Network Theorems (ac)

18.1 INTRODUCTION

The theorems studied earlier: Superposition theorem, Thevenin’s Theorem,
Norton’s Theorem, and Maximum Power Transfer theorem have a very similar
(almost identical) replica for ac circuit with the only change from just numbers and
resistances to phasors and impedances.

18.2 SUPERPOSITION THEOREM

The only variation in applying this theorem to ac networks with independent sources
Is that we will now be working with impedances and phasors instead of just resistors
and real numbers.



EXAMPLE 18.1 Using the superposition theorem. find the current I
through the 4-() reactance (Xz,) of Fig. 18.1.

Solution: For the redrawn circuit (Fig. 18.2).
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FIG. 18.2

Assigning the subscripted impedances fo the
network of Fig. 18.1.
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FIG. 18.3
Determining the effect of the voltage source E, on the current I of the network of Fig. 18.1.

Considering the effects of the voltage source E; (Fig. 18.3). we have
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Considering the effects of the voltage source E, (Fig. 18.4), we have

Z, Z5 Zy
Z) ‘ Zyp
E, E,
TI" ks, + +
FIG. 18.4
Determining the effect of the voltage source E, on the current 1 of the nefwork
of Fig. 18.1.
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The resultant current through the 4-() reactance X; (Fig. 18.5) is

I — Ii‘ . I.i'.f
= 375A £—90° —2.50A £90° = —j3.75A — j2.50 A
= —j625A

I=625A £—90°
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FIG. 18.5
Determining the resultant current for the
nemwork of Fig. 18.1.




EXAMPLE 18.2 Using superposition. find the current I through the
6-{) resistor of Fig. 18.6.

Solution: For the redrawn circuit (Fig. 18.7).
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Example 18.2. Assigning the subscripted impedances to the
network of Fig. 18.6.




I’ FIG. 18.8
I, C‘) Determining the effect of the current source I,

on the current I of the network of Fig. 18.6.

Consider the effects of the current source (Fig. 18.8). Applying the cur-
rent divider rule, we have

po_ L _ (j6M)2a) _ j12A
12ZA /90°

6.32 L —18.43°
I'=19A 2108.43°



+ ) G 1 FIG. 18.9
- Derermining the effect of the voltage source
! o E, on the current 1 of the network of

Fig. 18.6.

Consider the effects of the voltage source (Fig. 18.9). Applying Ohm’s

law gives us
I.H — El — El _ 20V Z30°
Z,+7Z, 6320 /—-1843°

Z,
= 3.16 A £48.43"

The total current through the 6-() resistor (Fig. 18.10) is

I=T+1T"
=19A 210843° 4+ 3.16 A £ 48.43°
= (—0.60A +;71.80A) + (2.10A +j2.36A)
=1.50A +j4.16 A

I=442A /70.2°




EXAMPLE 18.4 For the network of Fig. 18.12. determine the sinu-
soidal expression for the voltage v; using superposition.

E; = 12V
8]
Rj§1kﬂ
R, X;
0.5 k() 2 k)
p +
E, = 4V £0° X =10kQ R, § 3KQ v,




Solution: For the dc source, recall that for dc analysis, in the steady o
state the capacitor can be replaced by an open-circuit equivalent, and
the inductor by a short-circuit equivalent. The result is the network of R § 1 kO
Fig. 18.13. -

The resistors R; and R; are then in parallel, and the voltage V3 can Ry
be determined using the voltage divider rule: O%Q =

R’ =R,| R, =05kQ|3kQ = 0429k ¥ © N §3 0 ];

; R’ E] o i —

an V3 = R + R, < L +
_(0429Kk)(12V) 5148V
0.429 kKQ + 1 k() 1.429 FIG. 18.13
V;=36V Determining the effect of the dc voltage source

E; on the voltage v; of the network of
Fig. 18.12.



For ac analysis, the dc source
redrawn. as shown in Fig. 18.14.

