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Chapter 1

Discrete random variable

1.1 Discrete Probability Distributions

De�nition 1 The set of ordered pairs (x; f(x)) is a probability function, probability mass func-

tion, or probability distribution of the discrete random variable X if, for each possible outcome

x,

1. f(x) � 0,

2.
P
x
f(x) = 1,

3. P (X = x) = f(x).

De�nition 2 The cumulative distribution function F (x) of a discrete random variable X with

probability distribution f(x) is

F (x) = P (X � x) =
X
t�x
f(t); for �1 < x <1

De�nition 3 (Mean of a Random Variable) Let X be a random variable with probability

distribution f(x). The mean, or expected value, of X is

� = E(X) =
X
x

xf(x)

Example 4 A lot containing 7 components is sampled by a quality inspector; the lot contains

4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find
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the expected value of the number of good components in this sample.

Example 5 Let X represent the number of good components in the sample. The probability

distribution of X is f(x) =

0BB@ 4

x

1CCA
0BB@ 3

3� x

1CCA
0BB@ N

n

1CCA
, x = 0; 1; 2; 3.

Simple calculations yield f(0) = 1=35, f(1) = 12=35, f(2) = 18=35, and f(3) = 4=35. There-

fore,

� = E(X) = (0)
1

35
+ (1)

12

35
+ (2)

18

35
+ (3)

4

35
= 12=7 = 1:7

Thus, if a sample of size 3 is selected at random over and over again from a lot of 4 good

components and 3 defective components, it will contain, on average, 1.7 good components.

Theorem 6 Let X be a random variable with probability distribution f(x). The expected value

of the random variable g(X) is

�g(X) = E[g(X)] =
X
x

g(x)f(x)

Example 7 Suppose that the number of cars X that pass through a car wash between 4:00 P.M.

and 5:00 P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9

f(x) 1
12

1
12

1
4

1
4

1
6

1
6

Let g(X) = 2X � 1 represent the amount of money, in dollars, paid to the attendant by the

manager. Find the attendant�s expected earnings for this particular time period.

Example 8 Let X be a random variable with probability distribution as follows:

x 0 1 2 3

f(x) 1
3

1
2 0 1

6

Find the expected value of Y = (X � 1)2.
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Theorem 9 (Variance of Random Variable) Let X be a random variable with probability

distribution f(x) and mean �. The variance of X is

�2 = E[(X � �)2] =
X
x

(x� �)2f(x)

The positive square root of the variance, �, is called the standard deviation of X.

Example 10 Calculate the variance of g(X) = 2X + 3, where X is a random variable with

probability distribution

x 0 1 2 3

f(x) 1
4

1
8

1
2

1
8

1.2 Some Discrete Probability Distributions

1.2.1 Discrete Uniform Random Variable

De�nition 11 (Discrete Uniform Random Variable) A random variable X is called dis-

crete uniform if it has a �nite number of possible values, say x1; x2; :::; xn, and Pr(X = xi) =

1=n for all i.

1.2.2 Binomial Distribution

De�nition 12 (Bernouilli Process) Strictly speaking, the Bernoulli process must possess the

following properties:

1. The experiment consists of repeated trials.

2. Each trial results in an outcome that may be classi�ed as a success or a failure.

3. The probability of success, denoted by p, remains constant from trial to trial.

4. The repeated trials are independent.

De�nition 13 (Binomial Distribution) A Bernoulli trial can result in a success with prob-

ability p and a failure withprobability q = 1�p. Then the probability distribution of the binomial

random variable X, the number of successes in n independent trials, is

Pr(X = x) =

0@ n

x

1A pxqn�x; x = 0; 1; 2; :::; n:
6



Example 14 The probability that a certain kind of component will survive a shock test is 3/4.

Find the probability that exactly 2 of the next 4 components tested survive.

Solution 15 Let X the number of components that will survive a shock test. Assuming that

the tests are independent and p = 3=4 for each of the 4 tests, then X is a binomial distribution

Bin(4; 3=4). Hence,

Pr(X = 2) =

�
4

2

�
(3=4)2(1=4)2 � 0:21

Example 16 The probability that a patient recovers from a rare blood disease is 0:4. If 15

people are known to have contracted this disease, what is the probability that

(a) at least 10 survive,

(b) from 3 to 8 survive,

and (c) exactly 5 survive?

Solution 17 (a) Pr(X � 10) = 1� Pr(X < 10)

= 1�
9X
x=0

b(x; 15; 0:4) = 1� 0:9662 = 0:0338

(b) Pr(3 � X � 8) =
8X
x=3

b(x; 15; 0:4)

=
8X
x=0

b(x; 15; 0:4)�
2X
x=0

b(x; 15; 0:4)

= 0:9050� 0:0271 = 0:8779

(c) Pr(X = 5) = b(5; 15; 0:4) =
5X
x=0

b(x; 15; 0:4)

4

�
X
x=0

b(x; 15; 0:4) = 0:4032� 0:2173 = 0:1859

Theorem 18 The mean and variance of the binomial distribution B(n; p) are

� = np and �2 = npq:
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1.3 Hypergeometric Distribution

De�nition 19 (Hypergeometric Distribution) The probability distribution of the hyperge-

ometric random variable X, the numberof successes in a random sample of size n selected from

N items of which K are labeled success and N �K labeled failure, is

Pr(X = x) =

0@ K

x

1A0@ N �K

n� x

1A
0@ N

n

1A
Theorem 20 The mean and variance of the hypergeometric distribution h(N;K; n) are

� = n
K

N
and �2 = n

K

N

�
1� nK

N

�
N � n
N � 1 :

Example 21 Lots of 40 components each are deemed unacceptable if they contain 3 or more

defectives. The procedure for sampling a lot is to select 5 components at random and to reject

the lot if a defective is found. What is the probability that exactly 1 defective is found in the

sample if there are 3 defectives in the entire lot?

Solution 22 Using the hypergeometric distribution with n = 5, N = 40, k = 3, and x = 1, we

�nd the probability of obtaining 1 defective to be

h(1; 40; 5; 3) =

�
3
1

��
37
4

��
40
5

� = 0:3011:

Theorem 23 (Approximation) If n is small compared to N, then a binomial distribution

B(n; p = K=N) can be used to approximate the hypergeometric distribution h(N;K; n).

Example 24 A manufacturer of automobile tires reports that among a shipment of 5000 sent

to a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at random

from the distributor, what is the probability that exactly 3 are blemished?

Solution 25 Since N = 5000 is large relative to the sample size n = 10, we shall approxi-

mate the desired probability by using the binomial distribution. The probability of obtaining a
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blemished tire is 0:2. Therefore, the probability of obtaining exactly 3 blemished tires is

h(3; 5000; 10; 1000) � b(3; 10; 0:2)=0:8791� 0:6778=0:2013:

1.3.1 Poisson Distribution

De�nition 26 Let X the number of outcomes occurring during a given time interval. X is

called a Poisson random variable when its probability distribution is given by

Pr(X = x) = e��
�x

x!
; x = 0; 1; 2; :::;

where � is the average number of outcomes.

Example 27 During a laboratory experiment, the average number of radioactive particles pass-

ing through a counter in 1 millisecond is 4. What is the probability that 6 particles enter the

counter in a given millisecond?

Solution 28 Using the Poisson distribution with x = 6 and � = 4 and referring to Table A.2,

we have

p(6; 4) =
e�446

6!
= 0:1042:

Theorem 29 Both the mean and the variance of the Poisson distribution P (�) are �.

Theorem 30 (Approximation) Let X be a binomial random variable with probability distri-

bution B(n; p). When n is large (n ! 1), and p small (p ! 0), then the poisson distribution

can be used to approximate the binomial distribtion B(n; p) by taking � = np.

Example 31 In a certain industrial facility, accidents occur infrequently. It is known that the

probability of an accident on any given day is 0:005 and accidents are independent of each other.

(a) What is the probability that in any given period of 400 days there will be an accident on one

day?

(b) What is the probability that there are at most three days with an accident?

Solution 32 Let X be a binomial random variable with n = 400 and p = 0:005. Thus, np = 2.

Using the Poisson approximation, (a) Pr(X = 1) = e�221 = 0:271 and (b) Pr(X � 3) =

e�22x=x! = 0:857.
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Chapter 2

Continuous random variable

2.1 Probability density function

De�nition 33 The function f(x) is a probability density function (pdf) for the continuous

random variable X, de�ned over the set of real numbers, if

1. f(x) � 0, for all x 2 R.

2.

1Z
�1

f(x)dx = 1.

3. Pr(a � X � b) =
bZ

a

f(x)dx.

Example 34 Suppose that the error in the reaction temperature, in �C, for a controlled labo-

ratory experiment is a continuous random variable X having the probability density function

f(x) =

8<: x2

3 ; � 1 < x < 2

0; elsewhere

(a) Verify that f(x) is a density function.

(b) Find Pr(0 � X � 1).

(c) Find Pr(0 < X < 1).
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De�nition 35 The cumulative distribution function F (x) of a continuous random variable X

with density function f(x) is

F (x) = Pr(X � x) =
xZ

�1

f(t)dt; for �1 < x <1:

Example 36 For the density function of Example 2, �nd F (x), and use it to evaluate Pr(0 <

X � 1).

De�nition 37 (Mean of a Random Variable) Let X be a random variable with probability

distribution f(x). The mean, or expected value, of X is

� = E(X) =

1Z
�1

xf(x)dx

Example 38 For the density function of Example 2, �nd E(X).

Theorem 39 Let X be a random variable with probability distribution f(x). The expected value

of the random variable g(X) is

�g(X) = E[g(X)] =

1Z
�1

g(x)f(x)dx

Theorem 40 (Variance of Random Variable) Let X be a random variable with probability

distribution f(x) and mean �. The variance of X is

�2 = E[(X � �)2] =
1Z

�1

(x� �)2f(x)

Theorem 41 Let X a random variable. The variance of a random variable X is

�2 = E(X2)� E(X)2:

Theorem 42 Let X a random variable. If a and b are constants, then E(aX+b) = aE(X)+b.
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Theorem 43 The expected value of the sum or di¤erence of two or more functions of a random

variable X is the sum or di¤erence of the expected values of the functions. That is,

E[g(X)� h(X)] = E[g(X)]� E[h(X)]:

2.2 Some Continuous Probability Distributions

2.2.1 Continuous Uniform Distribution

De�nition 44 (Uniform Distribution) The density function of the continuous uniform ran-

dom variable X on the interval [a; b] is

f(x) =

8<: 1
b�a , a � x � b

0 elsewhere:

Example 45 Suppose that a large conference room at a certain company can be reserved for

no more than 4 hours. Both long and short conferences occur quite often. In fact, it can be

assumed that the length X of a conference has a uniform distribution on the interval [0; 4].

a) What is the probability density function?

b) What is the probability that any given conference lasts at least 3 hours?

Theorem 46 The mean and variance of the uniform distribution are

� = E(X) =
a+ b

2
and �2 =

(b� a)2
12

The proofs of the theorems are left to the reader.

2.2.2 Normal Distribution

De�nition 47 (Standard Normal Distribution) The density of the standard normal dis-

tribution Z is

f(x) =
1p
2�
e
�1
2
x2 ; �1 < x <1;
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Theorem 48 The mean and variance of standard normal distribution are 0 and 1, respectively.

We denote the standard normal distribution by N(0; 1).

Example 49 Given a standard normal distribution N(0; 1), �nd the area under the curve that

lies

(a) to the right of z = 1:84

(b) between z = �1:97 and z = 0:86.

Solution 50 (a) 0:0329 (b) 0:7807.

Example 51 Given a standard normal distribution N(0; 1), �nd the value of k such that

(a) Pr(Z > k) = 0:3015 and

(b) P (k < Z < �0:18) = 0:4197.

Solution 52 (a) k = 0:52 (b) k = �2:37.

De�nition 53 (Normal Distribution) The density of the normal random variable X, with

mean � and variance �2, and denoted by N(�; �), is

f(x) =
1p
2��

e
�1
2�2

(x��)2 ; �1 < x <1;

where � = 3:14159 . . . and e = 2:71828 . . . .

Theorem 54 If X is normal random variable N(�; �), then the random variable (X ��)=� is

a standard normal distribution Z with mean 0 and variance 1.

Example 55 Given a random variable X having a normal distribution with � = 50 and � = 10,

�nd the probability that X assumes a value between 45 and 62.

Solution 56 Using Table A.3, we have

Pr(45 < X < 62) = Pr(�0:5 < Z < 1:2) = Pr(Z < 1:2)� Pr(Z < �0:5)

= 0:8849� 0:3085 = 0:5764:
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Example 57 Given a normal distribution with � = 40 and � = 6, �nd the value of x that has

(a) 45% of the area to the left

(b) 14% of the area to the right.

Solution 58 (a) We need to �nd a z value that leaves an area of 0:45 to the left. From Table A.3

we �nd Pr(Z < �0:13) = 0:45, so the desired z value is �0:13. Hence, x = (6)(�0:13) + 40 =

39:22. (b) This time we require a z value that leaves 0:14 of the area to the right and hence an

area of 0:86 to the left. Again, from Table A.3, we �nd P (Z < 1:08) = 0:86, so the desired z

value is 1:08 and

x = (6)(1:08) + 40 = 46:48:

Example 59 An electrical �rm manufactures light bulbs that have a life, before burn-out, that

is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours.

Find the probability that a bulb burns between 778 and 834 hours.

Solution 60 The z values corresponding to x1 = 778 and x2 = 834 are

z1 =
778� 800

40
= �0:55 and z2 =

834� 800
40

= 0:85:

Hence,

Pr(778 < X < 834) = P (�0:55 < Z < 0:85)

= P (Z < 0:85)� P (Z < �0:55)

= 0:8023� 0:2912 = 0:5111:

Example 61 A certain machine makes electrical resistors having a mean resistance of 40 ohms

and a standard deviation of 2 ohms. Assuming that the resistance follows a normal distribution

and can be measured to any degree of accuracy, what percentage of resistors will have a resistance

exceeding 43 ohms?

Solution 62 A percentage is found by multiplying the relative frequency by 100%. Since the

relative frequency for an interval is equal to the probability of a value falling in the interval,

we must �nd the area to the right of x = 43. This can be done by transforming x = 43 to the
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corresponding z value, obtaining the area to the left of z from Table A.3, and then subtracting

this area from 1. We �nd

z =
43� 40
2

= 1:5:

Therefore,Pr(X > 43) = Pr(Z > 1:5) = 1� Pr(Z < 1:5) = 1� 0:9332 = 0:0668. Hence, 6:68%

of the resistors will have a resistance exceeding 43 ohms.

2.2.3 Exponential Distribution

The exponential random variable is used when we are interested in the time of the �rst arrival

or the time between arrival.

