0 0 0 : : : 0 0 0 00 0 0 0 Fx;2 Fy;2 Fx0;2 Fy0;2 : : : 0 0 0 0...0 0 0 0 0 0 0 0 : : : Fx;n Fy;n Fx0;n Fy0;n 1CCCCA :(8.56)The least-squares criterion requires minimizing the objective function� = vTWv � 2�T (Gv +Md) � �(dTd� 1) (8.57)where W is the 4n � 4n weight matrix of the 4n observations xi; yi; x0i; y0i. Both � and �are Lagrangian multipliers [Mikhail and Ackermann, 1976]: � is a scalar coe�cient, and� is an n-vector (recalling that n is the number of homologous image point pairs).In general, image observations are assumed to be uncorrelated, so W is diagonal:W = 0BBBB@ wx1 0 : : : 00 wy1 : : : 0... . . .0 0 : : : wy0n 1CCCCA : (8.58)



250 CHAPTER 8. RELATIVE ORIENTATIONSince the �rst derivative of � vanishes when � attains its minimum, taking the partialderivatives of � in (8.57) and equating them to zero gives@�@v = 2vTW � 2�TG = 0 (8.59)@�@d = �2�TM � 2�dT = 0: (8.60)need to ensure the second derivatives are positive?From (8.59), we have v = W�1GT�: (8.61)Applying this to (8.55) yields � = �(GW�1GT )�1M d; (8.62)and substituting the above to (8.60) gives(MT (GW�1GT )�1M)d = �d: (8.63)From this equation we see that � is an eigenvalue of the data matrixMT (GW�1GT )�1M , and d is an eigenvector corresponding to this eigenvalue.Under the least-squares criterion, we seekmin vTWv = min (W�1GT�)TW (W�1GT�)= min �T (GW�1GT )�= min dTMT (GW�1GT )�1(GW�1GT )(GW�1GT )�1Md= min dTMT (GW�1GT )�1Md= min �dTd= min �: (8.64)The problem then becomes that of �nding the smallest eigenvalue � of the data matrixMT (GW�1GT )�1M .Note that if W is diagonal as shown in (8.58), GW�1GT is also diagonal and its i-thdiagonal element is computed as1wxiF 2x;i + 1wyi F 2y;i + 1wx0iF 2x0;i + 1wy0i F 2y0;i: (8.65)The solution to (8.63) requires an iterative nonlinear procedure because the computationof G involves an approximate value of d. To begin the procedure, we �rst solve for d from(MTM)d = �d: (8.66)This is equivalent to a least-squares solution where the observation equation (8.49) issimpli�ed to vi +Mid = 0 (8.67)



8.3. SOLVINGFOR THECOPLANARITYMATRIXFROM IMAGEMEASUREMENTS251where vi is the corrections to the �ctitious observation Mid whose ideal value should bezero.This simpli�ed one-step least-squares solution in (8.66) has been used by Faugeras etal. (1992) and Weng et al. (1993). The iterative least-squares solution proposed in(8.63) is an improvement, as it takes into consideration the distribution structure of thehomologous image points and the uncertainty involved in the image point measurements.Numerical tests show that the �rst iteration of (8.63) improves the estimation of D at the�rst signi�cant digit. For subsequent iterations the improvement diminishes.In fact, a proper normalization to the image measurements is found to reduce the nu-merical sensitivity associated with estimating the coplanarity matrix D. Let k and k0 betwo known normalization factors applied to the left and right image points, (8.15) thenbecomes � x=k y=k 1 � 0B@ d11 d12 d13d21 d22 d23d31 d32 d33 1CA0B@ x0=k0y0=k01 1CA = 0: (8.68)This method of normalization for improving the estimation of D has also been reportedby Hartley (1995). While Hartley scaled the image coordinates such that the averagedistance of image points to the centroid of the image point cloud in each image is p2, ournormalization factors k and k0 are determined so that the (average) �rst 8 elements ofMiin (8.44) are distributed around 1. Observation on (8.44) reveals that the last element ofMi is a �xed constant value and thus our choice of the normalization factors.Note that the normalization factors k and k0 applied to the left and right image coordinatesalso scale the principal distances f and f 0 accordingly. The �nal estimation of f and f 0must therefore be inversely scaled.In summary, the iterative singular value decomposition algorithm given in this sectioncan be briey described as follows:1. get an estimate d0 of d from (8.66).2. set t = 1.3. compute the diagonal matrix (GW�1GT )�1. The elements of the diagonal matrix(GW�1GT ) are de�ned in (8.65).4. obtain an estimate dt of d from (8.63).5. terminate the procedure if jjdt � dt�1jj is less than a prespeci�ed threshold.6. otherwise, increment t by 1 and go back to step 3.8.3.2 Iterative Linearized Least SquaresIn this section we consider incorporating the zero determinant constraint of D to theleast squares method. Two constraints arise from the two properties of D listed in sec-tion 8.2.4. In principle, both constraints should be used when estimating D, but mostprevious research in this area, such as the simple linear method and the singular valuedecomposition method, had not taken into account this second property. The resultante�ect is that, due to image noise, the smallest singular value of D may not vanish and