Ry

1s set to zero and the network is

WV—
0.5 kO

E, = 4V £0° Ry = 1k0

FIG.

TXC = 10 k2

18.14

Redrawing the network of Fig. 18.12 to determine the effect of the ac voltage
source E,.

The block impedances are then defined as in Fig. 18.15. and series- —\L
parallel techniques are applied as follows: 1 '

Z,=05kQ /0°
Z, = (R, £L0° || (Xe £-907)

_ (1K £0°)(10kQ £-90°) _ 10k £ —90° =

1kQ — 7 10kQ
=0.995kQ) £ —5.71°

Zi =Ry +jX; =3kQ +;2kQ = 3.61 k() £33.69°

and Zr=127Z,+Z,| Z;

= 0.5k + (0.995kQ £—5.71°) || (3.61 k) £33.69°)

= 1.312kQ £1.57°

10.05 £ —84.29°

FIG. 18.15
Assigning the subscripted impedances to the
network of Fig. 18.14.




E,  4Vvzo°

I, = — _
Z, 1312kQ 2157°

= 3.05 mA £—-1.57°

Cwrrent divider rule:

__ DL _ (099 kQ £ 5719305 mMA £-1.579) _ o a0
Z,+Zs 0995kQ £—5.71° + 3.61 k) £33.69°

I

with Vi = (I3 £0)(Ry £0°)
= (0.686 mA £ —32.74°)(3 k) £0°)
=206V £ —32.74°
The total solution:
V3 = v3 (dc) + v; (ac)
=36V +206V £L—32.74°
V3 = 3.6 + 2.91 sin(wf — 32.74°)

The result is a sinusoidal voltage having a peak value of 2.91 V rid-
ing on an average value of 3.6 V. as shown in Fig. 18.16.

A 1,3

32.74°
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Dependent Sources

To apply superposition theorem on circuits with dependent sources, there are two
Ccases:

1. Case 1: if the controlling variables are outside the circuit to be analyzed =>
we proceed with superposition as usual.

2. Case 2: if the controlling variables are within the circuit to be analyzed =>
we set the dependent source to zero only when its controlling variable is zero



EXAMPLE 18.5 Using the superposition theorem. determine the cui-
rent I, for the network of Fig. 18.17. The quantities p and / are con-

stants.
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Solution: With a portion of the system redrawn (Fig. 18.18).
For the voltage source (Fig. 18.19).

uv [AY uVv

T Z,+Z, 40+60+;80 100+;80
pv

" 12.8Q /38.66°

I.f

= 0.078 uV/() / —38.66°

For the current source (Fig. 18.20).
1 — Z,(h1) _ (4 O)(h)
Z,+7Z, 128() /38.66°
= 0.312h1 £ —38.66"

= 4(0.078)h1 L —38.66°

The current I, is

12 — IJ' _|_ IH
= 0.078 uV/() £ —38.66° + 0.312/h1 £ —38.66°
For V=10V £0°1=20mA £0° p = 20, and 7 = 100,
I, = 0.078(20)(10 V £0°)/Q) 2 —38.66°
+ 0.312(100)(20 mA £ 0°) £ —38.66°

= 15.60 A £ —38.66° + 0.62 A £ —38.66"
I, =16.22 A / —38.66°

l I
Y hl Z,

FIG. 18.18
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EXAMPLE 18.6 Determine the current I; through the resistor R; of
Fig. 18.21.

Solution: Note that the controlling variable V is determined by the
network to be analyzed. From the above discussions. it 1s understood
that the dependent source cannot be set to zero unless V is zero. If we
set I to zero. the network lacks a source of voltage. and V = 0 with
pV = 0. The resulting I; under this condition i1s zero. Obviously. there-
fore, the network must be analyzed as 1t appears in Fig. 18.21, with the
result that neither source can be eliminated. as 1s normally done using

the superposition theorem.
et

FIG. 18.21



Applying Kirchhoff’s voltage law, we have
1=V +uV=(1+puVv

vV, _ (1L+wV
R; Rp

and I; =

The result, however, must be found in terms of
I since V and p'V are only dependent variables.
Applying Kirchhoff’s current law gives us

T 1 _|_ ‘-‘T
R, Ry
. 4o
and I=V 1 + L+p )
R, Rp
I

7

or =
(VRy) + [(1 + p)/R.]