De�nition 63 The continuous random variable X has an exponential distribution, with para-

meter �, if its density function is given by f(x) =

8<: �e��x, x > 0

0 elsewhere
where � > 0.

Theorem 64 The mean and variance of the exponential distribution are � = 1=� and �2 =

1=�2.

If X is the time of arrival of the �rst customer and if the average time is 30 minutes, then

� = 1=30.

Example 65 Suppose that a system contains a certain type of component whose time, in years,

to failure is given by T . The random variable T is modeled nicely by the exponential distribution

with mean time to failure is 5.

(a) If one component is installed, what is the probability that it is still functioning at the end

of 8 years?

(b) If 5 of these components are installed in di¤erent systems, what is the probability that at

least 2 are still functioning at the end of 8 years? (Hint: use the binomial distribution).

Solution 66 (a)The probability that a given component is still functioning after 8 years is

given by

Pr(T > 8) =
1

5

1Z
8

e�t=5dt = e�8=5 � 0:2.
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(b) Let X represent the number of components functioning after 8 years. X is binomial disc-

tribution Bin(8; 0:2). Then we have

Pr(X � 2) =
5X
x=2

Pr(X = x) = 1�
 

1X
x=0

Pr(X = x)

!
= 1� 0:7373 = 0:2627:
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Chapter 3

Fundamental Sampling Distributions

3.1 Random sampling

De�nition 67 A population consists of the totality of the observations with which we are con-

cerned

De�nition 68 A sample is a subset of a population.

In the �eld of statistical inference, statisticians are interested in arriving at conclusions

concerning a population when it is impossible or impractical to observe the entire set of obser-

vations that make up the population. Therefore, we must depend on a subset of observations

from the population to help us make inferences concerning that same population.

De�nition 69 A sample is a subset of a population.

To eliminate any possibility of bias in the sampling procedure, it is desirable to choose a

random sample in the sense that the observations are made independently and at random.

3.2 Some important statistics

De�nition 70 Any function of the random variables constituting a random sample is called a

statistic.
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� Sample mean: X = 1
n

nX
i=1

Xi

� Sample median: eX =

8<: x(n+ 1)=2, if n is odd;

1
2(xn=2 + xn=2+1), if n is even.

� Sample variance: S2 = 1
n�1

nX
i=1

(Xi �X)2

The computed value of S2 for a given sample is denoted by s2.

Theorem 71 If S2 is the variance of a random sample of size n, we may write

S2 =
1

n� 1

"
nX
i=1

X2
i � nX

2

#

� Sample standard deviation: S =
p
S2

3.3 Sampling Distibutions

Let us consider a soft-drink machine designed to dispense, on average, 240 milliliters per drink.

A company o¢ cial who computes the mean of 40 drinks obtains x = 236 milliliters. On the

basis of this value, she decides that the machine is still dispensing drinks with an average

content of � = 240 milliliters. The 40 drinks represent a sample from the in�nite population of

possible drinks that will be dispensed by this machine.The company o¢ cial made the decision

that the soft-drink machine dispenses drinks with an average content of 240 milliliters, even

though the sample mean was 236 milliliters, because he knows from sampling theory that, if

� = 240 milliliters, such a sample value could easily occur. In fact, if she ran similar tests, say

every hour, she would expect the values of the statistic x to �uctuate above and below � = 240

milliliters. Only when the value of x is substantially di¤erent from 240 milliliters will the

company o¢ cial initiate action to adjust the machine.

Since a statistic is a random variable that depends only on the observed sample, it must

have a probability distribution.

De�nition 72 The probability distribution of a statistic is called a sampling distribution.
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3.4 Sampling Distribution of Means and the Central Limit

Theorem 73 If X1; X2; :::; Xn are independent (?) random variables having normal distribu-

tions with means �1; �2; :::; �n and variances �
2
1; �

2
2; :::; �

2
n, respectively, then the random variable

Y = a1X1 + a2X2+���+anXn has a normal distribution with mean

�Y = a1�1 + a2�2 + ���+ an�n

and variance

�2Y = a
2
1�
2
1 + a

2
2�
2
2 + ���+ a2n�2n

Suppose that a random sample of n observations is taken from a normal population with

mean � and variance �2. Each observation Xi, i = 1; 2; :::; n, of the random sample will then

have the same normal distribution. Hence, from Theorem 7, we conclude that

X =
1

n

nX
i=1

Xi

has a normal distribution with mean

�X =
1

n
f�+ �+ :::+ �g =

nX
i=1

� = �

and variance

�2
X
=
1

n2
�
�2 + �2 + :::+ �2

	
=
1

n2

nX
i=1

�2 =
�2

n
:

Hence, we have

Corollary 74 If X1; X2; :::; Xn are independent random variables having normal distributions

with means � and variances �, then the sample mean X is normally distributed with mean equal

to � and standard deviation equal to �=
p
n. Consequently the random variable

Z =
(X � �)
�=
p
n

is a standard normal distribution.
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Theorem 75 (Central Limit Theorem) If X is the mean of a random sample of size n

taken from a population with mean � and �nite variance �2, then the limiting form of the

distribution of

Z =
(X � �)
�=
p
n

as n!1, is the standard normal distribution N(0; 1).

The normal approximation for X will generally be good if n � 30.

Example 76 An electrical �rm manufactures light bulbs that have a length of life that is ap-

proximately normally distributed, with mean equal to 800 hours and a standard deviation of 40

hours. Find the probability that a random sample of 16 bulbs will have an average life of less

than 775 hours.

Solution 77 Here � = 800, � = 40 and n = 16. The random variable X is normally distributed

with mean �X = � = 800 and standard standard deviation �X = �X=
p
n = 10.

Then (X � 800)=10 is a standard normal distribution N(0; 1). Hence,

Pr(X < 775) = P ((X � 800)=10 < (775� 800)=10)

= P (Z < �2:5) = 0:0062:

Example 78 Traveling between two campuses of a university in a city via shuttle bus takes, on

average, 28 minutes with a standard deviation of 5 minutes. In a given week, a bus transported

passengers 40 times. What is the probability that the average transport time was more than 30

minutes?

Solution 79 In this case, � = 28 and � = 3. We need to calculate the probability Pr(X > 30)

with n = 40. Hence,

Pr(X > 30) = Pr

�
X � 28
5=
p
40

� 30� 28
5=
p
40

�
= Pr (Z � 2:53)

= 1� Pr (Z � 2:53) = 1� 0:9925 = 0:0075:

There is only a slight chance that the average time of one bus trip will exceed 30 minutes.
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3.5 Sampling Distribution of the Di¤erence between TwoMeans

A scientist or engineer may be interested in a comparative experiment in which two manufac-

turing methods, 1 and 2, are to be compared. The basis for that comparison is �1 � �2, the

di¤erence in the population means. Suppose that we have two populations, the �rst with mean

�1 and variance �
2
1, and the second with mean �2 and variance �

2
2. Let the statistic X1 repre-

sent the mean of a random sample of size n1 selected from the �rst population, and the statistic

X2 represent the mean of a random sample of size n2 selected from the second population,

independent of the sample from the �rst population. What can we say about the sampling

distribution of the di¤erence X1 � X2 for repeated samples of size n1 and n2? According to

Theorem 8, the variables X1 and X2 are both approximately normally distributed with means

�1 and �2 and variances �
2
1=n1 and �

2
2=n2, respectively. This approximation improves as n1

and n2 increase. We can conclude that X1 � X2 is approximately normally distributed with

mean

�X1�X2
= �X1

� �X2
= �1 � �2

and variance

�2
X1�X2

= �2
X1
+ �2

X2
= �21=n1 + �

2
2=n2

The Central Limit Theorem can be easily extended to the two-sample, two-population case.

Theorem 80 If independent samples of size n1 and n2 are drawn at random from two popu-

lations, discrete or continuous, with means �1 and �2 and variances �
2
1 and �

2
2, respectively,

then the sampling distribution of the di¤erences of means, X1�X2, is approximately normally

distributed with mean and variance given by

�X1�X2
= �1 � �2 and �2X1�X2

=
�21
n1
+
�22
n2

Hence,

Z =
(X1 �X2)� (�1 � �2)p

�21=n1 + �
2
2=n2

is approximately a standard normal variable.
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If both n1 and n2 are greater than or equal to 30, the normal approximation for the distri-

bution of X1�X2 is good. Two independent experiments are run in which two di¤erent types

of paint are compared.

Example 81 Eighteen specimens are painted using type A, and the drying time, in hours, is

recorded for each. The same is done with type B. The population standard deviations are both

known to be 1:0. Assuming that the mean drying time is equal for the two types of paint,

�nd P (XA � XB > 1:0), where XA and XB are average drying times for samples of size

nA = nB = 18.

Solution 82 From the sampling distribution of XA � XB, we know that the distribution is

approximately normal with mean �XA�XB
= �A� �B = 0 and variance �2XA�XB

=
�2A
nA
+
�2B
nB
=

1=9: Corresponding to the value XA �XB = 1.0, we have

z =
1� (�A � �B)p

1=9
=
1� 0p
1=9

= 3

so

Pr(Z > 3:0) = 1� P (Z < 3:0) = 1� 0:9987 = 0:0013:

Example 83 The television picture tubes of manufacturer A have a mean lifetime of 6:5 years

and a standard deviation of 0:9 year, while those of manufacturer B have a mean lifetime of

6:0 years and a standard deviation of 0:8 year. What is the probability that a random sample

of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the

mean lifetime of a sample of 49 tubes from manufacturer B?

Solution 84 We are given the following information:

Population 1 Population 2

�1 = 6:5 �2 = 6:0

�1 = 0:9 �2 = 0:8

n1 = 36 n2 = 49

If we use, the sampling distribution of X1 �X2 will be approximately normal and will have a
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mean and standard deviation

�X1�X2
= 6:5� 6:0 and �

X1�X2
=
q

0:81
36 +

0:64
49 = 0:189

Hence,

Pr(X1 �X2 � 1:0) = P (Z > 2:65) = 1� P (Z < 2:65)

= 1� 0:9960 = 0:0040:

3.6 Sampling Distribution of S2

Theorem 85 If X1; X2; :::; Xn an independent random sample that have the same standard

normal distribution then X =

nX
i=1

X2
i is chi-squared distribution, with � = n degrees of freedom.

Theorem 86 The mean and variance of the chi-squared distribution �2 with � degrees of free-

dom are � = � and �2 = 2�.

Table A.5 gives values of �2� for various values of � and �. Hence, the �
2 value with 7

degrees of freedom, leaving an area of 0:05 to the right, is �20:05 = 14:067. Owing to lack of

symmetry, we must also use the tables to �nd �20:95 = 2:167 for � = 7.

Example 87 For a chi-squared distribution, �nd

(a)�20:025 when � = 15;

(b)�20:01when � = 7;

(c)�20:05 when � = 24.

Solution 88 (a) 27.488.(b) 18.475.(c) 36.415

For a chi-squared distribution X, �nd �2� such that

(a) P (X > �2�) = 0:99 when � = 4;

(b) P (X > �2�) = 0:025 when � = 19;

(c) P (37:652 < X < �2�) = 0:045 when � = 25.
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Solution 89 (a) �2� = �20:99 = 0:297.(b) �
2
� = �

2
0:025 = 32:852.(c) �

2
0:05 = 37:652. Therefore,

� = 0:05� 0:045 = 0:005. Hence, �2� = �20:005 = 46:928.
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Theorem 90 If S2 is the variance of a random sample of size n taken from a normal population

having the variance �2, then the statistic

�2 =
(n� 1)S2

�2
=

nX
i=1

(Xi �X)2
�2

has a chi-squared distribution with � = n� 1 degrees of freedom.

3.7 t-Distribution

Theorem 91 Let Z be a standard normal random variable and V a chi-squared random variable

with � degrees of freedom. If Z and � are independent, then the distribution of the random

variable T , where

T =
Zp
V=�

This is known as the t-distribution with � degrees of freedom.

Corollary 92 Let X1; X2; :::; Xn be independent random variables that are all normal with

mean � and standard deviation �. Let

X =
1

n

nX
i=1

Xi and S2 =
1

n� 1

nX
i=1

(Xi �X)2

Then the random variable T = X��
S=
p
n
has a t-distribution with � = n� 1 degrees of freedom.
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Example 93 The t-value with � = 14 degrees of freedom that leaves an area of 0:025 to the

left, and therefore an area of 0:975 to the right, is

t0:975 = �t0:025 = �2:145

Example 94 Find Pr(�t0:025 < T < t0:05).

Solution 95 Since t0:05 leaves an area of 0:05 to the right, and �t0:025 leaves an area of 0:025

to the left, we �nd a total area of 1 � 0:05 � 0:025 = 0:925 between �t0:025 and t0:05. Hence

Pr(�t0:025 < T < t0:05) = 0:925.

Example 96 Find k such that Pr(k < T < �1:761) = 0:045 for a random sample of size 15

selected from a normal distribution with T = X��
S=
p
n
.

Solution 97 From Table A.4 we note that 1:761 corresponds to t0:05 when � = 14. Therefore,�t0:05 =

�1:761. Since k in the original probability statement is to the left of �t0:05 = �1:761, let

k = �t�. Then, by using �gure, we have

0:045 = 0:05� �; or � = 0:005:

Hence, from Table A.4 with � = 14,
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Figure 3-1: t-distribution

k = �t0:005 = �2:977 and Pr(�2:977 < T < �1:761) = 0:045.
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Figure 3-2: F-distribution

3.8 F-Distribution

The statistic F is de�ned to be the ratio of two independent chi-squared random variables, each

divided by its number of degrees of freedom.

Theorem 98 The random variable

F =
U=�1
V=�2

where U and V are independent random variables having chi-squared distributions with �1 and

�2 degrees of freedom, respectively, is the F -distribution with �1 and �2 degrees of freedom

(d.f.).

Theorem 99 Writing f�(�1; �2) for f� with �1 and �2 degrees of freedom, we have

f1��(�1; �2) =
1

f�(�2; �1)

Thus, the f -value with 6 and 10 degrees of freedom, leaving an area of 0:95 to the right, is

f0:95(6; 10) =
1

f0:05(10;6)
= 1

4:06 = 0:246:

3.8.1 The F-Distribution with Two Sample Variances

Suppose that random samples of size n1 and n2 are selected from two normal populations with

variances �21 and �
2
2, respectively. From Theorem 16, we know that

�21 =
(n1 � 1)S21

�21
and �22 =

(n2 � 1)S22
�22
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are random variables having chi-squared distributions with �1 = n1 � 1 and �2 = n2 � 1

degrees of freedom. Furthermore, since the samples are selected at random, we are dealing with

independent random variables. Then, using Theorem 24 with �21 = U and �22 = V , we obtain

the following result.

Theorem 100 If S21 and S
2
2 are the variances of independent random samples of size n1 and

n2 taken from normal populations with variances �21 and �
2
2, respectively, then

F =
S21=�

2
1

S22=�
2
2

has an F-distribution with �1 = n1 � 1 and �2 = n2 � 1 degrees of freedom.

