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Continuous annuities

Annuities with length of period very small are approximately
continuous annuities.
For example, the cashflows
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tend to a continuous cashflow with rate C (t) = 1, 0 ≤ t ≤ n, as
m →∞.
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Theorem 1
The present value of a continuous annuity with rate C (t) = 1,
0 ≤ t ≤ n, is

ā
n−−|i =

1− νn

δ
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Recall

Theorem 2
Consider the cashflow
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Then, the present value of this cashflow is

a
(m)
n|i =
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i (m)
,

where i (m) is the nominal annual rate of interest convertible m
times at year. The future value at time n of this cashflow is

s
(m)
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i (m)
.
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Recall

Theorem 3
Consider the cashflow
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The present value of this cashflow is

ä
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,

where d (m) is the nominal annual rate of discount convertible m
times at year. The future value at time n of this cashflow is
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Theorem 4
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Given a real number x , the integer part of x is the largest integer
smaller than or equal to x , i.e. the integer k satisfying
k ≤ x < k + 1. The integer part of x is noted by [x ]. Next
theorem considers the continuous annuity with rate equal to the
integer part.

Theorem 5
The present value of a continuous annuity with C (t) = [t],
0 ≤ t ≤ n, is
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δ
.
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Proof.
The present value of the continuous cashflow is

(I ā)n|i =

∫ n
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Now, e−δ = ν and

1 + e−δ + · · ·+ e−(n−1)δ = 1 + ν + · · ·+ νn−1 =
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So, (I ā)n|i =
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δ .
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Recall

Theorem 6
The present value of the annuity
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Theorem 7
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Theorem 7

(I ā)n|i = lim
m→∞

(Ia)
(m)

n−−|i
.

Proof.
We have that

lim
m→∞

(Ia)
(m)
n|i = lim

m→∞

än|i − nνn

i (m)
=

än|i − nνn

δ
= (I ā)n|i .
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Theorem 8
The present value of a continuous annuity with C (t) = t,
0 ≤ t ≤ n, is (
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Proof.
By the change of variables x = δs,
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Ī ā

)
n|i =

∫ n

0
C (s)νs ds =

∫ n

0
sνs ds =

∫ n

0
se−sδ ds

=δ−2

∫ nδ

0
xe−x dx = δ−2(−1− x)e−x

∣∣∣∣nδ

0

=δ−2 − δ−2e−nδ(1 + nδ) =
1− e−nδ

δ2
− ne−nδ

δ
=

ān|i − nνn

δ
.

c©2009. Miguel A. Arcones. All rights reserved. Manual for SOA Exam FM/CAS Exam 2.



13/15

Chapter 3. Annuities. Section 3.5. Continuous annuities.

Recall

Theorem 9
The present value of the annuity
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Theorem 10
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Theorem 10
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