1.2.3 Different Kinds of Simulations
There are a lot of ways to classify simulation models, but one useful way is along these
three dimensions:

Static vs. Dynamic: Time doesn’t play a natural role in static models but does in
dynamic models. The Buffon Needle Problem, described at the beginning of Sec-
tion 1.3.1, is a static simulation. The small manufacturing model described in
Chapters 2 and 3 is a dynamic model. Most operational models are dynamic;
Arena was designed with them in mind, so our primary focus will be on such
models.

Continuous vs. Discrete: In a continuous model, the state of the system can
change continuously over time; an example would be the level of a reservoir as
water flows in and is let out, and as precipitation and evaporation occur. In a dis-
crete model, though, change can occur only at separated points in time, such as a
manufacturing system with parts arriving and leaving at specific times, machines
going down and coming back up at specific times, and breaks for workers. You
can have elements of both continuous and discrete change in the same model,
which are called mixed continuous-discrete models; an example might be a refin-
ery with continuously changing pressure inside vessels and discretely occurring
shutdowns. Arena can handle continuous, discrete, and mixed models, but our
focus will be on the discrete.

Deterministic vs. Stochastic: Models that have no random input are determinis-
tic: a strict appointment-book operation with fixed service times would be an ex-
ample. Stochastic models, on the other hand, operate with random input—Tlike a
bank with randomly arriving customers requiring varying service times. A model
can have both deterministic and random inputs in different components; which
elements are modeled as deterministic and which as random are issues of model-
ing realism. Arena easily handles deterministic and stochastic inputs to models
and provides many different probability distributions and processes that you can
use to represent the random inputs. Since we feel that at least some element of
uncertainty is usually present in reality, most of our illustrations will involve

1.3.2 Programming in General-Purpose Languages

As digital computers appeared in the 1950s and 1960s, pcople began writing computer pro-
grams in general-purpose procedural languages like FORTRAN to do simulations of more
complicated systems. Support packages were written to help out with routine chores like
list processing, keeping track of simulated events, and statistical bookkeeping.

This approach was highly customizable and flexible (in terms of the kinds of models
and manipulations possible), but also painfully tedicus and error-prone since models had
to be coded pretty much from scratch every time. (Plus, if you dropped your deck of
cards, 1t could take quite a while to reconstruct your “model.”) For a more detailed his-
tory of discrete-event simulation languages, see Nance (1996).

1.3.3 Simulation Languages
Special-purpose simulation languages like GPSS, SIMSCRIPT, SLAM, and SIMAN
appeared on the scene some time later and provided a much better framework for the
kinds of simulations many people do. Simulation languages have become very popular
and are in wide use.

Nonetheless, you still have to invest quite a bit of time to learn about their features
and how to use them effectively. And, depending on the user interface provided, there can

be picky, apparently arbitrary, and certainly frustrating syntactical idiosyncrasies that
bedevil even old hands.

1.3.4 High-Level Simulators

Thus, several high-level “simulator” products emerged that are indeed very easy to use.
They typically operate by intuitive graphical user interfaces, menus, and dialogs. You se-
lect from available simulation-modeling constructs, connect them, and run the model
along with a dynamic graphical animation of system components as they move around
and change.

However, the domains of many simulators are also rather restricted (like manufactur-
ing or communications) and are generally not as flexible as you might like in order to
build valid medels of your systems. Some people feel that these packages may have gone
too far up the sofiware-hierarchy food chain and have traded away too much flexibility to
achieve the ease-of-use goal.

1.3.5 Where Arena Fits In

Arena combines the ease of use found in high-level simulators with the flexibility of
simulation languages, and even all the way down to general-purpose procedural lan-
guages like the Microsoft® Visual Basic® programming system or C if you really want.
It does this by providing alternative and interchangeable templates of graphical simula-
tion modeling-and-analysis modules that you can combine to build a fairly wide variety
of simulation models. For ease of display and organization, modules arc typically
grouped into panels to compose a template. By switching panels, you gain access to a
whole different set of simulation modeling constructs and capabilities. In most cases,
modules from different panels can be mixed together in the same model.

Arena maintains its modeling flexibility by being fully hierarchical, as depicted in
Figure 1-2. At any time, you can pull in low-level modules from the Blocks and Elements
panel and gain access to simulation-language flexibility if you need to and mix in
SIMAN constructs together with the higher-level modules from another template. For
specialized needs, like complex decision algorithms or accessing data from an external
application, you can write pieces of your model in a procedural language like Visual
Basic or C/C++. All of this, regardless of how high or low you want to go in the hierar-
chy, takes place in the same consistent graphical user interface.

In fact, the modules in Arena are composed of SIMAN components; you can create
your own modules and collect them into your own templates for various classes of sys-
tems. For instance, Rockwell Software (formerly Systems Modeling) has built templates
for general modeling (the Arena template, which is the primary focus of this book),
business-process re-engineering, call centers, and other industries. Other people have
built templates for their company in industries as diverse as mining, auto manufacturing,
fast-food, and forest-resource management. In this way, you don’t have to compromise
between modeling flexibility and ease of use. While this textbook focuses on modeling
with the Arena template, you can get a taste of creating your own modules in Chapter 9.

[_ N

Higher i User-Created Templates

k Commenly used construcls

Company-specific processes
Company-specific tamplatas A single
etc, graphical user
interface
consistent at
. any level of
madeling

! Application Solution Templates
Contact Centers
Packaging Lines
efc,

Basic Process Panel
Mary common modeling constructs

/—‘; Very accessible, easy 1o use
Level of | Reasonable flexibility

Modeling

i Advanced Process, Advanced Transter
Panels

Access lo more detailed modeting for greater
flexibility

Blocks, Elements Panels
All the flexibility of the SIMAN simulation
language

User-Written Visual Basic, C/C++ Code

N, S The ultimate in flexibility

Lower CiC++ requires compiler