3.8.2 Example

For an F -distribution, �nd

(a) f0:05 with �1 = 7 and �2 = 15;

(b) f0:05 with �1 = 15 and �2 = 7:

(c) f0:01 with �1 = 24 and �2 = 19;

(d) f0:95 with �1 = 19 and �2 = 24;

(e) f0:99 with �1 = 28 and �2 = 12.

Solution 101 (a) 2.71.(b) 3.51.(c) 2.92.(d) 1/2.11 = 0.47.(e) 1/2.90 = 0.34.

3.9 Sampling Distribution of Proportions and the Central Limit

In many situations the use of the sample proportion is easier and more reliable because, unlike

the mean, the proportion does not depend on the population variance, which is usually an

unknown quantity. We will represent the sample proportion by bP and the population proportion
by p. Construction of the sampling distribution of the sample proportion is done in a manner

similar to that of the mean. One has bP = X=n where X is a number of success for a sample

of size n. It is clear that X is a binomial distribution Bin(n; p). Its mean �X = np and its

variance �2X = np(1� p). Consequently:
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Theorem 102 The mean �bp of the sample distribution bP is equal to the true population pro-

portion p, and its variance �2bp is equal to p(1� p)=n.

Theorem 103 (Theorem Cemtral Limit) If np � 5 and n(1 � p) � 5, then the random

variable bP is approximation a normal distribution with mean �bp = p and standard deviation

(or standard error) �bp =
p
p(1� p)=n. Hence

Z =
bP � pp
p(1� p)=n

is approxiamately a standard normal distribution.

Example 104 In the mid seventies, according to a report by the National Center for Health

Statistics, 19:4 percent of the adult U.S. male population was obese. What is the probability that

in a simple random sample of size 150 from this population fewer than 15 percent will be obese?

Solution 105 Here n = 150, p = 0:194. Since np � 5 and n(1� p) � 5; hence

Z =
bP � 0:194p

0:194(1� 0:194)=150
=
bP � 0:194
0:032

is approxiamately a standard normal distribution.

Pr( bP � 0:15) = Pr( bP�0:1940:03 � 0:15�0:194
0:03 ) ' Pr(Z � �1:37) = 0:0853.

3.10 Sampling Distribution of the Di¤erence between Two Pro-

portions

In some applications there are two actual physical dichotomous populations so that p1 denotes

the population success proportion for population one and p2 denotes the population success

proportion for population two. The sampling distribution of the di¤erence between two sample

proportions is constructed in a manner similar to the di¤erence between two means. Indepen-

dent random samples of size n1 and n2 are drawn from two populations of dichotomous variables

where the proportions of observations with the character of interest in the two populations are

p1 and p2, respectively.
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Theorem 106 The mean �bp1�bp2 of the sample distribution of the di¤erence between two sample
proportions bP1 � bP2 is equal to the di¤erence p1 � p2 between the true population proportions,
and its variance �2bp1�bp2 will be equal to p1(1� p1)=n1 + p1(1� p2)=n2.
Theorem 107 If n1p1 � 5, n1(1 � p1) � 5, n2p2 � 5, n2(1 � p2), then the random variablebP1 � bP2 is approximation a normal distribution with mean �bp1�bp2 = p1 � p2 and standard

deviation (or standard error) �bp =
p
p1(1� p1)=n1 + p1(1� p2)=n2. Hence

Z =

� bP1 � bP2�� (p1 + p2)q
p1(1�p1)

n1
+ p2(1�p2)

n2

is approxiamately a standard normal distribution.

Example 108 Suppose that there are two large high schools, each with more than 2000 students,

in a certain town. At School 1, 70% of students did their homework last night. Only 50% of

the students at School 2 did their homework last night. The counselor at School 1 takes a

sample random sample of 100 students and records the proportion that did homework. School

2�s counselor takes a sample random sample of 200 students and records the proportion that did

homework. Find the probability of getting a di¤erence in sample proportion bP1 � bP2 of 0:10 or
less from the two surveys.

Solution 109 Here p1 = 0:7, p2 = 0:5, n1 = 100 and n2 = 200. It is clear that n1p1 � 5, n1(1�

p1) � 5, n2p2 � 5, n2(1�p2). Also �bp1�bp2 = p1�p2 = 0:2 and �bp =pp1(1� p1)=n1 + p1(1� p2)=n2 =
0:058. Hence,

Z =
bP1 � bP2 � p1 � p2q
p1(1�p1)

n1
+ p2(1�p2)

n2

=
bP1 � bP2 � 0:2

0:058

is approximately a standard normal.

Pr( bP1 � bP2 � 0:10) = Pr( bP1� bP2�0:20:68 � 0:10�0:2
0:68 ) ' Pr(Z � �1:72) = 0:0427.
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Chapter 4

One and Two-Sample Estimation

Problems

4.1 One- and Two-Sample Estimation Problems

4.1.1 Introduction

In previous chapters, we emphasized sampling properties of the sample mean and variance. The

purpose of these presentations is to build a foundation that allows us to draw conclusions about

the population parameters from experimental data.

4.1.2 Classical Methods of Estimation

A point estimate of some population parameter � is a single value b� of a statistic b�. For
example, the value x of the statistic X, computed from a sample of size n, is a point estimate

of the population parameter �. Similarly, bp = x=n is a point estimate of the true proportion p
for a binomial experiment.

An estimator is not expected to estimate the population parameter without error. We do

not expect X to estimate � exactly, but we certainly hope that it is not far o¤.
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Unbiased Estimator

What are the desirable properties of a �good� decision function that would in�uence us to

choose one estimator rather than another? Let b� be an estimator whose value b� is a point
estimate of some unknown population parameter �. Certainly, we would like the sampling

distribution of b� to have a mean equal to the parameter estimated. An estimator possessing

this property is said to be unbiased.

De�nition 110 A statistic b� is said to be an unbiased estimator of the parameter � if �b�
= E(b�) = �.

Example 111 Show that S2 is an unbiased estimator of the parameter �2. Hint: (Xi �X) =

(Xi � �)� (X � �).

Variance of a Point Estimator

If b�1 and b�2 are two unbiased estimators of the same population parameter �, we want to
choose the estimator whose sampling distribution has the smaller variance.

Hence, if �2b�1< �2b�2 , we say that b�1 is a more e¢ cient estimator of � than b�1.
De�nition 112 If we consider all possible unbiased estimators of some parameter �, the one

with the smallest variance is called the most e¢ cient estimator of �.

Interval Estimation

Even the most e¢ cient unbiased estimator is unlikely to estimate the population parameter

exactly. There is no reason we should expect a point estimate from a given sample to be

exactly equal to the population parameter it is supposed to estimate. There are many situations

in which it is preferable to determine an interval within which we would expect to �nd the

value of the parameter. Such an interval is called an interval estimate. An interval estimate of

a population parameter � is an interval of the form b�L < � < b�U , where b�l and b�U depend on
the value of the statistic b� for a particular sample and also on the sampling distribution of b�.
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4.2 Single Sample: Estimating the Mean

The sampling distribution of X is centered at �, and in most applications the variance is smaller

than that of any other estimators of �. Thus, the sample mean x will be used as a point estimate

for the population mean �.

Let us now consider the interval estimate of �. If our sample is selected from a normal

population or, failing this, if n is su¢ ciently large, we can establish a con�dence interval for �

by considering the sampling distribution of X .

De�nition 113 (Con�dence Interval on �, �2 Known) If x is the mean of a random sam-

ple of size n from a population with known variance �2, a 100(1� �)% con�dence interval for

� is given by

x� z�=2
�p
n
< � < x+ z�=2

�p
n
,

where z�=2 is the z-value leaving an area of �=2 to the right.

Example 114 The average zinc concentration recovered from a sample of measurements taken

in 36 di¤erent locations in a river is found to be 2:6 grams per milliliter. Find the 95% and 99%

con�dence intervals for the mean zinc concentration in the river. Assume that the population

standard deviation is 0:3 gram per milliliter.

Solution 115 The point estimate of � is x = 2:6. The z-value leaving an area of 0:025 to the

right, and therefore an area of 0:975 to the left, is z0:025 = 1:96 (Table A.3). Hence, the 95%

con�dence interval is

2:6� (1:96)
�
0:3p
36

�
< � < 2:6 + (1:96)

�
0:3p
36

�

which reduces to 2:50 < � < 2:70. To �nd a 99% con�dence interval, we �nd the z-value leaving

an area of 0:005 to the right and 0:995 to the left. From Table A.3 again, z0:005 = 2:575, and

the 99% con�dence interval is

2:6� (2:575)
�
0:3p
36

�
< � < 2:6 + (2:575)

�
0:3p
36

�
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or simply

2:47 < � < 2:73:

The error in estimating � by x is the absolute value of the di¤erence between � and x, and

we can be 100(1� �)% con�dent that this di¤erence will not exceed z�=2
�p
n
.

Theorem 116 If x is used as an estimate of �, we can be 100(1��)% con�dent that the error

will not exceed z�=2
�p
n
.

Theorem 117 If x is used as an estimate of �, we can be 100(1��)% con�dent that the error

will not exceed a speci�ed amount e when the sample size is

n =
�z�=2�

e

�2
Example 118 How large a sample is required if we want to be 95% con�dent that our estimate

of � in Example 5 is o¤ by less than 0:05?

Solution 119 The population standard deviation is � = 0:3. Then,

n =

�
(1:96)(0:3)

0:05

�2
= 138:3:

Therefore, we can be 95% con�dent that a random sample of size 139 will provide an estimate

x di¤ering from � by an amount less than 0:05.

The reader should recall learning in Chapter 3 that if we have a random sample from a

normal distribution, then the random variable

T =
X � �
S=
p
n

has a Student t-distribution with n � 1 degrees of freedom. Here S is the sample standard

deviation. In this situation, with � unknown, T can be used to construct a con�dence interval

on �.
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De�nition 120 (Con�dence Interval on �, �2 unknown) If x and s are the mean and

standard deviation of a random sample of size n from a normal population with unknown vari-

ance �2, a 100(1� �)% con�dence interval for � is

x� t�=2
sp
n
< � < x+ t�=2

sp
n
,

where t�=2 is the t-value with � = n� 1 degrees of freedom, leaving an area of �=2 to the right.

Example 121 The contents of seven similar containers of sulfuric acid are 9:8; 10:2; 10:4; 9:8; 10:0; 10:2; 9:6

liters. Find a 95% con�dence interval for the mean contents of all such containers, assuming

an approximately normal distribution.

Solution 122 The sample mean and standard deviation for the given data are

x = 10:0 and s = 0:283:

Using Table A.4, we �nd t0:025 = 2:447 for v = 6 degrees of freedom. Hence, the 95% con�dence

interval for � is

10:0� (2:447)
�
0:283p
7

�
< � < 10:0 + (2:447)

�
0:283p
7

�

which reduces to 9:74 < � < 10:26.

Concept of a Large-Sample Con�dence Interval
Often statisticians recommend that even when normality cannot be assumed, � is unknown,

and n � 30, s can replace � and the con�dence interval

x� z�=2
sp
n

may be used. This is often referred to as a large-sample con�dence interval.

Example 123 Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500

high school seniors in the state of Texas are collected, and the sample mean and standard
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deviation are found to be 501 and 112, respectively. Find a 99% con�dence interval on the

mean SAT mathematics score for seniors in the state of Texas.

4.3 Standard Error of a Point Estimate

We indicated earlier that a measure of the quality of an unbiased estimator is its variance. The

variance of X is

�2
X
=
�2

n

Thus, the standard deviation of X , or standard error of X , is �=
p
n. Simply put, the standard

error of an estimator is its standard deviation. For X , the computed con�dence limit

x� z�=2
�p
n
is written x� z�=2 s.e.(x)

In the case where � is unknown and sampling is from a normal distribution, s replaces � and

the estimated standard error s=
p
n is involved. Thus, the con�dence limits on � are limit

x� t�=2
sp
n
is written x� t�=2 s.e.(x)

4.4 Two Samples: Estimating the Di¤erence between TwoMeans

Theorem 124 Con�dence Interval for �1 � �2, �21 and �22 known

If x1 and x2 are means of independent random samples of sizes n1 and n2 from populations with

known variances �21 and �
2
2, respectively, a 100(1��)% con�dence interval for �1��2 is given by

(x1 � x2)� z�
2

q
�21
n1
+

�22
n2
<�1 � �2<(x1 � x2) + z�2

q
�21
n1
+

�22
n2
,

where z�=2 is the z-value leaving an area of �=2 to the right.

Example 125 A study was conducted in which two types of engines, A and B, were compared.

Gas mileage, in miles per gallon, was measured. Fifty experiments were conducted using engine

type A and 75 experiments were done with engine type B. The gasoline used and other conditions

were held constant. The average gas mileage was 36 miles per gallon for engine A and 42 miles
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per gallon for engine B. Find a 96% con�dence interval on �B� �A, where �A and �B are

population mean gas mileages for engines A and B, respectively. Assume that the population

standard deviations are 6 and 8 for engines and B, respectively.

Solution 126 The point estimate of �B� �A is xB � xA = 42 � 36 = 6. Using � = 0:04,

we �nd z0:02 = 2:05 from Table A.3. Hence, with substitution in the formula above, the 96%

con�dence interval is

6� 2:05
r
64

75
+
36

50
< �B � �A < 6 + 2:05

r
64

75
+
36

50

or simply 3:43 < �B � �A < 8:57.

Variances Unknown but Equal
Consider the case where �21 and �

2
2 are unknown and �

2
1 = �

2
1 (= �

2). A point estimate of

the unknown common variance �2 can be obtained by pooling the sample variances. Denoting

the pooled estimator by S2p , we have the following.

De�nition 127 (of Variance) S2p =
(n1�1)S21+(n1�1)S22

(n1+n2�1)

Theorem 128 Con�dence Interval for �1 � �2, �21 = �22 but Both Uknown

If x1 and x2 are means of independent random samples of sizes n1 and n2; respectively, from

approximately normal populations with unknown but equal variances, a 100(1��)% con�dence

interval for �1 � �2 is given by

(x1 � x2)� t�
2
sp

q
1
n1
+ 1

n2
<�1 � �2<(x1 � x2) + t�2 sp

q
1
n1
+ 1

n2
,

where where sp is the pooled estimate of the population standard deviation and t�=2 is the t-value

with � = n1 + n2 � 2 degrees of freedom, leaving an area of �=2 to the right.

Example 129 Two independent sampling stations, statoin 1 and station 2, were chosen for a

study on pollution. For 12 monthly samples collected at station 1, the species diversity index had

a mean value x1 = 3:11 and a standard deviation s1 = 0:771, while 10 monthly samples collected

at the station 2 had a mean index value x2 = 2:04 and a standard deviation s2 = 0:448. Find a
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90% con�dence interval for the di¤erence between the population means for the two locations,

assuming that the populations are approximately normally distributed with equal variances.

