Methods of Analysis and
Selected Topics (ac)

17.1 INTRODUCTION

For networks with two or more sources that are not in series or parallel, methods
such as mesh analysis or nodal analysis are employed. Only minor variations are
required to the method already described for dc circuit.

17.2 INDEPENDENT VERSUS DEPENDENT SOURCES

The term independent specifies that the

magnitude of the source is independent of + + ; :
the network to which it is applied and that | r===— E 1() 1()
the source displays its terminal - -

characteristics even if completely isolated.

FIG. 17.1
dc: Eand I, just a value (real number) Independent sources.

ac: E and I, phasors (complex number)




A dependent or controlled source is one
whose magnitude is determined (or controlled)
by a current or voltage of the system in which
It appears.

dc: just magnitude real number
ac: phasors (complex number)

_kV L I

(a) | (b)

FIG. 174
Conditions of V' = 0V and I = 0 A for a controlled source.
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Special notation for controlled or
dependent sources




17.3 SOURCE CONVERSIONS

"

.- .-

FIG. 8.6 FIG. 8.7
Practical voltage source. Practical current source.
: ¢ | .
E=1Z
. —- f = E <A>
~— 7 4

Voltage source Current source




EXAMPLE 17.1 Convert the voltage source of Fig. 17.6(a) to a current

source.
Solution:
[_E_ 100VL0
Z 50 £/ 53.13°
= 20A ~—53.13°  [Fig. 17.6(b)]
a Source conversion
N Tﬂ'

E=100v 2 o\"\u

I=20A /-53.13° R§ 30
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EXAMPLE 17.2 Convert the current source of Fig. 17.7(a) to a voltage

source.
a 4]
T .
E =120V 2z =30°("\y
z
z
I=10A160°C) 60 =40 = == x.-10
X, .
l
(a) (b)
Solution:
g o ZLp _ (Xe £=90°)(X; £90°)

ZC + Z.[ —J' XC‘ —|—J;i ‘YL
(4 Q) £ —90%)(6 ) £90°) 24 0/ 0°
—j40Q+;760 2 /2 90°

=120 £-90° [Fig. 17.7(b)]
E=1Z = (10A £60°)(12 Q £—90°)
=120V.2—30°  [Fig. 17.7(b)]



Dependent Source
Case 1: Controlling variable is external to the network to be converted, procedure

identical to the one used for independent source.
Case 2: Controlling variable is within the network to be converted, procedure will be

seen later.

EXAMPLE 17.3 Convert the voltage source of Fig. 17.8(a) to a current

source.

I W‘v . I O
|$ . Z = 5k0 flg )

V=vZ0 20V - V=VZ0 @x10°VA L Z§5kﬂ
-i_ s O i s O

(a) (b)
FIG. 17.8
Source conversion with a voltage-controlled voltage source.
Solution:

[_E_@Wv.ie
Z Sk so0°
= (4 x107°V)A £0°  [Fig 17.8(b)]




EXAMPLE 17.4 Convert the current source of Fig. 17.9(a) to a voltage
source.

z
0 Wy
o] 40 kO
|
(mmm / uﬂ¢ §4ﬂkﬂ - (1 < 10V / nv<’\>
— ° —_

(a) (b)
FIG. 17.9

Source conversion with a current-controlled curvent source.

Solution:

E =1IZ = [(1001) A £0°][40 k) ~0°]
— (4 x10°)V £0°  [Fig. 17.9(b)]



174 MESH ANALYSIS (FORMAT APPROACH)

In the formulation used for dc circuit: we replace
e The resistances by impedances
e The sources value by phasors
e The equation become complex number eq

uations

The equations obtained are

=

—?Il + 6_.:{2 =5 ?Il _ 6—{3 = . — 4=
6I, — 8, = —10 8L, — 6l = 10 RZ10 R§6ﬂ .

+ e

1 Rs§2£1
and expanded as + N -
El__--_i\.-’ By 10V
Col. 1 Col. 2 Col. 3 I -
(1+6)I,— 6, =(5-10) - -
2+6L— 6, =10 =

1. Assign a loop current to each independent, closed loop in a clockwise direction.

2. The N°of required equations = N° of independent, closed loops.

Column 1 of each equation is formed by summing the impedance values of those
impedances through which the loop current of interest passes and
multiplying the result by that loop current.