252 CHAPTER 8. RELATIVE ORIENTATIONso D is non-singular. It was only very recent that this zero determinant constraint of Dis explicitly enforced when this matrix is estimated. For instance, Faugeras et al. (1992)used the following representation for the coplanarity matrix:D = 0B@ d1 d2 d3d4 d5 d6d7d1 + d8d4 d7d2 + d8d5 d7d3 + d8d6 1CA (8.69)to constrain the third row of D to be spanned by the �rst two.This representation also eliminates one unknown from the matrix, which was estimatedusing unconstrained minimization. To ensure that jDj = 0, Hartley (1995), on the otherhand, applied the singular value decomposition to the initially estimated D0, i.e. D0 =Udiag(r; s; t)V T where both U and V are orthogonal matrices, and diag(r; s; t), with r �s � t, is a diagonal matrix containing the singular values of D. From this decomposition,D0 was superseded by a new matrix D1 for subsequent computation, where D1 is de�nedas Udiag(r; s; 0)V T .We have taken an approach di�erent from both Faugeras et al. and Hartley's to enforcethis zero determinant constraint into our iterative linear least-squares method. Let usde�ne two functions expressing the two constraints on D:�(d) = dT d � 1 = 0 (8.70)and  (d) = jDj = 0: (8.71)With these two constraints, the objective function of the least-squares criterion can bede�ned as � = vTWv � 2�T (Gv +Md) � �(dTd� 1)� !jDj; (8.72)where �, �, and ! are all Lagrangian multipliers: � is an n-vector; both � and ! arescalars.As the function  is a cubic equation of the elements of d, direct partial derivatives of �with respect to v and d will not lead to a closed-form solution, such as the singular valuedecomposition of (8.63). In fact, this will lead to 9 quadratic equations in the elementsof d, for which there is no general solution in mathematics.A natural way to overcome this di�culty is to linearize both constraints in terms of thecorrection vector �d to the elements of d. The two constraints can be linearized to�(d;�d) = 2d�d + (dTd� 1) = 0 (8.73) (d;�d) =  @ @d!T �d+ jDj = 0; (8.74)which can be put into matrix form as follows:N�d+ U = 0 (8.75)where N =  2d11 2d12 2d13 2d21 2d22 2d23 2d31 2d32 2d33@ @d11 @ @d12 @ @d13 @ @d21 @ @d22 @ @d23 @ @d31 @ @d32 @ @d33 ! (8.76)U =  dTd� 1jDj ! : (8.77)



8.3. SOLVINGFOR THECOPLANARITYMATRIXFROM IMAGEMEASUREMENTS253The original observation equation (8.55) now becomesGv +M �d+M d = 0: (8.78)With the above linearization, the objective function � can be rede�ned as� = vTWv� 2�T (Gv +M�d+Md) � 2�T (N�d+ U); (8.79)where � and � are two Lagrangian multipliers, with � being an n-vector and � a 2-vector.The partial derivative of � with respect to v is exactly the same as those given in (8.59).Applying (8.61) into (8.78), we have(GW�1GT )� +M�d+Md = 0: (8.80)So, � = �(GW�1GT )�1(M�d+Md): (8.81)Taking the partial derivative of � with respect to �d, we have@�@�d = �2�TM � 2�TN = 0: (8.82)This can be rewritten as MT� +NT� = 0: (8.83)Substituting (8.81) into (8.83), we have�MT (GW�1GT )�1(M�d+Md) +NT� = 0: (8.84)Let Q =MT (GW�1GT )�1M: (8.85)From (8.84) we derive �d = Q�1NT�� d: (8.86)Substituting (8.86) into (8.75), we haveNQ�1NT��Nd + U = 0: (8.87)Let S = NQ�1NT : (8.88)From (8.87), we derive � = S�1(Nd � U): (8.89)After � is solved from (8.89), the unknown vector �d can be determined via (8.86).This iterative procedure can be summarised as follows:



254 CHAPTER 8. RELATIVE ORIENTATION1. get an estimate d0 of d from (8.66).2. set t = 1.3. compute:matrix N as de�ned in (8.76),matrix Q as de�ned in (8.85),matrix S as de�ned in (8.88),vector � as de�ned in (8.89), andvector �d as de�ned in (8.86).4. set dt = dt�1 +�d.5. terminate the iteration procedure if jjdt�dt�1jj is less than a prespeci�ed threshold.6. otherwise, increment t by 1 and go back to step 3.8.4 Solving for the Two Principal Distances8.4.1 Basic Relation and ConstraintIn practical applications, we want to include two principal distances f and f 0 as unknowns,given only seven degrees of freedom, we must assume the principal point coordinates xcand yc to be known a priori (e.g. detected by using �ducial marks for a metric camera),or to be su�ciently close to zero. In order to solve for two principal distances f and f 0from the solved general coplanarity matrix D, we need to �rst defactorize the principalpoints (xc; yc) and (x0c; y0c) out from D. Using the equations (2.8), and (8.13), we obtainD = 
tA
0 = 
tc
tf A
0f 
0c (8.90)where 
c = 0B@ 1 0 �xc0 1 �yc0 0 1 1CA ; 
f = 0B@ 1 0 00 1 00 0 �f 1CA (8.91)Let �D = 
tf A
0f (8.92)�D is a special version of D,�D = D; if (xc; yc) = (x0c; y0c) = (0; 0) (8.93)In general when (xc; yc); (x0c; y0c) are nonzero, but known a priori, �D can be solved fromD via (8.90) as �D = 
�tc D
0�1c (8.94)Note that �D involves purely the 7 degrees of freedom in the coplanarity constraint, whichcorrespond to 7 unknowns (2 principal distances and 5 relative orientation parameters)



8.4. SOLVING FOR THE TWO PRINCIPAL DISTANCES 255in the general relative orientation, we may simply call �D the coplanarity matrix. �D hasthe same properties of D as listed in the subsection 8.2.4.In fact, we can also capture xc and yc into the image measurements. The implicit copla-narity equation (8.15) can be written as� x� xc y � yc 1 � �D 0B@ x0 � x0cy0 � y0c1 1CA = 0 (8.95)�D de�ned by (8.95) can still be solved using the general approaches for solving D, but weneed to use x� xc and y � yc instead of x and y. In the remainder of this work, we shallassume �D is solved either via (8.94) or directly via (8.95).The relation between �D = ( �dij) and A = (aij) is0B@ a11 a12 a13a21 a22 a23a31 a32 a33 1CA = 0BB@ �d11 �d12 �d13f 0�d21 �d22 �d23f 0�d31f �d32f �d33f f 0 1CCA (8.96)8.4.2 Algebraic Equations of Two Principal DistancesApplying expression (8.96) into (8.39) { (8.41), 3 equations in 2 unknowns f and f 0 areobtainedhi1 + hi2f2 + hi3f 02 + hi4f 04 + hi5f2f 02 + hi6f2f 04 = 0; (i = 1; 2; 3) (8.97)where the hij's are coe�cients directly computable from the elements �dij 's, given byh11 = �d23 �d333 (8.98)h12 = ( �d213 ++�d223) �d23 �d33 (8.99)h13 = ( �d231 + �d232) �d23 �d33 + ( �d21 �d31 + �d22 �d32) �d233 (8.100)h14 = ( �d231 + �d232)( �d21 �d31 + �d22 �d32) (8.101)h15 = ( �d222 � �d211 � �d212 + �d221) �d23 �d33 + (� �d213 + �d223)( �d21 �d31 + �d22 �d32)+2( �d11 �d21 + �d12 �d22) �d13 �d33 + 2( �d11 �d31 + �d12 �d32) �d13 �d23 (8.102)h16 = ( �d222 � �d211 � �d212 + �d221)( �d21 �d31 + �d22 �d32)+2( �d11 �d21 + �d12 �d22)( �d11 �d31 + �d12 �d32) (8.103)h21 = �d13 �d333 (8.104)h22 = ( �d213 + �d223) �d13 �d33 (8.105)h23 = ( �d231 + �d232) �d13 �d33 + ( �d11 �d31 + �d12 �d32) �d233 (8.106)h24 = ( �d231 + �d232)( �d11 �d31 + �d12 �d32) (8.107)h25 = ( �d211 + �d212 � �d221 � �d222) �d13 �d33 + ( �d213 � �d223)( �d11 �d31 + �d12 �d32)+2( �d11 �d21 + �d12 �d22) �d23 �d33 + 2( �d21 �d31 + �d22 �d32) �d13 �d23 (8.108)h26 = ( �d211 + �d212 � �d221 � �d222)( �d11 �d31 + �d12 �d32)+2( �d11 �d21 + �d12 �d22)( �d21 �d31 + �d22 �d32) (8.109)h31 = �d13 �d23 �d233 (8.110)