Solution 130 Let �1 and �2 represent the population means, respectively, for the species di-

versity indices at the downstream and upstream stations. We wish to �nd a 90% con�dence

interval for �1 � �2. Our point estimate of �1 � �2 is

x1 � x2 = 3:11� 2:04 = 1:07:

The pooled estimate, s2p, of the common variance, �
2, is

s2p=
(n1 � 1)s21 + (n1 � 1)s22

(n1 + n2 � 1)
= (11)(0:7712)+(9)(0:4482)

12+10�2 =0:417:

Taking the square root, we obtain sp = 0:646. Using � = 0:1, we �nd in Table A.4 that

t0:05 = 1:725 for � = n1 + n2 � 2 = 20 degrees of freedom. Therefore, the 90% con�dence

interval for �1 � �2 is

1:07+1:725(0:646)
q

1
12+

1
10 < �1��2

< 1:07+1:725(0:646)
q

1
12+

1
10

which simpli�es to 0:593 < �1 � �2 < 1:547.

4.5 Paired Observations

Now we shall consider estimation procedures for the di¤erence of two means when the samples

are not independent and the variances of the two populations are not necessarily equal. The

situation considered here deals with a very special experimental condition, namely that of

paired observations. For example, if we run a test on a new diet using 15 individuals, the

weights before and after going on the diet form the information for our two samples. The two

populations are �before�and �after,�and the experimental unit is the individual. Obviously,

the observations in a pair have something in common. To determine if the diet is e¤ective, we

consider the di¤erences d1; d2; :::; dn in the paired observations. These di¤erences are the values

39



of a random sample D1; D2; :::; Dn from a population of di¤erences that we shall assume to be

normally distributed with mean �D = �1 � �2 and variance �2D. We estimate �2D by �2d, the

variance of the di¤erences that constitute our sample. The point estimator of �D is given by

D.

Theorem 131 Con�dence Interval for �D = �1 � �2; for Paired Observations

If d and sd are the mean and standard deviation, respectively, of the normally distributed di¤er-

ences of n random pairs of measurements, a 100(1��)% con�dence interval for �D = �1 � �2
is

d� t�=2
sdp
n
< � < d+ t�=2

sdp
n
,

where t�=2 is the t-value with � = n� 1 degrees of freedom, leaving an area of �=2 to the right.

Example 132 A study published in Chemosphere reported the levels of the dioxin TCDD of 10

Massachusetts Vietnam veterans who were possibly exposed to Agent Orange. The TCDD levels

in plasma and in fat tissue are listed in Table 1. Find a 95% con�dence interval for �1 � �2,

where �1 and �2 represent the true mean TCDD levels in plasma and in fat tissue, respectively.

Assume the distribution of the di¤erences to be approximately normal.

Veteran
TCDD levels

in Plasma

TCDD levels

in Fat Tissue
di

1 2.5 4.9 -2.4

2 3.1 5.9 -2.8

3 2.1 4.4 -2.3

4 3.5 6.9 -3.4

5 3.1 7.0 -3.9

6 1.8 4.2 -2.4

7 6.0 10.0 -4.0

8 3.0 5.5 -2.5

9 36.0 41.0 -5.0

10 4.7 4.4 0.3

Solution 133 The point estimate of �D is d = �2:84. The standard deviation, sd, of the

sample di¤erences is 1:42. Using � = 0:05, we �nd in Table A.4 that t0:025 = 2:262 for � =
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n� 1 = 9 degrees of freedom. Therefore, the 95% con�dence interval is

�2:84� (2:262)
�
1:42p
10

�
< �D < �2:84 + (2:262)

�
1:42p
10

�

or simply �3:85 < �D < �1:82.

4.6 Single Sample: Estimating a Proportion

A point estimator of the proportion p in a binomial experiment is given by the

statistic bP = X=n, where X represents the number of successes in n trials. Therefore,

De�nition 134 the sample proportion bp = x=n will be used as the point estimate of the
parameter p.

Theorem 135 (Large-Sample Con�dence Intervals for p) If bp is the proportion of suc-
cesses in a random sample of size n and bq = 1� bp, an approximate 100(1 � �)% con�dence

interval, for the binomial parameter p is given by

bp� z�=2rbpbqn < p < bp+ z�=2rbpbqn
where z�=2 is the z-value leaving an area of �=2 to the right.

Example 136 In a random sample of n = 500 families owning television sets in the city of

Hamilton, Canada, it is found that x = 340 subscribe to HBO. Find a 95% con�dence interval

for the actual proportion of families with television sets in this city that subscribe to HBO.

Solution 137 The point estimate of p is bp = 340=500 = 0:68. Using Table A.3, we �nd that
z0:025 = 1:96. Therefore, the 95% con�dence interval for p is

0:68� 1:96
r
(0:68)(0:32)

500
< p < 0:68 + 1:96

r
(0:68)(0:32)

500

which simpli�es to 0:6391 < p < 0:7209.
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Theorem 138 If bp is used as an estimate of p, we can be 100(1��)% con�dent that the error

will not exceed z�=2
q bpbq

n .

Choice of Sample Size
Let us now determine how large a sample is necessary to ensure that the error in estimating p

will be less than a speci�ed amount e. By Theorem 23, we must choose n such that z�=2
q bpbq

n = e.

Theorem 139 If bp is used as an estimate of p, we can be 100(1��)% con�dent that the error

will be less than a speci�ed amount e when the sample size is approximately

n =
z2�=2bpbq
e2

Example 140 How large a sample is required if we want to be 95% con�dent that our estimate

of p in Example 21 is within 0:02 of the true value?

Solution 141 Let us treat the 500 families as a preliminary sample, providing an estimate bp
= 0:68. Then,

n =
(1:96)2(0:68)(0:32)

0:022
= 2089:8 � 2090

Occasionally, it will be impractical to obtain an estimate of p to be used for determining the

sample size for a speci�ed degree of con�dence. If this happens, we use the following theorem.

Theorem 142 If bp is used as an estimate of p, we can be 100(1��)% con�dent that the error

will not exceed than a speci�ed amount e when the sample size is approximately

n =
z2�=2

4e2

Example 143 How large a sample is required if we want to be at least 95% con�dent that our

estimate of p in Example 21 is within 0:02 of the true value?

Solution 144 Let assume that no preliminary sample has been taken to provide an estimate

of p. Consequently, we can be at least 95% con�dent that our sample proportion will not di¤er

from the true proportion by more than 0:02 if we choose a sample of size

n =
(1:96)2

4(0:02)2
= 2401
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Comparing the results of Examples 28 and 29, we see that information concerning p, provided

by a preliminary sample or from experience, enables us to choose a smaller sample while main-

taining our required degree of accuracy.

4.7 Two Samples: Estimating the Di¤erence between Two Pro-

portions

Consider the problem where we wish to estimate the di¤erence between two binomial

parameters p1 and p2. For example, p1 might be the proportion of smokers

with lung cancer and p2 the proportion of nonsmokers with lung cancer, and the

problem is to estimate the di¤erence between these two proportions.

Theorem 145 Large-Sample Con�dence Interval for p1 � p2
If bp1 and bp2 are the proportions of successes in random samples of sizes n1 and n2, respectively,bq1 = 1� bp1, and bq2 = 1� bp2, an approximate 100(1��)% con�dence interval for the di¤erence

of two binomial parameters, p1 � p2, is given by

(bp1 � bp2)-z�
2

q bp1bq1
n1

+ bp2bq2
n1
<p1 � p2 < (bp1 � bp2)+z�

2

q bp1bq1
n1

+ bp2bq2
n1

Example 146 A certain change in a process for manufacturing component parts is being con-

sidered. Samples are taken under both the existing and the new process so as to determine if the

new process results in an improvement. If 75 of 1500 items from the existing process are found

to be defective and 80 of 2000 items from the new process are found to be defective, �nd a 90%

con�dence interval for the true di¤erence in the proportion of defectives between the existing

and the new process.

Solution 147 Let p1 and p2 be the true proportions of defectives for the existing and new

processes, respectively. Hence, bp1 = 75=1500 = 0:05 and bp2 = 80=2000 = 0:04, and the point

estimate of p1� p2 is bp1 � bp2 = 0:05� 0:04 = 0:01
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Using Table A.3, we �nd z0:05 = 1:645. Therefore, substituting into the formula, with

1:645

r
(0:05)(0:95)

1500
+
(0:04)(0:96)

2000
= 0:0117,

we �nd the 90% con�dence interval to be �0:0017 < p1 � p2 < 0:0217.

4.8 Single Sample: Estimating the Variance

If a sample of size n is drawn from a normal population with variance �2 and the sample

variance s2 is computed, we obtain a value of the statistic S2. This computed sample variance

is used as a point estimate of �2. Hence, the statistic S2 is called an estimator of �2. An

interval estimate of �2 can be established by using the statistic

X =
(n� 1)S2

�2

the statistic X has a chi-squared distribution with n� 1 degrees of freedom when samples are

chosen from a normal population.

Theorem 148 (Con�dence Interval for �2) If s2 is the variance of a random sample of

size n from a normal population, a 100(1� �)% con�dence interval for �2 is

(n� 1)s2
�2�=2

< �2 <
(n� 1)s2
�21��=2

where �2�=2 and �
2
1��=2 are �

2-values with � = n � 1 degrees of freedom, leaving areas of �=2

and 1� �=2, respectively, to the right.

An approximate 100(1��)% con�dence interval for � is obtained by taking the square root

of each endpoint of the interval for �2.

Example 149 The following are the weights, in decagrams, of 10 packages of grass seed dis-

tributed by a certain company: 46:4; 46:1; 45:8; 47:0; 46:1; 45:9; 45:8; 46:9; 45:2; 46:0. Find a 95%

con�dence interval for the variance of the weights of all such packages of grass seed distributed

by this company, assuming a normal population.
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Solution 150 First we �nd s2 = 0:286. To obtain a 95% con�dence interval, we choose �

= 0:05. Then, using Table A.5 with � = 9 degrees of freedom, we �nd �2:025 = 19:023 and �
2
:975

= 2:700. Therefore, the 95% con�dence interval for �2 is

(9)(0:286)

19:023
< �2 <

(9)(0:286)

2:700

or simply 0:135 < �2 < 0:953.

4.9 Two Samples: Estimating the Ratio of Two Variances

A point estimate of the ratio of two population variances �21=�
2
2 is given by the ratios s

2
1=s

2
2 of

the sample variances. Hence, the statistic S21=S
2
2 is called an estimator of �

2
1=�

2
2 . If �

2
1 and�

2
2

are the variances of normal populations, we can establish an interval estimate of �21=�
2
2 by using

the statistic

F =
S21=�

2
1

S22=�
2
2

According to Theorem 25 of chapter 3, the random variable F has an F -distribution with �1

= n1 � 1 and �2 = n2 � 1 degrees of freedom.

Theorem 151 (Con�dence Interval for �21=�
2
2) If s

2
1 and s

2
2 are the variances of indepen-

dent samples of sizes n1 and n2, respectively,from normal populations, then a 100(1 � �)%

con�dence interval for �21=�
2
2 is

s21
s22

1

f�=2(�1; �2)
<
�21
�22
<
s21
s22
f�=2(�2; �1)

where f�=2(�1; �2) is an f-value with �1 = n1�1 and �2 = n2�1 degrees of freedom, leaving an

area of �=2 to the right, and f�=2(�2; �1) is a similar f-value with �2 = n2� 1 and �1 = n1� 1

degrees of freedom.

an approximate 100(1��)% con�dence interval for �1=�2 is obtained by taking the square

root of each endpoint of the interval for �21=�
2
2.

Example 152 A study was conducted to estimate the di¤erence in the amounts of the chemical

orthophosphorus measured at two di¤erent stations. Fifteen samples were collected from station

45



1, and 12 samples were obtained from station 2. The 15 samples from station 1 had an average

orthophosphorus content of 3:84 milligrams per liter and a standard deviation of 3:07 milligrams

per liter, while the 12 samples from station 2 had an average content of 1:49 milligrams per liter

and a standard deviation of 0:80 milligram per liter. Determine a 98% con�dence interval for

�21=�
2
2 and for �1=�2, where �

2
1 and �

2
2 are the variances of the populations of orthophosphorus

contents at station 1 and station 2, respectively.

Solution 153 We have n = 15, n2 = 12, s1 = 3:07, and s2 = 0:80. For a 98% con�dence

interval, � = 0:02. Interpolating in Table A.6, we �nd f0:01(14; 11) � 4:30 and f0:01(11; 14) �

3:87. Therefore, the 98% con�dence interval for �21=�
2
2 is�

3:072

0:802

��
1

4:30

�
<
�21
�22
<

�
3:072

0:802

�
(3:87);

which simpli�es to 3:425 < �21
�22
< 56:991. Taking square roots of the con�dence limits, we �nd

that a 98% con�dence interval for �1=�2 is

1:851 <
�1
�2
< 7:549:

Since this interval does not allow for the possibility of �1=�2 being equal to 1, we were correct

in assuming that �1 6= �2 (and �21 6= �22).
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Chapter 5

One and Two-Sample Tests of

Hypotheses

Let consider a medical researcher who should decide on the basis of experimental evidence

whether co¤ee drinking increases the risk of cancer in humans or a sociologist who might wish

to collect appropriate data to enable him or her to decide whether a person�s blood type and eye

color are independent variables. In each of these cases, the scientist postulates or conjectures

something about a system. In addition, each must make use of experimental data and make a

decision based on the data. In each case, the conjecture can be put in the form of a statistical

hypothesis. Procedures that lead to the acceptance or rejection of statistical hypotheses such

as these comprise a major area of statistical inference. First, let us de�ne precisely what we

mean by a statistical hypothesis.

De�nition 154 A statistical hypothesis is an assertion or conjecture concerning one or

more populations.

The truth or falsity of a statistical hypothesis is never known with absolute certainty unless

we examine the entire population. This, of course, would be impractical in most situations.

Instead, we take a random sample from the population of interest and use the data contained

in this sample to provide evidence that either supports or does not support the hypothesis.

Evidence from the sample that is inconsistent with the stated hypothesis leads to a rejection of
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the hypothesis.

The Role of Probability in Hypothesis Testing
It should be made clear to the reader that the decision procedure must include the probabil-

ity of a wrong conclusion. For example, suppose that the hypothesis postulated by the engineer

is that the fraction defective p in a certain process is 0.10. The experiment is to observe a

random sample of the product in question. Suppose that 100 items are tested and 20 items

are found defective. If, indeed, p = 0.10, the probability of obtaining 20 or more defectives is

approximately 0.002. With the resulting small risk of a wrong conclusion, it would seem safe to

reject the hypothesis that p = 0.10. As a result, the reader must be accustomed to understand-

ing that rejection of a hypothesis implies that the sample evidence refutes it. Put another way,

rejection means that there is a small probability of obtaining the sample information observed

when, in fact, the hypothesis is true.