Substituting into the above yields

LoVt I
Y R, R, ((1;&1)+[(1 + w)/R;]

1+ p)RI
Therefore, I; = ( Mk

|

!

FIG. 18.21




18.3 THEVENIN’S THEOREM

any two-terminal linear ac network can be replaced 7
with an equivalent circuit consisting of a voltage Th ©
source (Phasor) and an impedance in series, as n
shown in Fig. 18.22.
O
FIG. 18.22
Thévenin equivalent
circuit for ac networks.

Since the reactances of a circuit are frequency dependent, the Thévenin circuit found
for a particular network is applicable only at one frequency.




. Remove that portion of the network across which the Thévenin equivalent
circuit is to be found.

. Mark (o, e, and so on) the terminals of the remaining two-terminal network.

. Calculate Z, by first setting all voltage and current sources to zero (short
circuit and open circuit, respectively) and then finding the resulting
Impedance between the two marked terminals.

. Calculate E7, by first replacing the voltage and current sources and then
finding the open-circuit voltage between the marked terminals.

. Draw the Thévenin equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the Thévenin
equivalent circuit.



EXAMPLE 18.7 Find the Thévenin equivalent circuit for the network
external to resistor R in Fig. 18.23.

Solution: ) >
Steps 1 and 2 (Fig. 18.24): X, =80

+

E=10V£0°® ch*\ZQgR

Thévenin
+
. FIG. 18.23
E =10V .20°
@ = T Example 18.7.
Thévenin

© z, 0

FIG. 18.24 ™
Assigning the subscripted impedances to the network of Fig. 18.23. z, Ly,

Step 3 (Fig. 18.25): FIG. 18.25

Determining the Thévenin impedance for the
_ network of Fig. 18.23.
Z\Z,  (j8O)(—2Q) —’l6Q  16Q

Z,+Z, j8Q—j2Q j6  6./90°
=2.67 Q £ —90°

ZTJ} -




Step 4 (Fig. 18.26):

Z-E
ETL* = 2

Z,+7,
_(—j2)0v)  —j20V

(voltage divider rule)

j8 L)

0 =333V L-180°
—j2Q j

FIG. 18.26
Determining the open-circuit Thévenin
voltage for the network of Fig. 18.23.

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.27.

Z:!"_;! = 2.67 (1

£ —90°

Zp,

— 0

Ep = 333V £ -

§R‘-

180°

2

FIG. 18.27

The Thevenin equivalent circuit for the network of Fig. 18.23.




EXAMPLE 18.8 Find the Thévenin equivalent circuit for the network

external to branch a-a” in Fig. 18.28.

FIG. 18.28
Example 18.8.

E,(N\y)30vZ£15°

2 Q

Thévenin



Solution:
Steps 1 and 2 (Fig. 18.29): Note
scripted impedances:

Z,

_l’_

El@)mv,{a*

oa'

Thévenin

FIG. 18.29
Assigning the subscripted impedances to the network of Fig. 18.28.

the reduced complexity with sub-

;= +jX,=j50Q

Step 3 (Fig. 18.30):

2,7,

(100 £53.139)(5Q £ —53.139)

Ly =1z + =;i5Q+ : _ _
A 6Q+j80)+(30—j40Q)
. 50 £0° 50 £0°
=Jj5+ — =j5+ ——
9+j74 9.85 £23.96°

=j5+508,-23.96° =5+ 4.64 —j2.06
Zy =464 Q +j2940 =549 Q £32.36°




Step 4 (Fig. 18.31): Since a-a” is an open circuit. Iz, = 0. Then Eg, is
the voltage drop across Z,:

Z.E “ 50
Ep=—""""— (voltage divider rule) — > +
Zz + Z'l IZS =
) E Z EJ'i'
(50 /-53.13°)(10V £0°) '\ : .
9.85 () /23.96° -
50V £ —53.13° L oa
Ep = = 5.08V £—-77.09° =

9.85 £23.96°

Step 5: The Theévenin equivalent circuit is shown in Fig. 18.32.