256 CHAPTER 8. RELATIVE ORIENTATIONh32 = ( �d213 + �d223) �d13 �d23 (8.111)h33 = �( �d231 + �d232) �d13 �d23 � ( �d11 �d21 + �d12 �d22) �d233 + 2( �d11 �d31 + �d12 �d32) �d23 �d33+2( �d21 �d31 + �d22 �d32) �d13 �d33 (8.112)h34 = �( �d231 + �d232)( �d11 �d21 + �d12 �d22) + 2( �d11 �d31 + �d12 �d32)( �d21 �d31 + �d22 �d32) (8.113)h35 = ( �d211 + �d212 + �d221 + �d222) �d13 �d23 + ( �d213 + �d223)( �d11 �d21 + �d12 �d22) (8.114)h36 = ( �d211 + �d212 + �d221 + �d222)( �d11 �d21 + �d12 �d22) (8.115)From each of equations (8.97), f2 can be expressed in terms of f 0 viz:f2 = f2i � �hi1 + hi3f 02 + hi4f 04hi2 + hi5f 02 + hi6f 04 ; (i = 1; 2; 3) (8.116)In theory, we have that f21 = f22 , f22 = f23 , and f21 = f23 . Imposing each of these constraintsin turn, then, after setting q = f 02 (8.117)we obtain three cubic algebraic equations in q given bysi1 + si2q + si3q2 + si4q3 = 0; (i = 1; 2; 3) (8.118)where the sij's are coe�cients directly computable from hij's, given bys11 = �h11h25 + h12h23 � h13h22 + h15h21 (8.119)s12 = �h11h26 + h12h24 � h13h25 � h14h22 + h15h23 + h16h21 (8.120)s13 = �h13h26 � h14h25 + h15h24 + h16h23 (8.121)s14 = �h14h26 + h16h24 (8.122)s21 = �h11h35 + h12h33 � h13h32 + h15h31 (8.123)s22 = �h11h36 + h12h34 � h13h35 � h14h32 + h15h33 + h16h31 (8.124)s23 = �h13h36 � h14h35 + h15h34 + h16h33 (8.125)s24 = �h14h36 + h16h34 (8.126)s31 = �h21h35 + h22h33 � h23h32 + h25h31 (8.127)s32 = �h21h36 + h22h34 � h23h35 � h24h32 + h25h33 + h26h31 (8.128)s33 = �h23h36 � h24h35 + h25h34 + h26h33 (8.129)s34 = �h24h36 + h26h34 (8.130)Equations (8.118) are the central result of this paper. Each of the equations (8.118) iscubic in q, and can therefore be solved in closed-form. Once q is solved, f 0 and f are thensolved from (8.117) and (8.116). And the special coplanarity matrix A is obtained from(8.96).8.4.3 The Case of Two Equal Principal DistancesIn practical applications, there is an usual case where two principal distances are equal,i.e. f = f 0 (8.131)



8.4. SOLVING FOR THE TWO PRINCIPAL DISTANCES 257This occurs in standard aerial photogrammetry and motion vision with a 'frozen' mobilecamera. In this case, the algebraic equations of (8.97) becomeshi1 + (hi2 + hi3)f2 + (hi4 + hi5)f4 + hi6f6 = 0 (i = 1; 2; 3) (8.132)These are cubic equations in an unknown f2, so f2 can be solved in closed-form.8.4.4 Cases of DegeneracyAs the degree of freedom of �D is 7, it appears that if one of the elements of �D constantlyequals zero, we can not solve for all the 7 parameters from �D. This becomes clear whenwe consider the relations between �D and A, and A and B, R.Expanding equation (8.21) givesA = 0B@ a11 a12 a13a21 a22 a23a31 a32 a33 1CA = 0B@ byr31 � bzr21 byr32 � bzr22 byr33 � bzr23bzr11 � bxr31 bzr12 � bxr32 bzr13 � bxr33bxr21 � byr11 bxr22 � byr12 bxr23 � byr13 1CA (8.133)By �xing a �dij to zero, for a particular index of (i; j), from relation (8.96), it implies�dij � 0 =) aij � 0 (8.134)That means there is a constant dependency between the baseline vector (bx; by; bz) andthe rotation angles (�; �; ). Obviously, there are 9 such cases of degeneracy. Not everycase is meaningful in practical setup of the stereo geometry. However, there is at leastone practical case of degeneracy�d33 � 0 =) a33 � 0 =) bxr23 � byr13 � 0 (8.135)This degenerate case corresponds to the coplanarity of two principal axes which is thestandard case of biological and robot stereo setup. In standard aerial photogrammetry,two stereo image planes tend to be parallel, which also corresponds to the coplanarityof two principal axes. That two principal axes are coplanar naturally implies they arecoplanar with the baseline vector[b Cc C 0c0] = ������� bx by bz0 0 �f�r13f 0 �r23f 0 �r33f 0 ������� � 0 (8.136)This can be reduced to ����� bx byr13 r23 ����� = bxr23 � byr13 � 0 (8.137)This shows that �d33 � 0 corresponds to a particular geometry of stereo setup, whichis the standard case of robot and biological vision. Further to show the constraint onthe explicit parameters, replacing r13 and r23 by their trigonometric functions of rotationangles de�ned by (2.2), equation (8.137) can be expanded asbxr23 � byr13 = bx sin� cos � + by sin� � 0 (8.138)