The formal statement of a hypothesis is often in�uenced by the structure of the probability

of a wrong conclusion. If the scientist is interested in strongly supporting a contention, he or

she hopes to arrive at the contention in the form of rejection of a hypothesis. If the medical

researcher wishes to show strong evidence in favor of the contention that co¤ee drinking increases

the risk of cancer, the hypothesis tested should be of the form �there is no increase in cancer risk

produced by drinking co¤ee.�As a result, the contention is reached via a rejection. Similarly,

to support the claim that one kind of gauge is more accurate than another, the engineer tests

the hypothesis that there is no di¤erence in the accuracy of the two kinds of gauges.

The Null and Alternative Hypotheses
The alternative hypothesis H1 usually represents the question to be answered or the theory

to be tested, and thus its speci�cation is crucial. The null hypothesis H0 nulli�es or opposes

H1 and is often the logical complement to H1. Our conclusions will be:

fail to reject H0 because of insu¢ cient evidence in the data.

reject H0 in favor of H1 because of su¢ ciente vidence in the data or

fail to reject H0 because of insu¢ cient evidence in the data.

The Probability of a Type I Error

48



The decision procedure could lead to either of two wrong conclusions.

De�nition 155 Rejection of the null hypothesis when it is true is called a type I error.

The probability of committing a type I error, also called the level of signi�cance, is denoted

by the Greek letter �.

De�nition 156 Nonrejection of the null hypothesis when it is false is called a type II error.

The probability of committing a type II error, denoted by �, is impossible to compute unless

we have a speci�c alternative hypothesis.

5.1 Single Sample: Tests Concerning a Single Mean

In this section, we formally consider tests of hypotheses on a single population mean.

Tests on a Single Mean (Variance Known)

Let X1; X2; :::; Xn representing a random sample from a distribution with mean � and

variance �2 > 0. Consider �rst the hypothesis

H0 : � = �0;

H1 : � 6= �0:

The appropriate test statistic should be based on the random variable X . Recall that the

random variable X has approximately a normal distribution with mean � and variance �2=n

for reasonably large sample sizes. So, �X = � and �
2
X
= �2=n.We can then determine a critical

region based on the computed sample average, x. We know that under H0, that is, if � = �0,

(X � �0)=(�=
p
n) follows an N(0; 1) distribution, and hence the expressions

Pr

�
�z�=2 �

X � �0
�=
p
n
� z�=2

�
= 1� �

can be used to write an appropriate nonrejection region.
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Theorem 157 (Test Procedure for a Single Mean (Variance Known)) If �z�=2 < z <

z�=2, do not reject H0. Rejection of H0, of course, implies acceptance of the alternative hy-

pothesis � = �0. With this de�nition of the critical region, it should be clear that there will be

probability � of rejecting H0 (falling into the critical region) when, indeed, � = �0.

Tests of one-sided hypotheses on the mean

For example, suppose that we seek to test

H0 : � = �0;

H1 : � > �0:

The signal that favors H1 comes from large values of z. Thus, rejection of H0 results when the

computed z > z�.

Example 158 A random sample of 100 recorded deaths in the United States during the past

year showed an average life span of 71:8 years. Assuming a population standard deviation of

8:9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use

a 0:05 level of signi�cance.

Solution 159 1. H0 : � = 70 years.

2. H1 : � > 70 years.

3. � = 0:05.

4. Test statistic: z = (x� �0)=(�=
p
n) = (71:8� 70)=(8:9=

p
100) = 2:02.

5. Critical region: z > z�,where z� = z0:05 = 1:645

6. Decision: since z = 2:02 > 1:645, reject H0 and conclude that the mean life span today is

greater than 70 years.

The P-value corresponding to z = 2:02 is given by the area on the right under the density of

standard normal distribution. Using Table A.3, we have P-value = P (Z > 2:02) = 0:0217.

As a result, the evidence in favor of H1 is even stronger than that suggested by a 0:05 level of

signi�cance.

Example 160 A manufacturer of sports equipment has developed a new synthetic �shing line

that the company claims has a mean breaking strength of 8 kilograms with a standard deviation
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of 0.5 kilogram. Test the hypothesis that � = 8 kilograms against the alternative that � 6= 8

kilograms if a random sample of 50 lines is tested and found to have a mean breaking strength

of 7:8 kilograms. Use a 0:01 level of signi�cance.

Solution 161 1. H0 : � = 8 kilograms.

2. H1 : � 6= 8 kilograms.

3. � = 0:01.

4. Critical region: z > z�=2 and z < �z�=2, where z = (x� �0)=(�=
p
n) and z�=2 = 2:575.

5. Computations: x = 7:8, � = 0:5, n = 50, hence z = (x��0)=(�=
p
n) = (7:8�8)=(0:5=

p
50) =

�2:83

6. Decision: since z = �2:83 < �2:575, hence reject H0 and conclude that the average breaking

strength is not equal to 8 but is, in fact, less than 8 kilograms.

Since the test in this example is two tailed, the desired P-value is twice the area of the left of

z = �2:83. Therefore, using standard normal table, we have

P-value = P (Z > j2:83j) = 2P (Z > 2:83) = 0:0046 < 0:01

which allows us to reject the null hypothesis that � = 8 kilograms at a level of signi�cance

smaller than 0:01.

Tests on a Single Sample (Variance Unknown)

Result 162 (Single Mean (Variance Unknown)) For the two-sided hypothesis

H0 : � = �0;

H1 : � 6= �0

we reject H0 at signi�cance level � when the computed t-statistic

t = (x� �0)=(s=
p
n)

51



5.jpg

Figure 5-1: Figure 5.1
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exceeds t�=2;n�1 or is less than �t�=2;n�1.

For H1 : � > �0, rejection results when t > t�;n�1. For H1 : � < �0, the critical region is

given by t < �t�;n�1.

Example 163 The Edison Electric Institute has published �gures on the number of kilowatt

hours used annually by various home appliances. It is claimed that a vacuum cleaner uses an

average of 46 kilowatt hours per year. If a random sample of 12 homes indicates that vacuum

cleaners use an average of 42 kilowatt hours per year with a standard deviation of 11:9 kilowatt

hours, does this suggest at the 0:05 level of signi�cance that vacuum cleaners use, on average,

less than 46 kilowatt hours annually? Assume the population of kilowatt hours to be normal.

Solution 164 1. H0 : � = 46 kilowatt hours.

2. H1 : � < 46 kilowatt hours.

3. � = 0:05.

4. Critical region: t < �t�;n�1, where t = (x � �0)=(s=
p
n) with 11 degrees of freedom and

t�;n�1 = 1:796.

5. Computations: x = 42 kilowatt hours, s = 11:9 kilowatt hours, and n = 12.

Hence, t = (42� 46)=(11:9=
p
12) = �1:16:

6. Since t > �1:796, we do not reject H0 and conclude that the average number of kilowatt

hours used annually by home vacuum cleaners is not signi�cantly less than 46.

Also P-value = Pr(T < �1:16) = Pr(T > 1:16) � 0:135.

5.2 Two Samples: Tests on Two Means

The two-sided hypothesis on two means can be written generally as H0 : �1 = �2. For �1 and

�2 known, the test statistic is given by

z =
x1 � x2p

�21=n1 + �
2
2=n2

That is, reject H0 in favor of H1 : �1 6= �2 if z > z�=2, and z < �z�=2.
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One-tailed critical regions are used in the case of the one-sided alternatives. The reader

should, as before, study the test statistic and be satis�ed that for, say, H1 : �1 > �2, the signal

favoring H1 comes from large values of z. Thus, the upper-tailed critical region applies.

Unknown But Equal Variances

If we assume that both distributions are normal and that �1 = �2 = �, the two-sample t-test

may be used. The test statistic is given by the following test procedure.

Result 165 (Two-Sample Pooled t-Test) For the two-sided hypothesis

H0 : �1 = �2

H1 : �1 6= �2;

we reject H0 at signi�cance level � when the computed t-statistic

t =
x1 � x2

sp
p
1=n1 + 1=n2

where

s2p =
s21(n1 � 1) + s22(n2 � 1)

n1 + n2 � 2

exceeds t�=2;n1+n2�2 or is less than �t�=2;n1+n2�2.

For H1 : �1 > �2, reject H0 : �1 = �2 when t > t�;n1+n2�2. For H1 : �1 < �2, reject

H0 : �1 = �2 when t < �t�;n1+n2�2.

Example 166 An experiment was performed to compare the abrasive wear of two materials.

Twelve pieces of material 1 were tested and ten pieces of material 2 were similarly tested. The

samples of material 1 gave an average (coded) wear of 85 units with a sample standard deviation

of 4, while the samples of material 2 gave an average of 83 with a sample standard deviation of

5. Can we conclude at the 0:05 level of signi�cance that the abrasive wear of material 1 exceeds

that of material 2? Assume the populations to be approximately normal with equal variances.

Solution 167 Let �1 and �2 represent the population means of the abrasive wear for material

1 and material 2, respectively.
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1. H0 : �1 = �2.

2. H1 : �1 > �2.

3. � = 0:05.

4. Critical region: t > t�;n1+n2�2, where t =
x1�x2

sp
p
1=n1+1=n2

with � = 20 degrees of freedom and

t�;n1+n2�2 = t0:05;20 = 1:725.

5. Computations:

x1 = 58 s1 = 4 n1 = 12

x2 = 81 s2 = 5 n2 = 10

Hence

sp =

r
(11)(16) + (9)(25)

12 + 10� 2 = 4:478

t =
(85� 83)

4:478
p
1=12 + 1=10

= 1:04 < 1:725

P-value = Pr(T > 1:04) � 0:16:(See Table A.4.)

6. Decision: Do not reject H0. We are unable to conclude that the abrasive wear of material 1

exceeds that of material 2.

Paired Observations

Testing of two means can be accomplished when data are in the form of paired observations,

as discussed in Chapter 4. The statistical test for two means �1 and �2 in the situation with

paired observations is based on the random variable

T =
D � �D
Sd=

p
n

where D and Sd are random variables representing the sample mean and standard deviation of

the di¤erences of the observations in the experimental units. As in the case of the pooled t-test,

the assumption is that the observations from each population are normal. This two-sample

problem is essentially reduced to a one-sample problem by using the computed di¤erences
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d1; d2; : : : ; dn. Critical regions are constructed using the t-distribution with n � 1 degrees of

freedom.

Example 168 Blood Sample Data: A study was conducted to examine the in�uence of the

drug succinylcholine on the circulation levels of androgens in the blood. Blood samples were taken

from wild, free-ranging deer immediately after they had received an intramuscular injection of

succinylcholine administered using darts and a capture gun. A second blood sample was obtained

from each deer 30 minutes after the �rst sample, after which the deer was released. The levels

of androgens at time of capture and 30 minutes later, measured in nanograms per milliliter

(ng/mL), for 15 deer are given in Table 6.2. Assuming that the populations of androgen levels

at time of injection and 30 minutes later are normally distributed, test at the 0:05 level of

signi�cance whether the androgen concentrations are altered after 30 minutes.

Androgen (ng/mL)

Deer At Time of Injection 30 Minutes after Injection di

1 2:76 7:02 4:26

2 5:18 3:10 �2:08

3 2:68 5:44 2:76

4 3:05 3:99 0:94

5 4:10 5:21 1:11

6 7:05 10:26 3:21

7 6:60 13:91 7:31

8 4:79 18:53 13:74

9 7:39 7:91 0:52

10 7:30 4:85 �2:45

11 11:78 11:10 �0:68

12 3:90 3:74 �0:16

13 26:00 94:03 68:03

14 67:48 94:03 26:55

15 17:04 41:70 24:66
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Solution 169 Let �1 and �2 be the average androgen concentration at the time of injection

and 30 minutes later, respectively. We proceed as follows:

1. H0 : �1 = �2 or �D = �1 � �2 = 0.

2. H1 : �1 6= �2 or �D = �1 � �2 6= 0.

3. � = 0:05.

4. Critical region: t < �t�=2;n�1 and t > t�=2;n�1, where t =
d

sD=
p
n
with � = 14 degrees of

freedom and t�=2;n�1 = 2:145.

5. Computations: The sample mean and standard deviation for the di are

d = 9:848 and sd = 18:474

Therefore

t =
9:848

18:474=
p
15
= 2:06

6. Hence �2:145 < t = 2:06 < 2:145. Though the t-statistic is not signi�cant at the 0:05 level,

from Table A.4,

P = P (jT j > 2:06) � 0:06

As a result, there is no evidence that there is a di¤erence in mean circulating levels of androgen.

5.3 One Sample: Test on a Single Proportion

Tests of hypotheses concerning proportions are required in many areas. We now consider the

problem of testing the hypothesis that the proportion of successes in a binomial experiment

equals some speci�ed value. That is, we are testing the null hypothesis H0 that p = p0, where

p is the parameter of the binomial distribution. The alternative hypothesis may be one of the

usual one-sided or two-sided alternatives:

p < p0 p > p0 or p 6= p0

We know that if np0 � 5 and n(1 � p0) � 5, then the random variable bP is approximately a

normal distribution with mean p0 and standard deviation � bP = pp0(1� p0)=n. The z-value
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for testing p = p0 is given by

z =
bp� p0p

p0(1� p0)=n

Hence, for a two-tailed test at the �-level of signi�cance, the critical region is z < �z�=2 or

z > z�=2. For the one-sided alternative p < p0, the critical region is z < �z�, and for the

alternative p > p0, the critical region is z > z�.

Example 170 A commonly prescribed drug for relieving nervous tension is believed to be only

60% e¤ective. Experimental results with a new drug administered to a random sample of 100

adults who were su¤ering from nervous tension show that 70 received relief. Is this su¢ cient

evidence to conclude that the new drug is superior to the one commonly prescribed? Use a 0:05

level of signi�cance.

Solution 171 1. H0 : p = 0:6.

2. H1 : p > 0:6.

3. � = 0:05.

4. Critical region: Z > z�, where z� = 1:645. Then, the critical region: z > 1:645.

5. Computations: x = 70,n = 100, bp = 70=100 = 0:7, and
z =

0:7� 0:6q
(0:6)(0:4)
100

= 2:04

z = 2:04 > 1:645

P -value = Pr(Z > 2:04) < 0:0207:

6. Decision: Reject H0 and conclude that the new drug is superior.

5.4 Two Samples: Tests on Two Proportions

Situations often arise where we wish to test the hypothesis that two proportions are equal.

That is, we are testing p1 = p2 against one of the alternatives p1 < p2, p1 > p2, or p1 = p2.

