NOTE: Attempt all Questions.

Question: 1.(a) Find the area of triangle with vertices $\mathrm{P}(1,4,6), \mathrm{Q}(-2,5,-1)$ and $\mathrm{R}(1,-1,1)$. [5+5]
(b) Find the work done by a constant force $F=3 i+4 j+5 k$, if its point of application moves from point $\mathrm{P}(2,1,0)$ to $\mathrm{Q}(4,6,2)$.

Question: 2(a) Find the equation of the plane containing the point $\mathrm{P}(3,0,-1)$ and perpendicular to planes $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=2$ and $2 \mathrm{x}-\mathrm{z}=1$.
(b) Determine whether the lines
$x=4-2 t, y=3 t, z=-1+2 t$ and $x=4+s, y=2 s, z=-1+3 s$ are parallel. If not find the angle between the lines.

Question:3. (a) A particle moves along the curve give by the vector valued function
[7+5+6] $r(t)=<2 t^{2}, t^{2}-4 t, 3 t-5>$, find the velocity and acceleration at $t=1$ also find the component of velocity and acceleration at $t=1$ in the direction of $a=<2,-4,1>$.
(b) Find the curvature, center and radius of curvature of the curve $y=2-x^{3}$ at the point $(2,-6)$.
(c) Position of the moving point at time t is given by $r(t)=4 \cos t i+9 \sin t j+t k$, find the tangential and normal component of acceleration at any time t .

Question: 1. (a) [5]
$\overrightarrow{P Q} \cdot\langle-3,1,-7\rangle, \overrightarrow{P R},\langle 0,-5,-3\rangle$
$\vec{P} \vec{C}, \overrightarrow{P C}=\left|\begin{array}{ccc}1 & 3 & k \\ -3 & 1 & -7 \\ 0 & -5 & -5\end{array}\right|=\langle-40,-15,15\rangle$
Axe o q $\triangle P Q E-\frac{1}{2} \|$ PO $\times \overrightarrow{P C U}=\frac{1}{2} \sqrt{\left.(-40)^{2}+(-15)^{2}+15\right)^{2}}=\frac{1}{2} 5 \sqrt{51}=\frac{5}{2} \sqrt{8}$ unit 2
[5] (b) $\quad F=3 i+4 j+5 t$
$d=\overrightarrow{P Q} \cdot\langle 2,5,2\rangle$ war dave $=F, d=\langle 3,4,5\rangle \cdot\langle 2,4,2\rangle$

$=6+20+10$
$n_{1}=\langle 1,-2,-1\rangle, n_{2}=\langle 2,0,-1\rangle$
A vector n novenas is beth $\left.n_{\text {, and }}{ }^{2}\right)_{2}$ is $n, n_{1} \times n_{1}=\left|\begin{array}{ccc}i & j & k \\ 1 & -2 & 1 \\ 2 & 0 & -1\end{array}\right|$
Equation plane containing point $P(3,0,-1)$ $=\langle 2,3,4\rangle$
and having normal $A=\langle 2,3,4\rangle$ is
$2(x-3)+3(y-0)+4(z+1)=0$
$2 x+3 y-4 z=2$
[6] 2(b) vector peraclel to line f_{1} is $a=\langle-2,3,2\rangle$ vector parallel to line Q_{1} is $b=\langle 1,2,3\rangle$ $-\frac{2}{1} \neq \frac{2}{2}+\frac{2}{3} \Rightarrow a$ is not parable to $b \Rightarrow$ lines are not parallel.
$\cos \theta=\frac{a \cdot b}{\sqrt{14}+64}=\frac{-1+b+6}{\sqrt{17} \sqrt{14}}=\frac{10}{12 \sqrt{14}}, \quad \theta=\cos ^{-1}\left(\frac{10}{\sqrt{17} \sqrt{14}}\right.$

$$
\text { At } t=1 \quad V=\text { velocity } y=\langle 4,-2,3\rangle
$$

$A=$ accel $=\langle 4,2,0\rangle$
$[5]_{N+(b)} \quad y=2-x^{3} \quad y^{\prime}=-5 x^{2}, \quad y^{\prime \prime}=-6 x \quad \frac{\text { Cunuature }}{k=\frac{y^{\prime}}{\left(1-y^{2}\right)^{3 / 2}}}-\frac{(1-121}{\left(1+1-\left.12\right|^{2}\right)^{3 / 2}}$
Radius 7 curvature $f=\frac{1}{K}=\frac{145^{3 / 2}}{12}=\frac{12}{145^{3 / 2}}$
center of curvature $h=2-\frac{(-12)\left(1+(-12)^{2}\right)}{(-11)}=-143$
$k=-6+\frac{\left(1+(-12)^{2}\right)}{-12}=-\frac{217}{12}$

$$
\begin{aligned}
& k=-6+\frac{\left(1+(-12)^{2}\right)}{-12}=\frac{-217}{12} \\
& \left.(h, k)=(-14)-\frac{217}{12}\right) \quad a_{N}=\sqrt{\frac{16 \cos ^{2} t+8 \sin ^{2} t+1246}{8 \cos ^{2} t+16 s^{2} t+1}} \\
& a \sin t j-t^{\prime} k \mid v x^{2}+411=\cos ^{2} t+165^{2} t
\end{aligned}
$$

$[6]^{31}$