3. the mutual terms are always subtracted from the first column. A mutual term is
simply any impedance element having an additional loop current passing through
it. It is possible to have more than one mutual term if the loop current of interest
has an element in common with more than one other loop current. Each term is the
product of the mutual impedance and the other loop current passing through the
same element.

4. The column to the right of the equality sign is the algebraic sum of the voltage
sources in the loop considered.

E E
- + I + - 1
“ 4 ”for (: ) — « _ ”for (: ) —

5. Solve the resulting simultaneous equations for the desired loop currents.

Any current source Is first converted to a voltage source (or
use the supermesh approach)



EXAMPLE 17.9 Using the format approach to mesh analysis. find the
current I, in Fig. 17.15.

Solution 1: The network is redrawn in Fig. 17.16:

Zy =R +jX,=1Q+j2Q E =8V 2£20°
Z:=R, —jXc=40—j&) E,= 10V AL0°
Zy=+jX,=+6Q
Step 1 is as indicated in Fig. 17.16.
Steps 2 to 4:
II(ZI + Zz) - 1222 = El + E‘r
L(Z, + Z3) —L,Z, = —E,
which are rewritten as
L(Z, + Z,) — ILZ, =E + E,

—L,Z, + L, + Z3) =

Step 5: Using determinants, we have

Z, +Z, E; T E,
_Z',t _E',t
Ig = — —
Zl + Z.z _Zz

—Z- Z, + 1,

—(Zy1 + Zy)E; + ZH(E; + E))
(Z, + Z-)(Z, + Z3) — Z3
Lk, — 7k,
1.7, + 1125+ L7,

E;

£1 =8V £ 20°

X, 7= 810

&

Xng 6 Q)

10V £ 0°

.

FIG. 17.16

S

Assigning the mesh currents and subscripted

impedances for the network of Fig. 17.15.




Substituting numerical values yields
_ (40 -8BV L20°)— (10O +720)(10V £L0%)
(1Q+720)4Q -8+ (1 Q+20)(+j6)+ 40 —j8(+j6L))
_ (@ —=j8)F.52+72.74) — (10 + 20)
20+ (j6—12)+(j24 + 48)
_(52.0—j49.20) — (10 +j20) _ 42.0 —j69.20 _ 80.95A £—58.74°

I,

56 + j 30 56 + j 30 63.53 £28.18°
=1.27A £—86.920




EXAMPLE 1710 Write the mesh equations for the network of Fig.
17.18. Do not solve.

3
\
/I
et
o

FIG. 17.18
Example 17.10.



Solution: The network is redrawn in Fig. 17.19. Again note the
reduced complexity and increased clarity provided by the use of sub-
scripted impedances:

Z, =R +jX,  Zi=R;—jXq
Z7—R7+jX Z5—R4

Z>Q —- j X

and Il(Zl o+ Zz) = 1222 = El
12(Z2 T Z3 T Z4) - IIZO I3Z4 =0
L(Z, + Z) = LZ, = E,

or Il(Zl + Zz) = Iz(Zz) + 0 — El
IIZZ = IQ_(ZZ ‘3 Z3 o Z4) + I3(Z4) =0
0 — I,(Zy) + I3(Zy + Zs) = E,
Z, Z3 - Zs
s i = 23 + 2
| o + |-
+ | ~
a y = - |+ i
1" Y kT




EXAMPLE 17.11 Using the format approach. write the mesh equa-
tions for the network of Fig. 17.20.

Solution: The network is redrawn as shown in Fig. 17.21, where

and

or

Z, =R +jA, Ly =jAr,
Z,=R, Z,=JXg,
L(Z, + Z,) — LZ, —LLZ, = E,
L(Z,+72Z, +72;) — 11Z, —17Z; =0
L(Zs +2Z,) - LZ; —1,Z,=E,

Li(Zy+.24) — LZ, — Lz, = E;
_IIZZ + I;-a__(z‘l_"‘}"“Z%___t“_._Z:.__g)h - 132.3 =0
—1,Z, — LZ;, + IiZy+2,) = E,

Note the symmetry about the diagonal axis: that is, note the location of
—Z,. —Z,. and —Z; off the diagonal.