The statistic on which we base our decision is the random variable bP1� bP2. When H0 : p1 = p2
(= p) is true, we know that

Z =
bP1 � bP2p

pq(1=n1 + 1=n2)
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To compute a value of Z, however, we must estimate the parameters p and q that appear in

the radical. Under H0, both bP1 and bP2 are estimators of p. we use the pooled estimate of the
proportion p, which is bp = x1 + x2

n1 + n2

where x1 and x2 are the numbers of successes in each of the two samples. Substituting bp for p
and bq = 1� bp for q, the z-value for testing p1 = p2 is determined from the formula

z =
bp1 � bp2pbpbq(1=n1 + 1=n2)

The critical regions for the appropriate alternative hypotheses are set up as before, using critical

points of the standard normal curve.

Example 172 A vote is to be taken among the residents of a town and the surrounding county

to determine whether a proposed chemical plant should be constructed. To determine if there is a

signi�cant di¤erence in the proportions of town voters and county voters favoring the proposal,

a poll is taken. If 120 of 200 town voters favor the proposal and 240 of 500 county residents

favor it, would you agree that the proportion of town voters favoring the proposal is higher than

the proportion of county voters? Use an � = 0:05 level of signi�cance.

Solution 173 Let p1 and p2 be the true proportions of voters in the town and county, respec-

tively, favoring the proposal. bp1 = x1=n1 = 120=200 = 0:6, bp2 = x2=n2 = 240=500 = 0:48, and
the pooled estimate bp = (x1 + x2)=(n1 + n2) = (120 + 240)=(200 + 500) = 0:51.
1. H0 : p1 = p2.

2. H1 : p1 > p2.

3. � = 0:05.

4. The test statistic

z =
bp1 � bp2pbpbq(1=n1 + 1=n2) = 0:60� 0:48

(0:51)(0:49)(1=200 + 1=500)
= 2:9

5. Critical region: z > 1:645. P-value = P (Z > 2:9) = 0:0019.

6. Decision: Reject H0 and agree that the proportion of town voters favouring the proposal is
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Figure 5-2: Figure 5.2

higher than the proportion of county voters.

5.5 One- and Two-Sample Tests Concerning Variances

In this section, we are concerned with testing hypotheses concerning population variances or

standard deviations. Let us �rst consider the problem of testing the null hypothesis H0 that

the population variance �2 equals a speci�ed value �20 against one of the usual alternatives �
2

< �20, �
2 > �20, or �

2 6= �20. If we assume that the distribution of the population being sampled

is normal, the chi-squared value for testing �2 = �20 is given by

�2 =
(n� 1)s2
�20

where n is the sample size, s2 is the sample variance, and �20 is the value of �
2 given by the null

hypothesis. If H0 is true, �2 is a value of the chi-squared distribution with � = n � 1 degrees

of freedom. Hence, for a two-tailed test at the �-level of signi�cance, the critical region is �2 <

�21��=2 or �
2 > �2�=2 (see �gure 5.2). For the one-sided alternative �

2 < �20, the critical region

is �2 < �21��, and for the one-sided alternative �
2 > �20, the critical region is �

2 > �2�.

Example 174 A manufacturer of car batteries claims that the life of the company�s batteries

is approximately normally distributed with a standard deviation equal to 0:9 year. If a random

sample of 10 of these batteries has a standard deviation of 1:2 years, do you think that � > 0:9

year? Use a 0:05 level of signi�cance.
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Solution 175 1. H0 : �2 = 0:81.

2. H1 : �2 > 0:81.

3. � = 0:05.

4. Critical region: The null hypothesis is rejected when �2 > 16:919, where �2 = (n�1)s2
�20

, with

� = 9 degrees of freedom.

5. Computations: s2 = 1:44, n = 10, and

�2 =
(9)(1:44)

0:81
= 16:0, P � 0:07:

6. Decision: The �2-statistic is not signi�cant at the 0:05 level. However, based on the P-value

0:07, there is evidence that � > 0:9.

Now let us consider the problem of testing the equality of the variances �21 and �
2
2 of two

populations. That is, we shall test the null hypothesis H0 that �21 = �
2
2 against one of the usual

alternatives �21 < �22, �
2
1 > �22, or �

2
1 6= �22. For independent random samples of sizes n1 and

n2, respectively, from the two populations, the f -value for testing �21 = �
2
2 is the ratio

f =
s21
s22

where s21 and s
2
2 are the variances computed from the two samples. If the two populations are

approximately normally distributed and the null hypothesis is true, then the ratio f = s21=s
2
2 is

a value of the F -distribution with �1 = n1 � 1 and �2 = n2 � 1 degrees of freedom. Therefore,

the critical regions of size � corresponding to the one-sided alternatives �21 < �
2
2 and �

2
1 > �

2
2

are, respectively, f < f1��(�1; �2) and f > f�(�1; �2). For the two-sided alternative �21 6= �22,

the critical region is f < f1��=2(�1; �2) or f > f�=2(�1; �2).

Example 176 In testing for the di¤erence in the abrasive wear of the two materials in Example

166, we assumed that the two unknown population variances were equal. Were we justi�ed in

making this assumption? Use a 0:10 level of signi�cance.

Solution 177 Let �21 and �
2
2 be the population variances for the abrasive wear of material 1

and material 2, respectively.

1. H0 : �21 = �
2
2.
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2. H1 : �21 6= �22.

3. � = 0:10.

4. Critical region: We have f0:05(11; 9) = 3:11, and, by using Theorem 99, we �nd f0:95(11; 9) =

1
f0:05(9;11) = 0:34. Therefore, the null hypothesis is rejected when f < 0:34 or f > 3:11, where

f = s21=s
2
2 with �1 = 11 and �2 = 9 degrees of freedom.

5. Computations: s21 = 16, s22 = 25, hence f = 16=25 = 0:64.

6. Decision: Do not reject H0. Conclude that there is insu¢ cient evidence that the variances

di¤er.
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Chapter 6

Chi square tests

6.1 Goodness-of-Fit Test

we consider a test to determine if a population has a speci�ed theoretical distribution. The

test is based on how good a �t we have between the frequency of occurrence of observations in

an observed sample and the expected frequencies obtained from the hypothesized distribution.

To illustrate, we consider the tossing of a die. We hypothesize that the die is honest, which is

equivalent to testing the hypothesis that the distribution of outcomes is the discrete uniform

distribution

f(x) =
1

6
, x; 2; 3; 4; 5; 6

Suppose that the die is tossed 120 times and each outcome is recorded. Theoretically, if the die

is balanced, we would expect each face to occur 20 times. The results are given in the table 6.1.

Face 1 2 3 4 5 6

Observed 20 22 17 18 19 24

Expected 20 20 20 20 20 20

By comparing the observed frequencies with the corresponding expected frequencies, the hy-

pothesis, H0 : the die is fair, should be rejected or not. A goodness-of-�t test between
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observed and expected frequencies is based on the quantity

�2 =
kX
i=1

(oi � ei)2
ei

where �2 is a value of a random variable whose sampling distribution is approximated very

closely by the chi-squared distribution with � = k � 1 degrees of freedom. The symbols oi and

ei represent the observed and expected frequencies, respectively, for the ith cell.

If the observed frequencies are close to the corresponding expected frequencies, the �2-value

will be small, indicating a good �t. If the observed frequencies di¤er considerably from the

expected frequencies, the �2-value will be large and the �t is poor. A good �t leads to the

acceptance of H0, whereas a poor �t leads to its rejection. The critical region will, therefore,

fall in the right tail of the chi-squared distribution. For a level of signi�cance equal to �, we

�nd the critical value �2� from Table A.5, and then �2 > �2� constitutes the critical region. The

decision criterion described here should not be used unless each of the expected frequencies is

at least equal to 5. This restriction may require the combining of adjacent cells, resulting in a

reduction in the number of degrees of freedom.

From Table 6.1, we �nd the �2-value to be

�2� = (20�20)2
20 + (22�20)2

20 + (17�20)2
20 + (18�20)2

20

+ (19�20)2
20 + (24�20)2

20 = 1:7

Using chi-squared table, we �nd �20:05 = 11:070 for � = 5 degrees of freedom. Since 1:7 is

less than the critical value, we fail to reject H0. We conclude that there is insu¢ cient evidence

that the die is not balanced.

A second example is to test the hypothesis that the frequency distribution of battery lives

given in Table 6.2 may be approximated by a normal distribution with mean � = 3:5 and

standard deviation � = 0:7. The expected frequencies for the 7 classes (cells), listed in Table

6.2, are obtained by computing the areas under the hypothesized normal curve that fall between

the various class boundaries.

Table 6.2: Frequency Distribution of Battery Life.

Class Boundaries Frequency
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1.45-1.95 2

1.95-2.45 1

2.45-2.95 4

2.95-3.45 15

3.45-3.95 10

3.95-4.45 5

4.45-4.95 3

The z-values corresponding to the boundaries of the �rst class are z1 = (1:45 � 3:5)=0:7 =

�2:93 and z2 = (1:95 � 3:5)=0:7 = �2:21. From standard normal table, we �nd the area

between z1 = �2:93 and z2 = �2:21 to be area equal to Pr(�2:93 < Z < �2:21) = Pr(Z <

�2:21) � Pr(Z < �2:93) = 0:0136 � 0:0017 = 0:0119. Hence, the expected frequency for the

�rst class is e1 = 40(0:0119) = 0:5. Similarly, weget

e2 = 40[P ((1:95� 3:5)=0:7 < Z < (2:45� 3:5)=0:7)] = 40[P (�2:21 < Z < �1:5)] = 2:1

e3 = 40[P ((2:45� 3:5)=0:7 < Z < (2:95� 3:5)=0:7)] = 40[P (�1:5 < Z < �0:79)] = 5:9

e4 = 40[P ((2:95� 3:5)=0:7 < Z < (3:45� 3:5)=0:7)] = 40[P (�0:79 < Z < �0:07)] = 10:3

e5 = 40[P ((3:45� 3:5)=0:7 < Z < (3:95� 3:5)=0:7)] = 40[P (�0:07 < Z < 0:64)] = 10:7

e6 = 40[P ((3:95� 3:5)=0:7 < Z < (4:45� 3:5)=0:7)] = 40[P (0:64 < Z < 1:36)] = 7:0

e7 = 40[P ((4:45� 3:5)=0:7 < Z < (4:95� 3:5)=0:7)] = 40[P (1:36 < Z < 2:07)] = 3:5

It is customary to round these frequencies to one decimal. Note that we have to combined

adjacent classes in Table 16.2 where the expected frequencies are less than 5 (a rule of thumb

in the goodness-of-�t test). Consequently, the total number of intervals is reduced from 7 to 4,

resulting in � = 3 degrees of freedom. The �2-value is then given by

�2 = (7�8:5)^2
8:5 + (15�10:3)^2

10:3 + (10�10:7)^2
10:7 + (8�10:5)^2

10:5 = 3:05

Since the computed �2-value is less than �20:05 = 7:815 for 3 degrees of freedom, we have

no reason to reject the null hypothesis and conclude that the normal distribution with � = 3:5

and � = 0:7 provides a good �t for the distribution of battery lives.
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6.2 Test for Independence (Categorical Data)

The chi-squared test procedure discussed in Section 6.1 can also be used to test the hypothesis

H0 of independence of two variables of classi�cation. A test of independence tests the null

hypothesis that there is no association between the two variables in a contingency table where

the data is all drawn from one population.

Suppose that we wish to determine whether the opinions of the voting residents of

the state of Illinois concerning a new tax reform are independent of their levels of income.

Members of a random sample of 1000 registered voters from the state of Illinois are classi�ed

as to whether they are in a low, medium, or high income bracket and whether or not they favor

the tax reform. The observed frequencies are presented in Table 6.2.

Tax Reform Low Medium High Total

For 182 213 203 598

Against 154 138 110 402

Total 336 351 313 1000

To �nd these expected frequencies, let us de�ne the following events:

L: A person selected is in the low-income level.

M: A person selected is in the medium-income level.

H: A person selected is in the high-income level.

F: A person selected is for the tax reform.

A: A person selected is against the tax reform.

We have

P (L) = 336=1000; P (M) = 351=1000; P (H) = 313=1000; P (F ) = 598=1000; P (A) = 402=1000:

If H0 is true and the two variables are independent, we should have

P (L \ F ) = P (L)P (F ) =
�
336

1000

��
598

1000

�

P (L \A) = P (L)P (A) =
�
336

1000

��
402

1000

�

P (M \ F ) = P (M)P (F ) =
�
351

1000

��
598

1000

�
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P (M \A) = P (M)P (A) =
�
351

1000

��
402

1000

�

P (H \ F ) = P (H)P (F ) =
�
313

1000

��
598

1000

�

P (H \A) = P (H)P (A) =
�
313

1000

��
402

1000

�
The expected frequencies are obtained by multiplying each cell probability by

the total number of observations 1000.

The general rule for obtaining the expected frequency of any cell is given by the following

formula:

expected frequency =
(column total)� (row total)

grand total

A simple formula providing the correct number of degrees of freedom is

� = (c� 1)� (r � 1)

Table 6.3: Observed and Expected Frequencies

Income Level

Tax Reform Low Medium High Total

For 182 (200.9) 213 (209.9) 203 (187.2) 598

Against 154 (135.1) 138 (141.1) 110 (125.8) 402

Total 336 351 313 1000

Hence, the expected frequency for the �rst class is

e11 = (336� 598)=1000 = 200:9:

Here � = (2 � 1)(3 � 1) = 2 degrees of freedom. If �2 > �2�, reject the null hypothesis of

independence at the �-level of signi�cance; otherwise, fail to reject the null hypothesis.

1. H0: the two random variables (voter�s opinion concerning the tax reform and his or her

level of income) are independent.

2. H1: voter�s opinion concerning the tax reform and his or her level of income are not

independent.
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3. � = 0:05.

4. The test statistic:

�2=
X
i;j

(oij�eij)2
eij

= (182�200:9)22
200:9 + (213�209:9)2

209:9 + (203�187:2)2
187:2

+ (154�135:1)2
135:1 + (138�141:1)2

141:1 + (110�125:8)2
125:8 = 7:85; P ' 0.02.

5. From chi-square table we �nd that �20:05 = 5:991 for � = (2 � 1)(3 � 1) = 2 degrees of

freedom. The null hypothesis is rejected and we conclude that a voter�s opinion concerning the

tax reform and his or her level of income are not independent.

6.3 Test for Homogeneity

Now, rather than test for independence, this test determines if two or more populations have

the same distribution of a single categorical variable. The key di¤erence from the test of

independence is that there are multiple populations that the data is drawn from. Suppose,

for example, that we decide in advance to select 200 Democrats, 150 Republicans, and 150

Independents from the voters of the state of North Carolina and record whether they are for

a proposed abortion law, against it, or undecided. We assume that the row totals in table 6.4

were random, while the column totals were presumably �xed in advance, since they represented

numbers of voters sampled from di¤erent political a¢ liations.