Xf_ R_),
000" Wy
7 4.64 () 2,94 0 70
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Eg@io vz 15 Ep @ 508V £ —77.09° Ez@ﬁo V£ 15°
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§:=u
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-

FIG. 18.32
The Thévenin equivalent circuit for the network of Fig. 18.28.



In electronic circuits using superposition permits separation of the DC and AC
analyses.

EXAMPLE 18.9 Determine the Thévenin equivalent circuit for the
transistor network external to the resistor R; in the network of Fig.

18.33. Then determine V7.
T 12V

R 2k
¢ Gy Thévenin
Rp gl M) |
| Ik
R, i:f'l 10 Q
% I\ Transistor T
p 05kl 100 ~ §RL=1H1 V;
Ef —_
= FIG. 18.33 — -

Example 18.9. -~



Solution: Applying superposition.

dc Conditions Substituting the open-circuit equivalent for the cou-
pling capacitor C, will 1solate the dc source and the resulting currents
from the load resistor. The result 1s that for dc conditions. V; = 0 V.
Although the output dc voltage is zero, the application of the dc voltage
is 1mportant to the basic operation of the transistor in a number of
important ways, one of which 1s to determine the parameters of the
“equivalent circuit” to appear in the ac analysis to follow.



ac Conditions For the ac analysis. an equivalent circuit is substi-
tuted for the transistor, as established by the dc conditions above, that
will behave like the actual transistor. Fig. 18.34==the equivalent circuit.

The equivalent circuit includes a resistor of 2.3 k() and a controlled

current source whose magnitude is determined by the product of a fac-
tor of 100 and the current /; in another part of the network.

RE
0.5 kQ _1]1
t +
E; Rz §1 MQ | <23 k0 100L; R 2KkO R£§ 1kQ V;
FIG. 18.34 Transistor equivalent Thévenin

circuit
The ac equivalent network for the transistor amplifier of Fig. 18.33.



For the amalysis to follow. the effect of the resistor Rz will be
1gnored since it is so much larger than the parallel 2.3-k() resistor.

Z;, When E, is set to zero volts, the current I; will be zero amperes,
and the controlled source 100I; will be zero amperes also. The result is
an open-circuit equivalent for the source. as appearing in Fig. 18.35.

It 1s fairly obvious from Fig. 18.35 that L ©

Z5 = 2kQ

E;, For Eg, the current I, of Fig. 18.34 will be

Ef _ E;r' — Ei T

I, = — = . = DR ©
'R +23K0 05KkQ+23kQ 28kQ
B FIG. 18.35
and 1001, = (100}( . ) =35.71 X 10 */Q) E, Determining the Thévenin impedance for the
2.8k}, network of Fig. 18.34.
Referring to Fig. 18.36, we find that o
Ep, = —(100L,)Rc - -
— i —3 3
E,, = —71.42E,
The Thevenin equivalent circuit appears in Fig. 18.37 with the orig- R s ;
mal load R;.
FIG. 18.36
Output Voltage V
P ge Vi Determining the Thévenin voltage for the net-
V. — —R;Epn, _ —( k()(71.42E)) work of Fig. 18.34.
LR +Zp 1kQ + 2 kO
and V; = —2381E;

revealing that the output voltage 1s 23.81 times the applied voltage with
a phase shift of 180° due to the minus sign.




AW -
) KA
— +
Eg, @?1.425 BRIV,
_I_ —
3
FIG. 18.37

The Thevenin equivalent circuit for the net-
work of Fig. 18.34.