R, A1,
HO0N
R X1,
H00N
% OF
+
-
Z,
- :[2
Z, Z,




Independent Current Sources For independent current sources,
the procedure 1s modified as follows:

[. Steps I and 2 are the same as those applied for independent sources.
2. Step 3 1s modified as follows: Treat each current source as an open
circuit (recall the supermesh designation in Chapter 8), and write the
mesh equations for each remaining independent path. Then relate
the chosen mesh currents to the dependent sources to ensure that the
unknowns of the final equations are limited to the mesh currents.
3. Step 4 is as before.

EXAMPLE 17.7 Write the mesh currents for the network in Fig. 17.13
having an independent current source.

Solution:

Steps I and 2 are defined in Fig. 17.13.

Step3: E,—1,Z,+ E,—1LZ,=0 (only remaining independent
path)

with I, +1=1,

The result 1s two equations and two unknowns.




For Dependent Current Sources

The procedure for mesh analysis is modified as follows:

1. Treat dependent source as independent source when applying Kirchhoff’s
Voltage Law and Kirchhoff’s Current Law except substitute their current with the

controlled quantity
2. Everything else is the same as before

EXAMPLE 17.8 Wnte the mesh currents for the network of Fig. 17.14
having a dependent current source.

Solution: L.

Steps 1 and 2 are defined on Fig. 17.14.

Step 3: F,-LZ, - LZ,+E,=0 E1© 2 <>H 5 @Ez
and H=1, - L - g g *
Now I = I, so that =

FIG. 1714
=1 - L o L=L{1-4 Applying mesh analysis to a network with a

The result 1s two equations and two unknowns. current-controlled current source.




For Dependent VVoltage Sources

The procedure for mesh analysis is modified as follows:
1. Treat dependent source as independent source when applying Kirchhoff’s voltage
law except substitute their voltage with the controlled quantity

2. Everything else is the same as before

EXAMPLE 17.6 Write the mesh currents for the network of Fig. 17.12
having a dependent voltage source.

Solution: — uV,
Steps 1 and 2 are defined on Fig. 17.12. Wy
i2 g . A *ﬁ;
Step 3: E; — LRy — By(I; — L) =0
i 1 L1 _FI- 1) E; '('\\u’ "f:[l *x.rl T, § R I I xll Rs §
Bl — L)) + uVy —LE; =0 A 4 P
Then substitute V, = (I; — I:)R>

FIG. 1712
Applving mesh analysis to a network with a
voliage-controlled voltage sowrce.

The result 1s two equations and two unknowns.

Ei —LiE —R(I-I)=10
Fofla — I;) + pRa(l; — 1) —LR; = 0




175 NODAL ANALYSIS (FORMAT APPROACH)

1. Choose a reference node and assign a subscripted voltage label to the (N -1)
remaining nodes of the network.

2. The number of equations required for a complete solution is equal to the
number of subscripted voltages (N-1).

a. Column 1 of each equation is formed by summing the admittances
tied to the node of interest and multiplying the result by that
subscripted nodal voltage.

3. the mutual terms, (tying two nodes), are subtracted from the first column. It
IS possible to have more than one mutual term. Each mutual term is the
product of the mutual admittance and the other nodal voltage tied to that
admittance.

4. The column to the right of the equality sign is the algebraic sum of the
current sources tied to the node of interest. A current source is assigned a
positive sign if it supplies current to a node and a negative sign if it draws
current from the node.

5. Solve the resulting simultaneous equations for the desired voltages.



Any Voltage Source Is first converted to a Current Source
(or use the supernode approach)

EXAMPLE 17.16 Using the format approach to nodal analysis. find
the voltage across the 4-() resistor in Fig. 17.30.