Table 6.4: Observed Frequencies

Political A¢ liation

Abortion Law Democrat Republican Independent Total

For 82 70 62 214

Against 93 62 67 222

Undecided 25 18 21 64

Total 200 150 150 500

we want to test the hypothesis that the proportions of Democrats, Republicans, and Indepen-

dents favoring the abortion law are the same; the proportions of each political a¢ liation against

the law are the same; and the proportions of each political a¢ liation that are undecided are

the same. Then the null hypothesis is
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H0 : For each row i, pi1 = ��� = pic

The alternative hypothesis H1 is that at least one of the null hypothesis statements is false.

Such a test is called a test for homogeneity.

If homogeneity holds we should have

Pr(For jDemocrat) = Pr(For jRepublic) = Pr(For jIndependent)

But Pr(For) = Pr(ForjDemocrat) Pr(Democrat)+Pr(ForjRepublic) Pr(Republic)

+Pr(ForjIndependent) Pr(Independent) = Pr(ForjDemocrat)

Consequently

Pr(For jDemocrat) = Pr(For jRepublic) = Pr(For jIndependent) = Pr(For) estimated by 214
500

But Pr(For\Democrat) = Pr(ForjDemocrat) Pr(Democrat)' 214
500

200
500 . Hence e11 =

�
214
500

� �
200
500

�
(500) =

214�200
500 = 85:6. The expected cell frequencies is then obtained by multiplying the correspond-

ing row and column totals and then dividing by the grand total. The analysis then proceeds

using the same chi-squared statistic as before. Use of the chi-square distribution is appropriate

whenever the expected values are all greater than or equal to 5.

1. H0: For each opinion, the proportions of Democrats, Republicans, and Independents are

the same.

2. H1: For at least one opinion, the proportions of Democrats, Republicans, and Indepen-

dents are not the same.

3. � = 0:05.

4. Critical region: �2 > �2� with � = (3� 1)(3� 1) = 4 degrees of freedom.

Then the critical region: �2 > 9:488.

5. Computations: The observed and expected cell frequencies are displayed in Table 6.6.

Table 6.5: Observed and Expected Frequencies

Political A¢ liation
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Abortion Law Democrat Republican Independent Total

For 82 (85.6) 70 (64.2) 62 (64.2) 214

Against 93 (88.8) 62 (66.6) 67 (66.6) 222

Undecided 25 (25.6) 18 (19.2) 21 (19.2) 64

Total 200 150 150 500

�2 = 1:53.

6. Decision: Do not rejectH0. There is insu¢ cient evidence to conclude that the proportions

of Democrats, Republicans, and Independents di¤er for each stated opinion.
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Chapter 7

Simple linear regression and

correlation

7.1 Joint Probability Distributions

IfX and Y are two discrete random variables, the probability distribution for their simultaneous

occurrence can be represented by a function with values f(x; y) for any pair of values (x; y)

within the range of the random variables X and Y . It is customary to refer to this function as

the joint probability distribution of X and Y .

Hence, in the discrete case,

f(x; y) = Pr(X = x; Y = y)

De�nition 178 The function f(x; y) is a joint probability distribution or probability mass func-

tion of the discrete random variables X and Y if

1. f(x; y) � 0 for all (x; y),

2. �
x
�
y
f(x; y) = 1,

3. Pr(X = x; Y = y) = f(x; y)

When X and Y are continuous random variables, we have

De�nition 179 The function f(x; y) is a joint density function of the continuous random
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variables X and Y if

1. f(x; y) � 0 for all (x; y),

2.
R1
�1

R1
�1 f(x; y)dxdy = 1,

3. Pr [(X;Y ) 2 A] =
Z Z

A
f(x; y)dxdy, for any region A in the xy plane.

Example 180 Let a joint density function of X and Y given by

f(x) =

8<: 2
5(2x+ 3y); 0 � x � 1; 0 � y � 1

0; elsewhere:

1) Verify condition 2 of De�nition 179.

2) Find Pr [(X;Y ) 2 A], where A = f(x; y)
��0 < x < 1

2 ;
1
4 < y <

1
2 g

De�nition 181 The marginal distributions of X alone and of Y alone are

g(x) = �
y
f(x; y) and h(y) = �

x
f(x; y)

for the discrete case, and

g(x) =

Z 1

�1
f(x; y)dy and h(y) =

Z 1

�1
f(x; y)dx

for the continuous case.

Example 182 Find g(x) and h(y) for the joint density function of Example 180.

De�nition 183 Let X and Y be two random variables, discrete or continuous, with joint prob-

ability distribution f(x; y) and marginal distributions g(x) and h(y), respectively. The random

variables X and Y are said to be statistically independent if and only if

f(x; y) = g(x)h(y)

for all (x; y).
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De�nition 184 Let X be a random variable with probability distribution f(x) and mean �.

The variance of X is

�2 = E[(X � �)2] =
X
x

(x� �)2f(x), if X is discrete, and

�2 = E[(X � �)2] =
Z 1

�1
(x� �)2f(x)dx, if X is continuous.

The positive square root of the variance, �, is called the standard deviation of X.

Example 185 The weekly demand for a drinking-water product, in thousands of liters, from a

local chain of e¢ ciency stores is a continuous random variable X having the probability density

f(x) =

8<: 2(x� 1); 1 < x < 2;

0; elsewhere:

Find the mean and variance of X.

De�nition 186 Let X be a random variable with probability distribution f(x). The variance

of the random variable g(X) is

�2g(X) = E[(g(X)� �g(X))
2] =

X
x

(g(x)� �)2f(x)

if X is discrete, and

�2g(X) = E[(g(X)� �g(X))
2] =

Z 1

�1
(g(x)� �)2f(x)dx

if X is continuous.

De�nition 187 Let X and Y be random variables with joint probability distribution f(x; y).

The mean, or expected value, of the random variable g(X;Y ) is

�g(X;Y ) = E[g(X;Y )] =
X
x

X
y

g(x; y)f(x; y)
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if X and Y are discrete, and

�g(X;Y ) = E[g(X;Y )] =

Z 1

�1

Z 1

�1
g(x; y)f(x; y)dxdy

f X and Y are continuous.

Exercise 188 Let X and Y be the random variables with joint probability distribution indicated

in the following table. Find the expected value of g(X;Y ) = XY .

y nx 0 1 2

0 3
28

9
29

3
28

15
28

1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

5
14

15
28

3
28 1

Solution 189 By de�nition,

E(XY ) =
2
�
x=0

2
�
y=0
xyf(x; y)

= (0)(0)f(0; 0) + (0)(1)f(0; 1)

+(1)(0)f(1; 0) + (1)(1)f(1; 1) + (2)(0)f(2; 0)

= f(1; 1) =
3

14
.

De�nition 190 Let X and Y be random variables with joint probability distribution f(x; y).

The covariance of X and Y is

�XY = E[(X � �X)(Y � �Y )] =
X
x

X
y

(x� �X)(y � �Y )f(x; y)

if X and Y are discrete, and

�XY = E[(X � �X)(Y � �Y )] =
Z 1

�1

Z 1

�1
(x� �X)(y � �Y )f(x; y)dxdy

if X and Y are continuous.

Theorem 191 The covariance of two random variables X and Y with means �X and �Y ,
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respectively, is given by

�XY = E(XY )� �X�Y

Example 192 Let the joint density function given by

f(x; y) =

8<: 8xy; 0 � y � x � 1;

0; elsewhere:

Find the covariance of X and Y .

Although the covariance between two random variables does provide information regarding

the nature of the relationship, the magnitude of �XY does not indicate anything regarding the

strength of the relationship, since �XY is not scale-free. Its magnitude will depend on the units

used to measure both X and Y . There is a scale-free version of the covariance called the

correlation coe¢ cient that is used widely in statistics.

De�nition 193 Let X and Y be random variables with covariance �XY and standard devia-

tions �X and �Y , respectively. The correlation coe¢ cient of X and Y is

�XY =
�XY
�X�Y

It should be clear to the reader that �XY is free of the units of X and Y . The correlation

coe¢ cient satis�es the inequality �1 � �XY � 1. It assumes a value of zero when �XY = 0.

Where there is an exact linear dependency, say Y � a+ bX,�XY = 1 if b > 0 and �XY = � 1

if b < 0.

7.2 Means and Variances of Linear Combinations of Random

Variables

Theorem 194 If a and b are constants, then

E(aX + b) = aE(X) + b:

Proof. As exercise.
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Corollary 195 Setting a = 0, we see that E(b) = b.

Corollary 196 Setting b = 0, we see that E(aX) = aE(X).

Theorem 197 The expected value of the sum or di¤erence of two or more functions of a

random variable X is the sum or di¤erence of the expected values of the functions. That is,

E[g(X)� h(X)] = E[g(X)]� E[h(X)]:

Example 198 Let X be a random variable with probability distribution as follows:

x 0 1 2 3

f(x) 1
3

1
2 0 1

6

Find the expected value of Y = (X � 1)2.

Example 199 The weekly demand for a certain drink, in thousands of liters, at a chain of

convenience stores is a continuous random variable g(X) = X2 + X � 2, where X has the

density function

f(x) =

8<: 2(x� 1); 1 < x < 2;

0; elsewhere:

Find the expected value of the weekly demand for the drink.

Theorem 200 The expected value of the sum or di¤erence of two or more functions of the

random variables X and Y is the sum or di¤erence of the expected values of the functions. That

is,

E[g(X;Y )� h(X;Y )] = E[g(X;Y )]� E[h(X;Y )]:

Corollary 201 Setting g(X;Y ) = g(X) and h(X;Y ) = h(Y ), we see that

E[g(X)� h(Y )] = E[g(X)]� E[h(Y )]:

Corollary 202 Setting g(X;Y ) = X and h(X;Y ) = Y , we see that

E[X � Y ] = E[X]� E[Y ]:
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Theorem 203 Let X and Y be two independent random variables. Then

E(XY ) = E(X)E(Y ):

Proof. By De�nition

E(XY ) =

Z 1

�1

Z 1

�1
xyf(x; y)dxdy

Since X and Y are independent, we may write

f(x; y) = g(x)h(y);

where g(x) and h(y) are the marginal distributions of X and Y , respectively. Hence,

E(XY ) =

Z 1

�1

Z 1

�1
xyg(x)h(y)dxdy =

Z 1

�1
g(x)dx

Z 1

�1
h(y)dy = E(X)E(Y )

Corollary 204 Let X and Y be two independent random variables. Then cov(X;Y ) = 0.

Theorem 205 If X and Y are random variables with joint probability distribution f(x; y) and

a, b, and c are constants, then var(aX + bY + c) = a2var(X) +b2var(Y )+ 2abcov(X;Y ).

Corollary 206 Setting b = 0, we see that

var(aX + c) = a2var(X).

Corollary 207 Setting a = 1 and b = 0, we see that

var(X + c) = var(X).

Corollary 208 Setting b = 0 and c = 0, we see that

var(aX) = var(X)
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Corollary 209 If X and Y are independent random variables, then

var(aX + bY ) = a2var(X) + b2var(Y ).

Corollary 210 If X1; X2; :::; Xn are independent random variables, then

var(a1X1 + a2X2 + ���+ anXn) = a21var(X1) + a22var(X2) + ���+ a2nvar(Xn):

Example 211 If X and Y are random variables with variances var(X) = 2 and var(Y ) = 4

and covariance cov(X;Y ) = �2, �nd the variance of the random variable Z = 3X � 4Y + 8.

7.3 Correlation

We consider the problem of measuring the relationship between the two variables X and Y . We

want to to determine whether large values of X are associated with large values of Y , and vice

versa. Correlation analysis attempts to measure the strength of such relationships between two

variables X and Y by means of a single number called a correlation coe¢ cient.

De�nition 212 (Coe¢ cient) The measure of linear association � between two variables X

and Y is estimated by the sample correlation coe¢ cient r, where

r =
Sxy

p
SxxSyy

with Sxy =
nP
i=1
(xi � x)(yi � y), Sxx =

nP
i=1
(xi � x)2 and Syy =

nP
i=1
(yi � y)2.

Example 213 Let consider the following grades of 6 students selected at random

Mathematics grade 70 92 80 74 65 83

English grade 74 84 63 87 78 90

We have n = 6, Sxy = 115:33; Sxx = 471:33; Syy = 491:33. Hence r = 115:33p
(471:33)(491:33)

= 0:24:
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7.3.1 Properties of r

r = 1 i¤ all (xi; yi) pairs lie on straight line with positive slope, and r = �1 i¤ all (xi; yi) pairs

lie on a straight line with negative slope.

7.4 Simple linear regression

The form of a relationship between the response Y (the dependent or the response variable)

and the regressor X (the independent variable) is in mathematically the linear relationship

Y = �0 + �1X

where, �0 is the intercept and �1 is the slope. The relationship is illustrated in Figure 7.1.

An important aspect of regression analysis is to estimate the parameters �0 and �1 (i.e.,

estimate the so-called regression coe¢ cients). The method of estimation will be discussed in

the next section. Suppose we denote the estimates b0 for �0 and b1 for �1. Then the estimated

or �tted regression line is given by

ŷ = b0 + b1x

where ŷ is the predicted or �tted value.
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Figure 7-1: Figure 7.1

7.4.1 Least Squares and the Fitted Model

We shall �nd b0 and b1, the estimates of �0 and �1, so that the sum of the squares of the

residuals is a minimum. The residual sum of squares is often called the sum of squares of

the errors about the regression line and is denoted by SSE. This minimization procedure for

estimating the parameters is called the method of least squares. Hence, we shall �nd a and b

so as to minimize

the error sum of squares = SSE =
nX
i=1

e2i =

nX
i=1

(y � ŷi)2 =
nX
i=1

(y � b0 � b1xi)2

Di¤erentiating SSE with respect to b0 and b1, we have

Theorem 214 Given the sample {(xi; yi); i = 1; 2; :::; n}, the least squares estimates b0 and b1

of the regression coe¢ cients �0 and �1 are computed from the formulas

b1 =

Pn
i=1(xi � x)(yi � y)Pn

i=1(xi � x)2
=

Pn
i=1 xiyi � nxyPn
i=1 x

2
i � nx2

b0 = y � b1x

Example 215 Consider the experimental data in Table 7.1, which were obtained from 33 sam-
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ples of chemically treated waste in a study conducted at Virginia Tech. Readings on x, the

percent reduction in total solids, and y, the percent reduction in chemical oxygen demand, were

recorded.