258 CHAPTER 8. RELATIVE ORIENTATIONThis shows that this particular degenerate case corresponds to a constant dependencebetween two of the baseline components and two of the rotation angles: bx; by; �; �, notinvolving bz and .This degenerate case can also be con�rmed by using the algebraic equations in f and f 0of (8.97). When �d33 � 0, the three equations in f and f 0 of (8.97) reduce to only oneequation. Consequently, there is no unique solution.In the standard case of robot and biological vision, only a vergence angle � is allowed tobe variable, so � =  = 0 (8.139)If the two cameras are 'frozen' to have equal principal distances f = f 0, the unique prin-cipal distance f is then solvable. This is a special case of equation (8.132). Numericaltests show that by setting � to a tiny nonzero angle (e.g. 1=�), it is su�ciently robust toavoid this degenerate case, so the two di�erent focal lengths can be solved.8.5 Solving For The Relative Baseline and Rotation8.5.1 Two Symmetric Solutions for the Baseline VectorAfter the two principal distances f and f 0, and aij's are solved, b2x, b2y, and b2z can also bedetermined via equations (8.28)-(8.30) as0B@ b2xb2yb2z 1CA = 0B@ 0 1 11 0 11 1 0 1CA�10B@ a211 + a212 + a213a221 + a222 + a223a231 + a232 + a233 1CA (8.140)The signs of bx, by, and bz can then be determined by using equations (8.31)-(8.33). Twosymmetric solutions b1 = (bx1; by1; bz1) and b2 = (bx2; by2; bz2) will be obtained, i.e.b1 = �b2 (8.141)We may resolve the sign ambiguity as follows. From equations (8.31)-(8.33) and (8.36)-(8.38), we know bxy = bxby (8.142)bxz = bxbz (8.143)byz = bybz (8.144)All combinations of the signs of bx, by, bz, bxy, bxz, and byz can be tabulated asTable 1 bx by bz bxy bxz byz+ + + + + ++ + � + � �+ � + � + �+ � � � � +� + + � � +� + � � + �� � + + � �� � � + + +



8.5. SOLVING FOR THE RELATIVE BASELINE AND ROTATION 259From this table, for any combination of the known signs of bxy, bxz, and byz, we can selecta unique symmetric pair of baseline vectors.At this stage, we can not determine which of the two solutions for the baseline vectoris uniquely valid in practice. However, with the two baseline solutions and the given Amatrix, we can solve for two di�erent rotation matrices R1 and R2, and the correspondingsets of rotation angles (�1; �1; 1) and (�2; �2; 2). This can be done in the following way.8.5.2 Two Symmetric Solutions for the Orientation Matrixand AnglesGiven the special coplanarity matrix A and a candidate baseline solution, the rotationmatrix R can be solved via equation (8.21). As jBj = 0, however, R cannot be solveddirectly from this relation. The orthonormality of R needs to be exploited, and there aretwo possible approaches.The �rst approach is to representR in terms of three independent elements. To avoid usingexplicit rotation angles and trigonometric functions, we can expressR in an algebraic form.Let S be an skew-symmetricmatrix constructed solely from three independent parametersa, b, c: S = 0B@ 0 �c bc 0 �a�b a 0 1CA (8.145)It can then be proved that any orthonomal matrix R can be constructed by using S asR = (I + S)(I � S)�1 (8.146)where I is the 3� 3 identity matrix. Expanding (8.146) leads toR = 11 + a2 + b2 + c2 0B@ 1 + a2 � b2 � c2 �2c+ 2ab 2b+ 2ac2c + 2ab 1 � a2 + b2 � c2 �2a+ 2bc�2b+ 2ac 2a+ 2bc 1 � a2 � b2 + c2 1CA (8.147)By applying this representation into (8.133), we obtain 9 quadratic equations that areoverconstrained for solving the three unknowns a, b, and c. Although this approachhas the advantage that a minimum number of unknowns is involved, it leads to highlynonlinear equations which are di�cult to solve.The second approach is to use 6 unknowns, e.g. r11, r21, r31, r21, r22, r23. As R isorthonormal, and jRj = 1, any element rij can be represented by its cofactor, e.g.r13 = ����� r21 r22r31 r32 ����� ; r23 = � ����� r11 r12r31 r32 ����� ; r33 = ����� r11 r12r21 r22 ����� (8.148)By using this property of R, from (8.133) we obtain0B@ b2x bxby bxbzbxby b2y bybzbxbz bybz b2z 1CA0B@ r11 r12r21 r22r31 r32 1CA = 0BBBBBBBBBBBBB@ ����� a22 a23a32 a33 ����� � ����� a21 a23a31 a33 ������ ����� a12 a13a32 a33 ����� ����� a11 a13a31 a33 ���������� a12 a13a22 a23 ����� � ����� a11 a13a21 a23 ����� 1CCCCCCCCCCCCCA (8.149)