Dependent Sources:

Case 1: Controlling variable external to the network under
Investigation: = Can use the method shown above.

Case 2: Controlling variable is part of the network under
Investigation: = Use New Approach.

New Approach for Thévenin’s theorem:

This new approach can be used for any circuit; however, it Is especially useful for
circuits with dependent sources controlled by variables within the circuit to be
analyzed.

1. Step 1: find the open circuit voltage. The Thévenin’s equivalent voltage will be
equal to the open circuit voltage.

2. Step 2: find the short circuit current. The Thévenin’s equivalent impedance will
be equal to the ratio between the open circuit voltage and short circuit current.






EXAMPLE 18.10 Using each of the three techniques described in this
section, determine the Thévenin equivalent circuit for the network of

Fig. 18.40.

Solution: Since for each approach the Thévenin voltage is found in
exactly the same manner, it will be determined first. From Fig. 18.40,
where Iy = 0,

Due to the polarity for V and
defined termunal polanties

e e ARrev)  prv
Ry = ™Th T e ™ R+ R, R, + R,

The following three methods for determining the Theévenin imped-
ance appear in the order in which they were introduced in this section.

Method 1: See Fig. 18.41.
Ly =R, || R, —jX¢

Ry =5
Wy IC—o
— Thévenin
uv R, —
+
T )
FIG. 18.40
X,
R 14
M I ©

-
Ly,




Method 2: See Fig. 18.42. Converting the voltage source to a current

source (Fig. 18.43), we have (current divider rule)

P:‘? ‘ 7
—(Ry | Ry)— — Riky &\ )
Ry Ry + R\ Ry,
L. = (R ||R2) —JXe = (R, ” Ry) —jXe
TRV
R, + R,
= (R || Ry —jX¢
and
—UR,V
E R, + R, 1
ZT}I = = - T -
I, —HR,V 1
R, + R, (R, ||R2) —J e
(Ry | Ry) — j Xe

Ly, = R, || R, — jX¢

R, ‘i‘}?
AN Ik
ISI:'
uV R,
—
FIG. 18.42
Xe
Yi
{
I,
. :
’“;_1 R § Rgg
FIG. 18.43

5C




In each case, the Thévenin impedance 1s the same. The resulting
Thévenin equivalent circuit is shown in Fig. 18.45.

Zy = R || Ry — jX

W—( 0
S MRV ) o
h= m <+— Thévenin
0
FIG. 18.45

The Thévenin equivalent circuit for the network of Fig. 18.40.

EXAMPLE 18.12 For the network of Fig. 18.50 (introduced in Exam-
ple 18.6). determine the Thévenin equivalent circuit between the indi-
cated terminals using each method described in this section. Compare

Your rc sults.



Solution: First, using Kirchhoff’s voltage law,
Ez; (which 1s the same for each method) 1s written

Ep=V+uvV=(0+pV

However, V = 1R, FIG. 18.50
S0 Epm =010+ pIR,
Ly,

Method 1: See Fig. 18.51. Since I = 0, V and pV = 0. and

% (incorrect)

FIG. 18.51
Determining Ly, incorrecily.




Method 2: See Fig. 18.52. Kirchhoff’s voltage law around the indicated

loop gives us
V+uv=0

and V(1 +p)=0
Since p 1s a positive constant. the above equation can be satisfied

only when V = 0. Substitution of this result into Fig. 18.52 will yield

the configuration of Fig. 18.53, and
I.=1

Em‘ _ (1 + .U“)I-RI
| I

with L = =1+ pwkR, (correct)

J?‘-il § v O 1 I_n:'

FIG. 18.52

FIG. 18.53




Method 3: See Fig. 18.54.