Solids Reduction, Oxygen Demand Solids Reduction, Oxygen Demand

x (%) Reduction, y (%) x (%) Reduction, y (%)

3 5 36 34

7 11 37 36

11 21 38 38

15 16 39 37

18 16 39 36

27 28 39 45

29 27 40 39

30 25 41 41

30 35 42 40

31 30 42 44

31 40 43 37

32 32 44 44

33 34 45 46

33 32 46 46

34 34 47 49

36 37 50 51

36 38

The estimated regression line is given by

ŷ = 3:8296 + 0:9036x:

Using the regression line, we would predict a 31% reduction in the chemical oxygen demand

when the reduction in the total solids is 30%. The 31% reduction in the chemical oxygen

demand may be interpreted as an estimate of the population mean �Y j30 or as an estimate of a
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new observation when the reduction in total solids is 30%.

7.4.2 Properties of the Least Squares Estimators

We are interested in the expectation and variance the estimator B1 of �1 and the expectation

of B0 the estimator of �0.

Theorem 216 E(B0) = �0, E(B1) = �1, var(B1) =
�2Pn

i=1(xi�x)2

Theorem 217 An unbiased estimate of �2 is

b�2 = SSE

n� 2 =
Pn
i=1(yi � ŷi)2
n� 2

7.4.3 Inferences Concerning the Regression Coe¢ cients

Theorem 218 A 100(1� �)% con�dence interval for the parameter �1 in the regression line

b1 � t�=2
b�2Pn

i=1(xi � x)2
< �1 < b1 + t�=2

b�2Pn
i=1(xi � x)2

where t�=2 is a value of the t-distribution with n� 2 degrees of freedom.

Find a 95% con�dence interval for �1 in the regression line , based on the pollution data of

Table 7.1. We show that

b�2 = SSE

n� 2 =
Pn
i=1(yi � ŷi)2
n� 2 = 0:4299:

Therefore, taking the square root, we obtain b� = 3:2295. Also, Sxx =Pn
i=1(xi�x)2 = 4152:18.

Using Table A.4, we �nd t0:025 � 2:045 for 31 degrees of freedom. Therefore, a 95% con�dence

interval for �1 is

0:903643� (2:045) 3:2295p
4152:18

< �1 < 0:903643 + (2:045)
3:2295p
4152:18

which simpli�es to

0:8012 < �1 < 1:0061:
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Hypothesis Testing on the Slope
To test the null hypothesis H0 that �1 = �10 against a suitable alternative, we again use the

t-distribution with n � 2 degrees of freedom to establish a critical region and then base our

decision on the value of

t =
b1 � �10b�=pSxx

Example 219 Using the estimated value b1 = 0:903643 of Example 7.1, test the hypothesis

that �1 = 1:0 against the alternative that �1 < 1:0.

Solution 220 The hypotheses are H0 : �1 = 1:0 and H1 : �1 < 1:0. So

t =
0:903643� 1:0
3:2295=

p
4152:18

= �1:92;

with n� 2 = 31 degrees of freedom (P � 0:03).

Decision: P-value < 0:05, suggesting strong evidence that �1 < 1:0

One important t-test on the slope is the test of the hypothesis H0 : �1 = 0 versus H1 : �1

6= 0. When the null hypothesis is not rejected, the conclusion is that there is no signi�cant

linear relationship between E(y) and the independent variable x. Rejection of H0 above implies

that a signi�cant linear regression exists.

Measuring Goodness-of-Fit: the Coe¢ cient of Determination
A goodness-of-�t statistic is a quantity that measures how well a model explains a given set of

data. A linear model �ts well if there is a strong linear relationship between x and y.

De�nition 221 The coe¢ cient of determination, R2, is given by

R2 = 1� SSE
SST

where SSE =
Pn
i=1(y � ŷi)2 and SST =

Pn
i=1(y � y)2.

Note that if the �t is perfect, all residuals y � ŷi are zero, and thus R2 = 1:0. But if

SSE is only slightly smaller than SST , R2 � 0. In the example of table 7.1, the coe¢ cient

of determination R2 = 0:913, suggests that the model �t to the data explains 91.3% of the

variability observed in the response, the reduction in chemical oxygen demand.
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Theorem 222 The square r2 of the sample correlation coe¢ cient gives the value of the coe¢ -

cient of determination R2 that would result from �tting the simple linear regression model.
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Table A.3 Normal Probability Table 735

0 z

Area

Table A.3 Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table A.3 (continued) Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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0 t
α

αTable A.4 Critical Values of the t-Distribution

α

v 0.40 0.30 0.20 0.15 0.10 0.05 0.025

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706
2 0.289 0.617 1.061 1.386 1.886 2.920 4.303
3 0.277 0.584 0.978 1.250 1.638 2.353 3.182
4 0.271 0.569 0.941 1.190 1.533 2.132 2.776
5 0.267 0.559 0.920 1.156 1.476 2.015 2.571

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447
7 0.263 0.549 0.896 1.119 1.415 1.895 2.365
8 0.262 0.546 0.889 1.108 1.397 1.860 2.306
9 0.261 0.543 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201
12 0.259 0.539 0.873 1.083 1.356 1.782 2.179
13 0.259 0.538 0.870 1.079 1.350 1.771 2.160
14 0.258 0.537 0.868 1.076 1.345 1.761 2.145
15 0.258 0.536 0.866 1.074 1.341 1.753 2.131

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120
17 0.257 0.534 0.863 1.069 1.333 1.740 2.110
18 0.257 0.534 0.862 1.067 1.330 1.734 2.101
19 0.257 0.533 0.861 1.066 1.328 1.729 2.093
20 0.257 0.533 0.860 1.064 1.325 1.725 2.086

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080
22 0.256 0.532 0.858 1.061 1.321 1.717 2.074
23 0.256 0.532 0.858 1.060 1.319 1.714 2.069
24 0.256 0.531 0.857 1.059 1.318 1.711 2.064
25 0.256 0.531 0.856 1.058 1.316 1.708 2.060

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056
27 0.256 0.531 0.855 1.057 1.314 1.703 2.052
28 0.256 0.530 0.855 1.056 1.313 1.701 2.048
29 0.256 0.530 0.854 1.055 1.311 1.699 2.045
30 0.256 0.530 0.854 1.055 1.310 1.697 2.042

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021
60 0.254 0.527 0.848 1.045 1.296 1.671 2.000

120 0.254 0.526 0.845 1.041 1.289 1.658 1.980
∞ 0.253 0.524 0.842 1.036 1.282 1.645 1.960
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Table A.4 (continued) Critical Values of the t-Distribution

α

v 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005

1 15.894 21.205 31.821 42.433 63.656 127.321 636.578
2 4.849 5.643 6.965 8.073 9.925 14.089 31.600
3 3.482 3.896 4.541 5.047 5.841 7.453 12.924
4 2.999 3.298 3.747 4.088 4.604 5.598 8.610
5 2.757 3.003 3.365 3.634 4.032 4.773 6.869

6 2.612 2.829 3.143 3.372 3.707 4.317 5.959
7 2.517 2.715 2.998 3.203 3.499 4.029 5.408
8 2.449 2.634 2.896 3.085 3.355 3.833 5.041
9 2.398 2.574 2.821 2.998 3.250 3.690 4.781

10 2.359 2.527 2.764 2.932 3.169 3.581 4.587

11 2.328 2.491 2.718 2.879 3.106 3.497 4.437
12 2.303 2.461 2.681 2.836 3.055 3.428 4.318
13 2.282 2.436 2.650 2.801 3.012 3.372 4.221
14 2.264 2.415 2.624 2.771 2.977 3.326 4.140
15 2.249 2.397 2.602 2.746 2.947 3.286 4.073

16 2.235 2.382 2.583 2.724 2.921 3.252 4.015
17 2.224 2.368 2.567 2.706 2.898 3.222 3.965
18 2.214 2.356 2.552 2.689 2.878 3.197 3.922
19 2.205 2.346 2.539 2.674 2.861 3.174 3.883
20 2.197 2.336 2.528 2.661 2.845 3.153 3.850

21 2.189 2.328 2.518 2.649 2.831 3.135 3.819
22 2.183 2.320 2.508 2.639 2.819 3.119 3.792
23 2.177 2.313 2.500 2.629 2.807 3.104 3.768
24 2.172 2.307 2.492 2.620 2.797 3.091 3.745
25 2.167 2.301 2.485 2.612 2.787 3.078 3.725

26 2.162 2.296 2.479 2.605 2.779 3.067 3.707
27 2.158 2.291 2.473 2.598 2.771 3.057 3.689
28 2.154 2.286 2.467 2.592 2.763 3.047 3.674
29 2.150 2.282 2.462 2.586 2.756 3.038 3.660
30 2.147 2.278 2.457 2.581 2.750 3.030 3.646

40 2.123 2.250 2.423 2.542 2.704 2.971 3.551
60 2.099 2.223 2.390 2.504 2.660 2.915 3.460

120 2.076 2.196 2.358 2.468 2.617 2.860 3.373
∞ 2.054 2.170 2.326 2.432 2.576 2.807 3.290



Table A.5 Chi-Squared Distribution Probability Table 739

0 2
χ

α

αTable A.5 Critical Values of the Chi-Squared Distribution

α

v 0.995 0.99 0.98 0.975 0.95 0.90 0.80 0.75 0.70 0.50

1 0.04393 0.03157 0.03628 0.03982 0.00393 0.0158 0.0642 0.102 0.148 0.455
2 0.0100 0.0201 0.0404 0.0506 0.103 0.211 0.446 0.575 0.713 1.386
3 0.0717 0.115 0.185 0.216 0.352 0.584 1.005 1.213 1.424 2.366
4 0.207 0.297 0.429 0.484 0.711 1.064 1.649 1.923 2.195 3.357
5 0.412 0.554 0.752 0.831 1.145 1.610 2.343 2.675 3.000 4.351

6 0.676 0.872 1.134 1.237 1.635 2.204 3.070 3.455 3.828 5.348
7 0.989 1.239 1.564 1.690 2.167 2.833 3.822 4.255 4.671 6.346
8 1.344 1.647 2.032 2.180 2.733 3.490 4.594 5.071 5.527 7.344
9 1.735 2.088 2.532 2.700 3.325 4.168 5.380 5.899 6.393 8.343

10 2.156 2.558 3.059 3.247 3.940 4.865 6.179 6.737 7.267 9.342

11 2.603 3.053 3.609 3.816 4.575 5.578 6.989 7.584 8.148 10.341
12 3.074 3.571 4.178 4.404 5.226 6.304 7.807 8.438 9.034 11.340
13 3.565 4.107 4.765 5.009 5.892 7.041 8.634 9.299 9.926 12.340
14 4.075 4.660 5.368 5.629 6.571 7.790 9.467 10.165 10.821 13.339
15 4.601 5.229 5.985 6.262 7.261 8.547 10.307 11.037 11.721 14.339

16 5.142 5.812 6.614 6.908 7.962 9.312 11.152 11.912 12.624 15.338
17 5.697 6.408 7.255 7.564 8.672 10.085 12.002 12.792 13.531 16.338
18 6.265 7.015 7.906 8.231 9.390 10.865 12.857 13.675 14.440 17.338
19 6.844 7.633 8.567 8.907 10.117 11.651 13.716 14.562 15.352 18.338
20 7.434 8.260 9.237 9.591 10.851 12.443 14.578 15.452 16.266 19.337

21 8.034 8.897 9.915 10.283 11.591 13.240 15.445 16.344 17.182 20.337
22 8.643 9.542 10.600 10.982 12.338 14.041 16.314 17.240 18.101 21.337
23 9.260 10.196 11.293 11.689 13.091 14.848 17.187 18.137 19.021 22.337
24 9.886 10.856 11.992 12.401 13.848 15.659 18.062 19.037 19.943 23.337
25 10.520 11.524 12.697 13.120 14.611 16.473 18.940 19.939 20.867 24.337

26 11.160 12.198 13.409 13.844 15.379 17.292 19.820 20.843 21.792 25.336
27 11.808 12.878 14.125 14.573 16.151 18.114 20.703 21.749 22.719 26.336
28 12.461 13.565 14.847 15.308 16.928 18.939 21.588 22.657 23.647 27.336
29 13.121 14.256 15.574 16.047 17.708 19.768 22.475 23.567 24.577 28.336
30 13.787 14.953 16.306 16.791 18.493 20.599 23.364 24.478 25.508 29.336

40 20.707 22.164 23.838 24.433 26.509 29.051 32.345 33.66 34.872 39.335
50 27.991 29.707 31.664 32.357 34.764 37.689 41.449 42.942 44.313 49.335
60 35.534 37.485 39.699 40.482 43.188 46.459 50.641 52.294 53.809 59.335
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Table A.5 (continued) Critical Values of the Chi-Squared Distribution

α

v 0.30 0.25 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.001

1 1.074 1.323 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827
2 2.408 2.773 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.815
3 3.665 4.108 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.266
4 4.878 5.385 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.466
5 6.064 6.626 7.289 9.236 11.070 12.832 13.388 15.086 16.750 20.515

6 7.231 7.841 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.457
7 8.383 9.037 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.321
8 9.524 10.219 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.124
9 10.656 11.389 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 11.781 12.549 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588

11 12.899 13.701 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264
12 14.011 14.845 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.909
13 15.119 15.984 16.985 19.812 22.362 24.736 25.471 27.688 29.819 34.527
14 16.222 17.117 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.124
15 17.322 18.245 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.698

16 18.418 19.369 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.252
17 19.511 20.489 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.791
18 20.601 21.605 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312
19 21.689 22.718 23.900 27.204 30.144 32.852 33.687 36.191 38.582 43.819
20 22.775 23.828 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.314

21 23.858 24.935 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.796
22 24.939 26.039 27.301 30.813 33.924 36.781 37.659 40.289 42.796 48.268
23 26.018 27.141 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.728
24 27.096 28.241 29.553 33.196 36.415 39.364 40.270 42.980 45.558 51.179
25 28.172 29.339 30.675 34.382 37.652 40.646 41.566 44.314 46.928 52.619

26 29.246 30.435 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.051
27 30.319 31.528 32.912 36.741 40.113 43.195 44.140 46.963 49.645 55.475
28 31.391 32.620 34.027 37.916 41.337 44.461 45.419 48.278 50.994 56.892
29 32.461 33.711 35.139 39.087 42.557 45.722 46.693 49.588 52.335 58.301
30 33.530 34.800 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.702

40 44.165 45.616 47.269 51.805 55.758 59.342 60.436 63.691 66.766 73.403
50 54.723 56.334 58.164 63.167 67.505 71.420 72.613 76.154 79.490 86.660
60 65.226 66.981 68.972 74.397 79.082 83.298 84.58 88.379 91.952 99.608



Table A.6 F-Distribution Probability Table 741

0 f

α

α

Table A.6 Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Reproduced from Table 18 of Biometrika Tables for Statisticians, Vol. I, by permission of E.S.
Pearson and the Biometrika Trustees.
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Table A.6 (continued) Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 241.88 243.91 245.95 248.01 249.05 250.10 251.14 252.20 253.25 254.31
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 6055.85 6106.32 6157.28 6208.73 6234.63 6260.65 6286.78 6313.03 6339.39 6365.86
2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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