XLZSH

000
11=6A£{l°<l> R%il“ Xo 7= 24 CDIQ=4A/_“{]°
=




Solution 1: Choosing nodes (Fig. 17.31) and writing the nodal equa-

tions. we have

Vi

Z,

Vs

;= —jXc=—j2Q

D [

0]

=" Reference

Vi(Y: + Y) = V(Yo = — T,
Va(Ys + Vo) = Vi(Ys) = +1

or

VY, +Yy) — V(Y = —1I

—Vi(Y>) + Vy(Y; + Y, = +1,

YIZL YEZ 1 1?3:L
Z, Z, Z;

Using determinants yields

V,

_Il _}_Iz
+1, Y: + Y,

‘i?l + ‘1?2 _1-?2
_‘frj “.T?, ‘|‘ lrj
_(YT?_ ‘|‘ lrj:}ll ‘|_ Ij&rz

(Yl + Yz)(Ys + Yz) - Y
_(‘ir3 ‘|‘ 172)11 ‘|‘ Iz&rj

Y;Y; + Y, Y; + Y Y,

2
2




Substituting numerical values, we have
v, = —[(/—2Q)+ (1/j50)]6 A 20°+4A 20°1/5Q)
(14 (1/—j20) + (155M(1/—572Q) + (1/4 Q)(1/55Q)
—(+j 0.5 —70.2)6 £0° +4 £0°(—j0.2)
(1/=7 8) + (1/10) + (1/j 20)
(—0.3 £90°)(6 £0°%) + (4 £0°)(0.2 £—90°)
j0.125 + 0.1 —;0.05

—1.8 £90° + 0.8 £ —90°
0.1 +70.075

2.6V £-90°

0.125 £36.87°
VvV, =2080V.L—-126.87°




EXAMPLE 17.17 Using the format approach. write the nodal equa-
tions for the network of Fig. 17.33.

Xc=100Q

[
I\
40
R3§39 I, = 10A £ 20°
50
L

Solution: The circuit is redrawn in Fig. 17.34. where

Zi=R +jX, =7Q+;80Q
Z, =R, +jX;, =40 +;50Q
Zy=—jXc=—710Q
Z,=R;=8()

E, =20V £ 0°

E, =20V £0°
I, = 10A £20°

Z,

oS
N
i

Q) al & O




Converting the voltage source to a current source and choosing nodes,
we obtain Fig. 17.35. Note the “neat” appearance of the network using
the subscripted impedances. Working directly with Fig. 17.33 would be
more difficult and could produce errors.

\ v,

oo
N
[

F —

= Reference

Write the nodal equations:
Vi(Y; £ Y5 +Y3) = Vi(Y3) = +1,
Vo(Y; + Ys) — Vi(Y3) = +1,

Z, Z, Zs Z,

Y,

which are rewritten as

VL(YL + Y, +Y;) — Vz(Y?.} = +1,
—V1(Y3) + Va(Ys + Yy = +14




EXAMPLE 17.18 Write the nodal equations for the network of Fig.
17.36. Do not solve.

Solution: Choose nodes (Fig. 17.37):

L, =R L, =jAXg, L; =R, — j X,
Ly = —j X Zs =R; Ls =j A,
I
()
-/
{[0) €
X, X,
2k
I C) §R1 §R3 % Ar
Xo, 7=
-~
N
v, v, Vs
z, Z,




I Q) Z, Zy Zs Zg

and write the nodal equations:
Vi(Y; +Yy) = Vy(Y,) = +1,

VoY, + Y5 +Yy) — V(YY) — Vi(Yy = —L
Vi(Ys + Y5 + Yo) — Vo(Yy) = +1,

which are rewritten as

Vi(Y; + ¥E'}“~T_.1{:("_i_’;}_ + 0 = +1,
—Vi(Y2) + VoY, Y5+ ¥ = Vi(Yy) = -1,
0 — V(Y + VY, FY5+Ye) = +1,
1?1 e ‘iTj — I - 1?3 — :
R]_ ] ‘ELI RE —J *KCE
1
1?4 j— ] '1?-1‘ — -1?-5 — ].