E,=V+uV=(1+pV L

E )

or V = £ RV
1+ p T

L

Vv E
and I, = = £
Ry (1+ wR, FIG. 18.54
Eg (1 + R,
and Ly = 1 (1 + R, (correct) AN ql
£ I
The Thévenin equivalent circuit appears in Fig. 18.55. and
1 b ) Ep = (1 + wIR, §RL
- 1+ p)R,I _
;=
Ry + (1 + p)R, in o

which compares with the result of Example 18.6. FIG. 18.55




EXAMPLE 18.13 Determine the Thévenin equivalent circuit for the
indicated terminals of the network of Fig. 18.56.

FIG. 18.56
Example 18.13. Transistor equivalent network.



Solution:

E Th

and

or

and

S0

Apply the second method introduced in this section.

Eoc = VFQ
I= V. —kV, - V,— IE,.
R, R,
'V, — E,.
E,.= —klR, = _szz(—l)
R,

— IR,V i koo RoE o
R, R,

kbR —kRV,

Eocl_Lzz): 2V
Ry Ry

— R,V

Eac(Rl - klfszz') _

» M

C
+

et

i

G

£
== it "
+ Evenin
Iy Vo ¢ k1 <> R, Vi
x

FIG. 18.56
Example 18.13: Transistor equivalent network.




|, For the network of Fig. 18.57. where

v,
V,=0 kV,=0 I=
2 R,
—I,V,
and I..= kbl = RZ
_-J;.'ERE"T‘: !
R,— k>R
E. ———  R&R
S0 Zp = = —kV, = PR Ry
sc R, 17 KRG ° — AN -
(o]
v, kol Rgg
z, — — % ’
and o | _ kkaR, .
R, =
FIG. 18.57

Frequently. the approximation k; = 0 is applied. Determining L. for the network of Fig. 18.56.

Then the Thévenin voltage and impedance are

-'71.']_:0

ZTF‘E:RI ﬂvl:{]




18.4 NORTON’S THEOREM

any two-terminal linear ac network can be replaced O
with an equivalent circuit consisting of a current
source (Phasor) and an impedance in parallel, as .
shown in Fig. 18.59. I C) e
O

FIG. 18.59
The Norton equivalent
circuit for ac networks.

Since the reactances of a circuit are frequency dependent, the Norton’s circuit found
for a particular network is applicable only at one frequency.




. Remove that portion of the network across which the Norton equivalent
circuit is to be found.

. Mark (o, e, and so on) the terminals of the remaining two-terminal network.

. Calculate Zy by first setting all voltage and current sources to zero (short
circuit and open circuit, respectively) and then finding the resulting
Impedance between the two marked terminals.

. Calculate Iy by first replacing the voltage and current sources and then
finding the short-circuit current between the marked terminals.

. Draw the Norton equivalent circuit with the portion of the circuit previously
removed replaced between the terminals of the Norton equivalent circuit.

Zf—.rr? = z‘},r.'
O zm —O
+
E 4 — "
l_-"-" = EE ) ZN E_}._.' = z_‘m @ EJ'_.'!} = IJ.'.‘_TE‘},E.*
I -
's) O

FIG. 18.60
Comversion benween the Thévenin and Norton equivalent circuifs.



EXAMPLE 18.15 Find the Norton equivalent circuit for the network
external to the 7-() capacitive reactance in Fig. 18.66.

X7
R, 000
r 51
Wy
110 ||{
R=20Q /I °
T B Xp =70
I=3A/0° -
Xo AT~ 40
- FIG. 18.66

Example 18.15.



Solution:
Steps 1 and 2 (Fig. 18.67):

ZIZR1 _chlzzil _JF4-(1
ZEZREZIII
23 - +j‘YL :jﬁil

I=3A/0° CT) Z

= FIG. 18.67
Assigning the subscripted impedances to the network of Fig. 18.66.




