Selected Problems on Chapter 9

Q1: Two blocks of masses M and $3 M$ are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them (as shown in the Figure). A cord initially holding the blocks together is burned; after this, the block of mass $3 M$ moves to the right with a speed of $2.00 \mathrm{~m} / \mathrm{s}$. (a) What is the speed of the block of mass M ? (b) Find the original elastic potential energy in the spring if $M=$ 0.350 kg .

Q2: High-speed stroboscopic photographs show that the head of a golf club of mass 200 g is traveling at $55.0 \mathrm{~m} / \mathrm{s}$ just before it strikes a $46.0-\mathrm{g}$ golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at $40.0 \mathrm{~m} / \mathrm{s}$. Find the speed of the golf ball just after impact.

Q3: A 10.0-g bullet is fired into a stationary block of wood $(m=5.00 \mathrm{~kg})$. The relative motion of the bullet stops inside the block. The speed of the bullet-plus-wood combination immediately after the collision is $0.600 \mathrm{~m} / \mathrm{s}$. What was the original speed of the bullet?

Q4: Two blocks are free to slide along the frictionless wooden track $A B C$ shown in Figure. A block of mass $m_{1}=5.00 \mathrm{~kg}$ is released from A. Protruding from its front end is the north pole of a strong magnet, repelling the north pole of an identical magnet embedded in the back end of the block of mass m_{2} $=10.0 \mathrm{~kg}$, initially at rest. The two blocks never touch. Calculate the maximum height to which m_{1} rises after the elastic collision.