—J X¢y ¢ J XL,






Dependent Voltage Sources between Defined Nodes

The procedure for nodal analysis is modified as follows:

b4

1. Treat dependent source as independent source when applying Kirchhoff’s
Current Law except substitute their voltage with the controlled quantity
2. Everything else is the same as before
EXAMPLE 17.15 Wrnte the nodal equations for the network of Fig.
17.29 having a dependent voltage source between two defined nodes.
Solution: I
Steps 1 and 2 are defined m Fig. 17.29. D
| | o \f / v,
Step 3: Replacing the dependent source puV, with a short-circuit equiv- Ii . .
alent will result in the following equation when Kirchhoff’s current law
15 applied at node V: W Z, +
I=5L+1, Z, f;* vV, — uV, Z
‘7 4 - '-":. -
1, (V) V,) _1=0
Z Z,
-
and Vy=pV, = p[Vy — V3]
FIG. 17.29
_— L . Applying nodal analysis to a network with a
o1 \ 2 V 1 voltage-controlled voltage source.

1+ p




Dependent Current Sources

The procedure for nodal analysis is modified as follows:

1. Treat dependent source as independent source when applying Kirchhoff’s
Current Law except substitute their current with the controlled quantity

2. Everything else is the same as before

EXAMPLE 17.13 Write the nodal equations for the network of Fig.
17.27 having a dependent current source.

Solution:

Steps 1 and 2 are as defined in Fig. 17.27.

Step 3: At node Vp, |
Vy E—— v,
1= Il + 1 -
L Eg . g
‘ 1 "1 - ‘71
— —I=0
Z, z
1 1 1
and Vi|l=— + —V,|— =1 I EI] 13 i
Z, I, | Zs
At node V,,
Vi —V Va Vi —V; =
i I Y L6 Tl Y
Z, Z; Z,
FIG. 17.27

11—k 1—k 1
and V, -V, + —|=0
[ZJ} [Zl %1

resulting in two equations and two unknowns.




EXAMPLE 17.19 Apply nodal analysis to the network of Fig. 17.38.
Determine the voltage V;.

1.3 c
) Lk lIL
+
1001 +
. . ; §1k£1 .
v, =7, 2 00N\ (B R¢§4kﬂ RL§1k51 X okav,
¢

Transistor

equivalent

network

FIG. 17.38

Example 17.19.

Solution: In this case there i1s no need for a source conversion. The
network 1s redrawn in Fig. 17.39 with the chosen nodal voltage and

subscripted impedances.



Apply the format approach:

1 1
Y, =— = = 025mS £0° = G, £L0°
Yz, 4k0 !
Y,= =1 —1mss0°=6,20°
Sz, 1k0 ’
1 1
Y;=— = =0.5mS / —90°

Z, 2k /90°
= —j05mS=—jB;
1;1: {:YI + YI + YS)“'TI = —1001

_ —100I
Y, 4+ Y, 4+ Y

3 —100I

© 025mS + 1 mS —j0.5mS

—100 X 10°T _  —100 X 10°

T

and ! 1

125 —70.5 1.3463 / —21.80°
= —7428 X 10°T ~21.80°

4

v
= —7428 ¥ 10°|—— | ~21.80°
(n:u)

V,=V; = —(74.28V,) V2 21.80°

\F
- I,
"
1001 l Y, Y, Y, | V;
=
FIG. 17.39

Assigning the nodal veitage and subscripted
impedances for the network of Fig. 17.38.




17.6  BRIDGE NETWORKS (ac)

FIG. 17.40
Maxwell bridge.



MESH ANALYSIS

Apply mesh analysis to the network of Fig. 17.40. The network is
redrawn in Fig. 17.41, where

11 G
Y, G,+jB. G+ B¢

Zz - Rz 23 - R3 Zq_ — R4 +,}.‘}{L ZS - RS

Iz A
R

_ Be
G1+ BZ

J

21:




Applying the format approach:

(Z, + Z3)I), — (Z)I;, — (Z3)I3 = E
(Zy +Z, + Z5)I, — (Z)I; — (Z5)I3 =0
(Z3 + 2y + Z5)I; — (Z3); — (Z5)1, = 0

which are rewritten as

L(Z; +L3) = LZ, — LZ; = E
-1,Z, + L(Z %+ Ls) — LZs =0
_1123 - IEZ:; +H-I_-3-(Z'3‘“"+=--Z4_‘|— Zﬁ) =0

Note the symmetry about the diagonal of the above equations. For
balance, Iy, = 0 A, and