Step 3 (Fig. 18.68):

_ 752, + Z,)
» Zs+(Z, + 7,
7, +2,=20-j40+10=30-40=50/,-5313°

(5 £90°)(5Q £—53.13%)  25() £36.87° 25 () £.36.87°

j50+30—-;40 3+71 3.16 £+18.43°

N

Z,=7910Q £18.44° =750 +j2.50 Q)

Z;

e R




Step 4 (Fig. 18.69):

o]

7,1
Iy,=1 = — (current divider rule)
' 7, +7Z,
20 —-j40)(BA) 6A—-jI12A 134A /L6343
3(00—-;740 5 /—53.13° 5 £/ —53.13°

Iy=2.68A /—10.3° 7
3

Z, (—

Ilc—:}l

I-'";'

Step 5: The Norton equivalent circuit is shown in Fig. 18.70.

I;‘.,’z 2.68 ;"'LA - 1':'.5': I‘-‘.r?: :68 .""LZ - ].l:l.jc
O O
750 Q|+ 7250 0
—- R<7.50()
A A
I;‘-,-" C) Ly XC-. —~ 70 Iy () X{:'-. =71}

X, 2500

] O




A new Approach for Norton’s theorem

This new approach can be used for any circuit; however, it is especially useful for
circuits with dependent sources controlled by variables within the circuit to be
analyzed.

1. Step 1: find the short circuit current. The Norton’s equivalent current will be
equal to the short circuit current.

2. Step 2: find the open circuit voltage. The Norton’s equivalent impedance will
be equal to the ratio between the open circuit voltage and short circuit current.

1=0 l 0
h T “y lISC Ly T Zyl E,. = L,Z
IS L ;
Isc — I'\' ) Ec--:* — INZ‘N
Ly = Elzf =::-:_==- Zy = ]i::




EXAMPLE 18.17 Using each method described for dependent sources.
find the Norton equivalent circuit for the network of Fig. 18.75.

Solution:
Iy For each method. I, is determined in the same manner.
From Fig.18.76. using Kirchhoff’s current law. we have
0=1I+hI+ 1L,
or L,=—(1+hI
: . L o L T Ve,
Applying Kirchhoff’s voltage law gives us MW — W .
E + IR]_ - I.S‘C'RE =0 Ry Ry I
+
and IR, = L.R, — E E@ h1 I,
I..R, — E
or I=——
R, L ©
I R, — E» - FIG. 18.76
S0 I, = —(] + I =—(1+ E?)(L) Determining 1. for the network of Fig. 18.75.
1
or RiL,.,=—(1+hL.R +(1+ hE
LR, + (1 + h)R,] = (1 + HE
B (1 + E B
“ Ry+Q+mR, ¥




Ly

Method 1: E,. 1s determined from the network of i v o
Fig. 18.77. By Kirchhoff’s current law, - + -
Wy W———2
O0=I+hl or I(h+1)=0 Ry
13_01‘ h, a positive constant I must equal zero to E_ @ - E,
satisfy the above. Therefore. -
I=0 and HI=0 5
and E,, =E = FIG. 18.77
E R, + (1 + MR, Determining E,. for the network of Fig. 18.735.
with Zy = I = TG = a+0)

R, +(1+ hR,




EXAMPLE 18.18 Find the Norton
configuration of Fig. 18.56.

equivalent circuit for the network

Solution: By source conversion.

—k>R,V;
ET’;I -Rl — :E\F]_.E\'ij
IJ'\" = = Rle
Ly,
Rl - }II\'_]L?ERQ.
and I, = —kV;
R,

which 1s L. as determined in Example 18.13, and

Zy = 7, — —2
N — LTh L kykyR,
R,
For k; = 0. we have
— T.
Zy=R, | and Iy = —kV; k=0
R,

Ry

O
T

O

I

MA o
_b. +
-
+ Thévenin
ks koI R, § Vv,
-

FIG. 18.56
Example 18.13: Transistor equivalent network.




18.5 MAXIMUM POWER TRANSFER THEOREM

When applied to ac circuits, the maximum power transfer theorem states that

Maximum power will be delivered to a load when the load impedance is the
conjugate of the Theévenin impedance across its terminals.

