College of Sciences

Department of Physics \&
Astronomy

Second Midterm Exam

Thursday Dhul-Qadah, 20, 1439	PHYS 109	Academic year 1438-39H
7:00 PM. - 8:30 PM	General Physics	Summer Semester

Choose the correct answer CAPITAL LETTERS

$$
\begin{aligned}
& \text { Constant: } \\
& \begin{array}{l}
k=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}, \varepsilon_{o}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2},|e|=1.6 \times 10^{-19} \mathrm{C} \\
\quad m_{p}=1.67 \times 10^{-27} \mathrm{~kg}, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\end{aligned}
$$

Q1	A 70 kg man climbs upstairs in a building reaches the fourth floor (10 m above the ground floor) in 15 seconds. The work done by the man is:				A
	A) 6.9 kJ	B) 10.3 kJ	C) 13.7 kJ	D) 10.0 J	E) 9.13 kJ
Q2	In the above question the power of the man is:				C
	A)104 W	B) 686 W	C) 457 W	D) 915 W	E) 206 W
Q3	A lady sled down a frictionless hill from rest, if her speed at the bottom of the hill is $10.0 \mathrm{~m} / \mathrm{s}$. the height of the hill (in m) is:				C
	A)1.8	B)20.4	C)5.1	D)8.1	E)3.5
Q4	An object of mass 5 kg has a speed of $3.5 \mathrm{~m} / \mathrm{s}$ at position 1 and a kinetic energy of 40.5 J at position 2 the total work done on the object as it moves from position 1 to position 2 is:				D
	A)4.8 J	B)8.4 J	C)3.9 J	D) 9.9 J	E) 9.5 J
Q5	An ideal gas is initially at a temperature of 400 K . Its volume doubled while its pressure decreases by a factor of two. What is its final temperature				E
	A)300K	200 K	C) 25 K	D) 300 K	E) 400 K
Q6	Boyle's law states that: A) when the pressure of the gas is kept constant, its volume is directly proportional to its temperature. B) when the gas is kept at a constant temperature, its pressure is inversely proportional to its volume. C) when the pressure of the gas is kept constant, its volume is inversely proportional to its temperature. D) when the gas is kept at a constant temperature, its pressure is directly proportional to its volume. E) None of the above.				B
Q7	The law used to quantify the pressure at the bottom of a swimming pool is: A) Archimedes principle B) Pascal's law C) Newton 's first law D) Laplace's law E) any one of the above				B

| Q8 | A hydraulic lift is shown in adjacent
 Figure. The diameter of the larger
 piston is 0.60 m, and the diameter of
 the small piston is 0.03 m. The force
 required to be applied in small piston
 to lift a car of mass 1200 kg (in N) is: | Q)117.6 | B) 29.4 | C) 49 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Q15	An electron is released into a uniform electric field of magnitude $2.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$. The acceleration of the electron in $\mathrm{m} / \mathrm{s}^{2}$ (neglecting gravity)is:				C	
	A) 9.0×10^{16}	B) 8.8×10^{14}	C) 4.4×10^{14}	D) 7.9×10^{14}		E) 8.8×10^{15}