Iz_ 212_13:0

5

From the above equations,

Z, + Z, E —Z.
~Z, 0 —Z.
. 0 (Zs + Zy + Zs)
|z, + Zs ~Z, —Z,
7, (Zy+Z,+ Zs) —Z.
—Z; —Zs (Zy; + Z, + Zs)

E(Z,Z; + Z,Z, + Z,Zs + Z:Z5)
A




where A signifies the determinant of the denominator (or coefficients).
Similarly.,
- E(Z\Z; + L;2, + 1, Zs + 1:Z5)
A
_ E(ZiZy — L:L,)
A

3

alld IZ“E — Ij — Ij

For I;_ = 0. the following must be satisfied (for a finite A not equal to
Zero):

7.2, = 72,7, I, =0 (17.3)




NODAL ANALYSIS

Vi

Vi
R; L4
R, L Y
FIG. 1743
FIG. 1 ? 42 Assigning the nodal voltages and subscripted
Hay bridge. impedances for the nenvork of Fig. 17.42.
Y, = ! = 1 . Y, = — = €
Z, Ry —jXc Z, R,
1 1 1 1 1
Zs R;3 Zy, RytjA Rs
and (Y, + YoV — (Y)V: — (Yo)V3 =1

(Y, + Y3 + YV, — (YV; — (Y5)V3 =0
Y, + Y, FY)V; — (Yo)V, —(X5)V, =0




which are rewritten as

Vit¥-+Y,) — V)Y, — ViY, =1
—ViY, T i?-z_(Yi"+"i{3~-ft~IﬁJ__f VY =0
—ViY, — V,Y; + VY5 +XY.+ Ys) =0

Again. note the symmetry about the diagonal axis. For balance.
Vz. =0V, and

‘IITZ.S — “"Tﬁ - “"73 — 0

From the above equations.

Y, + Y, I -Y,

_}_fl 0 _‘YS
V. — —Y, 0 (Y, + Y, +Y5)

: ‘irl + -1?2 _‘irl _‘irj

-Y;, (Y;+Y;+Yy —Y;
-Y, ~Y; (Y> + Y, + Ys

B I(lrllrg + -1?11?4 + ]{11?:’1 + 1?3-&?5)
A
Similarly.

v, = IVIY; + Y5V, + Y Y5 + YsY5)
, =
A




Note the similarities between the above equations and those obtained
for mesh analysis. Then

I(Y,Y, — Y;Y),)
A

‘FZS — "'Tj — "'73 —

For V2. = 0, the following must be satisfied for a finite A not equal to
Zero:

YIY.q_ — Y3Y2 ‘“Tz_ =0 (174)

3

However. substituting Y; = 1/Z,. Y, = 1/Z, Y; = 1/Z3. and Y, =
1/Z4. we have

7.7, 7.7,

or 2124 = 2322 ‘“TZ_ =0




BALANCE CRITERIA
I=0andV =0

Since I = 0,

Il = 13 and Ig = I4

In addition, for V = 0,

IlZl — IEZE ﬂnd 1323 — 1424

Thus,
Z
1,72 = 1,Z, and I, = _311
Z,
1,7, = (—311)23 and  Z,Z, = Z,Z;

Ve

L _Z, R _R

Z; Z, R3 Ry

ac bridge dc bridge

Identical to the case for dc bridge:

FIG. 17.44
Ivestigating the balance criteria for an ac
bridge configuration.




17.7  A-Y,Y-A CONVERSIONS

Y5 Y, 2.7, + 1,725 + 1,Z;
Z = Zp =
Z.Z. 2,7, + 7\Z; + L,Z,
Zz — ZA =
Z‘.-J + Z‘B + Z‘C Z‘l
YV 1,7, + 1,15+ 1,7,
Zj =S ZC =
Z._:! + Z‘B + ZC' Z3
A - ¥ Conversion Y- A Conversion
FIG. 17.46
. A-Y configuration.
For equal impedances
_ N
Ly =37y or I~ = EY

Identical to the case of dc circuits




