TIME: 90 min
M-107

NOTE: Attempt all Questions.

Question: 1.(a) Find a unit vector perpendicular to the plane determined by $\mathbf{A}(\mathbf{1}, \mathbf{- 1}, \mathbf{0}), \mathbf{B}(\mathbf{2}, \mathbf{1}, \mathbf{1})$, $[6+5] \quad$ and $C(-1,1,2)$, also find area of the triangle $A B C$.
(b) Find the volume of the parallelepiped determined by the vectors

$$
a=<1,2,-1>, b=<-2,0,3>\text { and } c=<0,7,-4>
$$

Question: 2.(a) Check whether lines $x=-4-3 t, y=5+t, z=-1-t$ and
[7+7] $\quad x=4+5 v, y=7+\frac{v}{2}, z=3+\frac{v}{2}$ intersect, if they intersect find the point of intersection.
(b) If the line $\frac{x}{3}=\frac{y}{5}=\frac{z}{2}$ is perpendicular to a plane which contains the line

$$
x=1+2 t, y=3 t, z=2-t \text {, find the equation of that plane. }
$$

Question: 3(a). Identify the surface $x^{2}-4 y^{2}-z^{2}=0$. Find its traces on the coordinate planes [$5+5+5]$ and then sketch the surface.
(b) The position vector of a point \mathbf{P} is moving in xyz-plane is $r(t)=(\cos t) i+(\sin t) j+t k$,
i. Find the velocity of P at time t
ii. Find the equation of tangent line to the curve at $t=\frac{\pi}{2}$,
(c) Find the curvature of the curve $y=x^{3}$ point $\mathrm{P}(1,1)$