260 CHAPTER 8. RELATIVE ORIENTATIONDirectly from relation (8.133) we also obtain0B@ 0 �bz bybz 0 �bx�by bx 0 1CA0B@ r11 r12r21 r22r31 r32 1CA = 0B@ a11 a12a21 a22a31 a32 1CA (8.150)Although each of the coe�cient matrices in (8.149) and (8.150) is singular, particularcombinations of their equations can lead to nonsingular coe�cient matrices.If bx 6= 0, we can use0B@ r11 r12r21 r22r31 r32 1CA = 0B@ bz 0 �bx�by bx 0b2x bxby bxbz 1CA�1 0BBB@ a21 a22a31 a32����� a22 a23a32 a33 ����� � ����� a21 a23a31 a33 ����� 1CCCA (8.151)The determinant of the coe�cient matrix to be inverted is b2x(b2x + b2y + b2z), so if bx 6= 0,the inverse is guaranteed to exist.Similarly, if by 6= 0, we can use0B@ r11 r12r21 r22r31 r32 1CA = 0B@ 0 �bz by�by bx 0bxby b2y bybz 1CA�10BBB@ a11 a12a31 a32� ����� a12 a13a32 a33 ����� ����� a11 a13a31 a33 ����� 1CCCA (8.152)If bz 6= 0, we can use0B@ r11 r12r21 r22r31 r32 1CA = 0B@ 0 �bz bybz 0 �bxbxbz bybz b2z 1CA�10BBB@ a11 a12a21 a22����� a12 a13a22 a23 ����� � ����� a11 a13a21 a23 ����� 1CCCA (8.153)After rij 's, i = 1; 2; 3; j = 1; 2, are solved, the remaining three elements r13, r23, and r33can be computed via (8.148). After R is solved, the three explicit rotation angles aboutthe three principal axes can be determined through simple inverse trigonometric functionsfrom R.8.5.3 Determining The Unique Baseline and OrientationGiven the special coplanarity matrix A, two symmetric solutions of the baseline vectorb1;b2 and the corresponding rotation matricesR1(�1; �1; 1) and R2(�2; �2; 2) are solvedin the way described above. Because the sign of A is arbitrary, there are four combinationsof baseline and rotation which are valid with respect to the original coplanarity equation:(b1; R1), (b2; R2), (b1; R2), and (b2; R1). However, only one of the four will be valid inpractice. In order to determine this unique combination, we impose two constraints.The �rst constraint is on the rotation angles. Because the two rotation matrices are sym-metric, one of them corresponds to physically impractical rotation angles. In particular,� and �, as rotation angles about the x- and y-axis respectively, need to be in the range[��2 ; �2 ] for a reasonable stereo overlapping or vergence. However, to avoid using anysubjective threshold, we can simply select one set of angles withmin(max(j�1j; j�1j);max(j�2j; j�2j)) (8.154)