ZL — Z}‘h al’ld 9}: — _GT;,Z

RL — RTF: Eilld i] }(ll::-ad — IJ XTF:

The conditions just mentioned will make the total impedance of the cir-
cuit appear purely resistive, as indicated in Fig. 18.80:



Z; =R+ )+RF;X
ZT:.‘ER

Since the circuit is purely
resistive: The power factor under
maximum power transfer is 1.

F,=1
(maximmum power transfer)
Z, 2R
P2 p VETII A
Pmax_]R_( 2R>R
max 4R

En = Ep, 431%3 @ Z; | = 440

FIG. 18.79

Defining the conditions for maximum power transfer to a load.

Zp, = R + jY <+

N

-——=

FIG. 18.80
Conditions for maximum power transfer to Z.;.

=R FjX




EXAMPLE 18.19 Find the load impedance in Fig. 18.81 for maxi-
mum power to the load. and find the maximum power.

Solution: Determine Zz;, [Fig. 18.82(a)]:
Z,=R—jX.=6Q—;80=100Q £—53.13°
ZQ_ — +j‘¥L :j 8 -(l

R f'i*’}:
W1 T
N 80
E=9VZ0° nggﬂ Z
Z] 0] Z‘l ')
- o +
Z, L, E Z, Epn,
L © L ©
(a) FIG. 18.82 (b)

Determining (a) L, and (b) Eg;, for the network external to the load in



Z,Z, (109 £—53.13°)(8€ £90°) _ 80() £36.87°

Zm:

Z,+Z, 60 —i80+;80 6 £0°
= 13330 £3687°=10.66 ) + ;8 Q)
and Z;=1330 £ —36.87°=10.66 O —j8 O

To find the maximum power, we must first find Eg, [ Fig. 18.82(b)],
as follows:

Z-E

Ep=——"— (voltage divider rule)

Z,+ 7, -

" o T O o R o
_ (80 29099V £0°) _ 72 £90° _ 15y 2900
j8O+60 —;580Q 6 /0°
Ej. ry2 A,
Then p —=m_ _(12V) _ 18 534w

M AR O 4(10.66 Q) 42.64



EXAMPLE 18.20 Find the load impedance in Fig. 18.83 for
maximum power to the load, and find the maximum power

Solution: First we must find Z;, (Fig. 18.84).

+
E =
10V Z£0° @
Z,=+jX; =790 Z,=R=28()
Converting from a A to a’Y (Fig. 18.85), we have
Z :
Z,==-=/30 7,=-80 =
) - FIG. 18.83
Example 18.20.
2 )
: 2
Z'y

FIG. 18.85
Substituting the Y equivalent for the

upper A configuration of Fig. 18.84.

Zﬂf




The redrawn circuit (Fig. 18.86) shows
2\(Z + Z,)

7, +(Z, +1Z,)
30290°(;30+8()
j6 L+ 80
3 £90°)(8.54 £20.56%)
10 /36.87°

5. 56°
+ 25:62 211056 =j3 + 2.56 L73.69°
10 £36.87°

=73+ 0.72 +j2.46
Zp;=072Q0+75460Q

Ly = Z’I +

j30+

_|_

Il
.
(b

J

fad

and Z; =0.72 0 —j5.46 ()

For Eg,. use the modified circuit of Fig. 18.87 with the voltage
source replaced in its original position. Since I; = 0, Eg, is the voltage
across the series impedance of Z’; and Z,. Using the voltage divider
rule gives us

_ (ZNWHZHE (30 +80)(10V L0
7\ +7Z,+ 7, 8O +j760
(8.54 £20.56°)(10 V £.0°)
10 £36.87°
Ep, = 8.54V £-16.31°

_Ep _ (854V) 7293
4R 4(0.72€)  2.88

W =2532W

- ZI" ZJ
zi".-"i 1 1
Z,
L
Il = D
— Z'l
Z'l Z.'l
Er R
Z, E