8.5. SOLVING FOR THE RELATIVE BASELINE AND ROTATION 261After �nding the unique rotation matrix R, we can now determine the unique baseline byusing the second constraint, which requires the imaged objects and the image plane to beon the same side of the perspective centre. The unique set of baseline components can bedetermined in the following manner.For any pair of homologous image points (x; y) and (x0; y0), let0B@ uvw 1CA = 0B@ x� xcy � yc�f 1CA ; 0B@ u0v0w0 1CA = R 0B@ x0 � x0cy0 � y0c�f 0 1CA (8.155)Let (X Y Z)T denote the corresponding object point represented in the left camera coor-dinate system, then 0B@ XYZ 1CA = �0B@ uvw 1CA = 0B@ bxbybz 1CA+ �00B@ u0v0w0 1CA (8.156)where � and �0 are two scale factors, which can be solved as ��0 ! =  �v0 u0�v u ! bxby !����� u �u0v �v0 ����� =  �w0 u0�w u ! bxbz !����� u �u0w �w0 ����� =  �w0 v0�w v ! bybz !����� v �v0w �w0 ����� (8.157)An appropriate equation from the above three equations may be selected to compute �or �0. For example, if both bx and by are nonzero, and if uv0 � u0v 6= 0, then� = u0by � v0bxu0v � v0u (8.158)Alternatively, to avoid singular cases, we can use all three equations (8.157) to solve for� and �0  ��0 ! = (UTU)�1UT 0B@ bxbybz 1CA (8.159)where U = 0B@ u �u0v �v0w �w0 1CA (8.160)With � and �0 solved as above, we can now consider the Z coordinate of the object point.We require Z = ��f < 0 (8.161)therefore, � > 0 (8.162)With the unique rotation matrixR determined by using the �rst constraint, two symmetricbaseline solutions lead to two �'s that are opposite in sign. The baseline with positive �is then selected as the �nal correct solution.



262 CHAPTER 8. RELATIVE ORIENTATION8.6 An Iterative Least-Squares Solution for ExplicitParametersAfter the general coplanarity matrix D is solved, the 7 explicit parameters: two principaldistances f , f 0; baseline components bx, by, bz; and rotation angles �, �,  can be solvedvia a direct closed-form solution to be described later. We will therefore assume here thatan initial approximation of these 7 parameters is available.Since an approximate value of each baseline component is known, we may normalize thebaseline vector by the maximum absolute value of the baseline components. That is, letbmax = max(jbxj; jbyj; jbzj) and normalize b as (1=bmax)b. Without loss of generality, weconsider the case where jbxj = bmax. This normalization e�ectively sets bx to �1, and inall the subsequent iterations, only by and bz will be updated. Note that this initializationof baseline components is, in essence, di�erent from arbitrarily �xing one of the threetotally unknown components to 1 while taking the other two as variables.We now have a total of 7 parameters f , f 0, by, bz, �, �, , together with their known initialapproximations. Our subsequent task is to re�ne these approximations via an iterativeleast-squares solution. Let k be the unknown correction vector to these approximatevalues viz k = (�f �f 0 �by �bz �� �� �)T : (8.163)Our aim here is to use k to gradually update the 7 aforementioned parameters. Theiteration process terminates when k becomes insigni�cant.For each i-th pair of homologous image points, 4 corrections vxi, vyi , vx0i, and vy0i are,respectively, associated with the four measurements xi, yi, x0i, and y0i. With n pairsof homologous image points, the vector of corrections to the homologous image pointmeasurements can be described by the following 4n-vector:v = (vx1 vy1 vx01 vy01 vx2 vy2 vx02 vy02 : : : vxn vyn vx0n vy0n)T : (8.164)Since the special coplanarity matrixA is a function of �ve parameters by, bz, �, �,  (withbx set to �1), the special coplanarity equation (8.11) can be written asF (f; f 0; by; bz; �; �; ) = 0B@ x� xcy � yc�f 1CAT A(by; bz; �; �; )0B@ x0 � x0cy0 � y0c�f 0 1CA = 0 (8.165)Linearizing this function gives the following observation equation for n pairs of homologousimage points: Gv = H k� L; (8.166)whereG = �0BBBB@ Fx;1 Fy;1 Fx0;1 Fy0;1 0 0 0 0 : : : 0 0 0 00 0 0 0 Fx;2 Fy;2 Fx0;2 Fy0 ;2 : : : 0 0 0 0...0 0 0 0 0 0 0 0 : : : Fx;n Fy;n Fx0;n Fy0 ;n 1CCCCA(8.167)



8.7. SUMMARY 263H = 0BBBB@ Ff;1 Ff 0;1 Fby ;1 Fbz;1 F�;1 F�;1 F;1Ff;2 Ff 0;2 Fby ;2 Fbz;2 F�;1 F�;1 F;1...Ff;n Ff 0;n Fby ;n Fbz;n F�;n F�;n F;n 1CCCCA (8.168)L = � (F1 F2 : : : Fn)T : (8.169)Here, Fm;i denotes the partial derivative Fm = @F@m of the function F in (8.165) withrespect to variable m computed for the i-th pair of homologous image points (xi; yi; x0i; y0i);Fi denotes the value of function F computed for the i-th pair of points.Under the least-squares criterion, we seekminfvT W v � 2�(Gv �Hk+ L) g; (8.170)where W is the 4n� 4n weight matrix of the 4n image point measurements, � is the La-grangian multiplier. After some trivial derivation, the following solution for the correctionvector k is achieved:k = (HT (GW�1GT )�1H)�1HT (GW�1GT )�1 L (8.171)At each iteration, a new correction vector is computed as above and is used to re�ne theapproximations of the 7 imaging parameters.Given that good initial approximate values are obtained from the closed-form algebraicsolutions [Pan et al, 1995; Pan 1997], this iterative linearized least-squares solution willconverge to the precise values. The convergence of the iteration is con�rmed from themany numerical tests on real images that have been accomplished.8.7 SummaryRelative orientation of two stereo images, in the sense of traditional photogrammetry,refers to determining the baseline vector and the relative rotation matrix (or angles) ofthe two images, totally involving 5 free paramters, from a su�cient number of homologousimage points. General relative orientation proposed by Pan (1995, 1997) is a generalizationof this traditional de�nition to solving for 7 paramters including two principal distances(focal lengths) and the 5 relative orientation parameters. The relative geometry of twostereo images is captured in the coplanarity equations de�ned by homologous image points.The explicit coplanarity equations can be recast into an implicit form whose coe�cientsare grouped into a matrix, called coplanarity matrix. In principle, the elements of thecoplanarity matrix can be determined through some closed-form solutions. However,the stability of the whole solution is mainly dependent on the precise solution of thecoplanarity matrix. Therefore, two iterative non-linear least-square solutions involvingsingular value decomposition are presented to tackle this problem. Afterwards, two focallengths are solvable in closed-form from the coplanarity matrix; and the baseline vectorand rotation matrix and angles are determined also in closed-form. The total 7 explicitparameters can be �ne-tuned through an iterative least-square solution using the originalimage measurements.



264 CHAPTER 8. RELATIVE ORIENTATION8.8 Excercises1. Consider three overlapping images which form 3 stereo pairs. Suppose a su�cientnumber of homologous image points can be identi�ed on all the three images. Derivea solution for the general relative orientation of the three images. Find out how manyfree paramters can be determined from pure image measurements.2. Given a stereo head on which two stereo cameras are �xed. The relative orientationof two cameras is rigidly �xed when the stereo head moves. Consider two consecutivetimes t0 and t1. A stereo image pair is taken at each time. Derive a more robustsolution to the general relative orientation of two cameras using the acquired twopairs of stereo images.8.9 References� Abdel-Aziz K. (1971): Direct linear transformation from comparator coordinatesinto object space coordinates in close-range photogrammetry. Proc. ASP/UI Sym-posium on Close-Range Photogrammetry, Urbana, Illinois, 1971, pp. 1-8.� Brandst�atter G. (1991): Zur relativen Orientierung projecktiver B�undel. Zeitschriftf�ur Photogrammetrie und Fernerkundung, 59 Jahrgang, Heft 6, 199-212.� Brandst�atter G. (1996): On critical con�gurations of projective stereo correla-tion. Internatinal Archives of Photogrammetry and Remote Sensing (IAPRS), Vol.XXXI, B3, pp. 77-81, Vienna.� Bruss A.R. and Horn B.K.P. (1983): Passive navigation. Computer Vision, Graph-ics, and Image Processing 21(1): 3-20.� Deriche R., Zhang Z., Luong Q.-T., and Faugeras O.D. (1994): Robust recovery ofthe epipolar geometry for an uncalibrated stereo rig. Proc. ECCV'94, pp. 567-576.� Faugeras O.D. (1993): Three-Dimensional Computer Vision: a geometric viewpoint.MIT Press.� Faugeras O.D., Lustman F. and Toscani G. (1987): Motion and structure frommotion from point and line matches. Proc. 1st ICCV, 1987.� Faugeras O.D., Luong Q.-T., and Maybank S.J. (1992): Camera self-calibration:Theory and experiments. Proc. ECCV'92, 1992, pp. 321-334.� Finsterwalder S. (1899): Die Geometrischen Grundlagen der Photogrammetrie.Jahresbericht der Deutschen Mathematiker-Vereinigung, Band VI, Teubner Press,Leipzig.� Finsterwalder S. (1932): Die Hauptaufgabe der Photogrammetrie. Bayer. Akad.der Wissehschaften M�unchen, Sit.-ber. der math.-phys. Kl., pp. 115-131.
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